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1. Introduction. The purpose of this note is to present a simple proof
of a result of J. E. McMillan [3] concerning distortion of harmonic measure
by conformal mappings and to re-introduce an interesting conjecture which
he made in the same paper. Much has been discovered about the properties
of harmonic measure since McMillan’s contributions (see e.g. [2] and [5])
and the conjecture seems now to be more accessible.

A similar result of McMillan is used in his original proof of the celebrated
twist point theorem [4] and the same considerations used here can be used
to simplify the proof of that result as well. The proof given here may also
admit generalization to higher-dimensional situations.

In Section 2 we give the simple proof of McMillan’s harmonic measure
result. Section 3 presents the result on boundary distortion for which the
theorem in Section 2 is the key tool.

2. A property of sets of zero harmonic measure. Let D denote
the unit disk in the complex plane and let f : D → Ω be a conformal map.
Let A denote the set of all f(eiθ) when f has the nontangential limit f(eiθ)
at eiθ.

Let Ω∗ = Ω ∪A. If S1, S2 ⊂ Ω∗ then distΩ(S1, S2) = inf(diam γ) where
the infimum is over Jordan arcs γ which lie in Ω and join S1 and S2.

Note that distinct values of θ give distinct points in Ω∗ with respect to
this distance.

Theorem 2.1 (McMillan). Let E ⊂ A ⊂ ∂Ω and suppose that for each

a ∈ E there exists a sequence {cn} of crosscuts of Ω each of which separates

a from f(0) such that

1. diam cn → 0, and

2. sup
n

diam cn
distΩ(cn, E)

< ∞.

Then ω(E, f(0), Ω) = 0.
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P r o o f. Write E =
⋃

Ej where j = 1, 2, . . . and

Ej =

{

a ∈ E : sup
n

diam cn
distΩ(cn, E)

< j for some set of crosscuts

}

.

Fixing an integer M , we will show that for any compact subset F ⊂ EM ,

ω(F, f(0), Ω) = 0.

That will prove the theorem.
Fix a compact F ⊂ EM . For each a ∈ F let c(a) denote a crosscut of Ω

separating a from f(0) such that

diam c(a) <
1

M
distΩ(a, f(0)) and diam c(a) < M distΩ(c(a), E).

Let D(c) denote the simply connected component of Ω \c not containing
f(0). Considering F as a compact subset of Ω∗ we find a finite collection C0⊂
{c(a)} whose union separates F from f(0) in Ω∗. We delete any crosscuts
from this collection satisfying

D(c) ⊂
⋃

c′ 6=c

D(c′)

and name the collection of remaining crosscuts C1. The union of arcs in C1
still separates F from f(0) in Ω∗. “Unnecessary” arcs have been deleted.

For n ≥ 2 the collection Cn is formed likewise but starting with crosscuts
which satisfy

distΩ(c,E) <
1

2M
min

c′∈Cn−1

(diam c′).

It follows by condition 2 in the theorem that for any cn ∈ Cn and any
cn+1 ∈ Cn+1,

(1) distΩ (cn, cn+1) ≥
1

2M
diam cn.

Let ω(Cn, f(0)) denote the harmonic measure of the union of arcs in Cn
from f(0) in the connected component of Ω \

⋃

c∈Cn

D(c) containing f(0).
For each n we have

(2) ω(F, f(0), Ω) ≤ ω(Cn+1, f(0)) ≤ ω(Cn, f(0)) · sup
z∈
⋃

c∈Cn

c

ω(Cn+1, z)

by the strong Markov property of harmonic measure.
Let c ∈ Cn and let a be an endpoint of c. The boundary of a disk of

radius r(c) = 1

4M
diam c centered at a is connected to a by ∂Ω \E. Denote

a disk with center z and radius r by ∆z(r) and let

U(c) =
⋃

z∈c

∆z(r(c)).

By condition 2 in the theorem, Harnack’s inequality and the Beurling pro-
jection theorem (see e.g. [1], p. 43), for any z ∈ c we have
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ω(z, ∂Ω ∩∆a(r(c)), U) > α > 0

where α is a constant depending only on M .
It follows from the maximum principle and equation (1) above that

ω(Cn+1, z) ≤ 1− α < 1

for any z ∈ c and any c ∈ Cn. Now equation (2) shows that ω(F, f(0), Ω) = 0
as desired.

3. The area theorem. In [3] Theorem 2.1 is used to prove an inter-
esting result on the distortion at the boundary by a conformal mapping. To
describe it we need a few more definitions.

Choose r0 < d(f(0),A) where d denotes Euclidean distance. For each
a ∈ A and r < r0 let γ(a, r) ⊂ ∂∆a(r) be a crosscut of Ω separating a from
f(0). Let L(a, r) denote the Euclidean length of γ(a, r).

Let U(a, r) =
⋃

r′<r γ(a, r
′). The sets U(a, r) are Lebesgue measurable

in the plane and the Fubini theorem applies. To see this, consider the circles
centered at the same point a but using the mappings f(tz) with t → 1 and
notice that L(a, r) is the pointwise limit of continuous functions.

Let

A(a, r) =

r\
0

L(a, ̺) d̺

denote the Lebesgue measure of U(a, r). In fact, McMillan shows that the
sets U(a, r) are each the union of an open set and an at most countable set
of the crosscuts γ(a, r) whose radii can tend only to zero.

McMillan used Theorem 2.1 to prove

Theorem 3.1. The set of a ∈ A such that

lim sup
r→0

A(a, r)

πr2
<

1

2

has harmonic measure zero.

P r o o f. The proof is McMillan’s. It is only re-organized here.
Let

Em,k =

{

a ∈ A :
A(a, r)

πr2
<

1

2
−

1

m
for all r <

1

k

}

.

It will be enough to show that any compact subset of Em,k has harmonic
measure zero.

Fix a compact set F ⊂ Em,k and 1/k > ε > 0. Given a point a in F , we
show how to construct a crosscut c(a, ε) of Ω with diameter less than C1ε
which separates a from f(0) and for which

diam c < C2(m,k) distΩ(c, F ).
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By Theorem 2.1 then, the set F will be shown to have zero harmonic mea-
sure.

For any crosscut c of Ω, denote by D(c) the component of Ω − c not
containing f(0).

There exists a δ > 0 which only depends on m and is such that for any
r < 1/k and a ∈ Em,k the set {r′ ∈ (δr, r) : L(a, r) < (1/2 − 2/m)2πr′}
has positive Lebesgue measure. Cover the compact set F with finitely many
disks {∆ν} with relative diameter less than hε. The choice of h > 0 will
soon be made more explicit. It will also only depend on m and δ(m).

For each ν, a “step 0 arc for the disk ∆ν” is constructed as follows:
Choose a point aν ∈ ∆ν ∩ F and an r′ ∈ (δε, ε) such that L(aν , r

′) <
(1/2 − 2/m)2πr′. Let S be the open line segment whose endpoints are the
same as γ(aν , r

′). This segment S contains a crosscut c0 of Ω that separates
aν from f(0) and that can be joined to aν by an open Jordan arc Λ lying
in Ω and satisfying

Λ ∩ (S ∪ {w : |w − aν | = r′}) = ∅.

The segment c0 is the desired building block for the construction. Notice
that the Euclidean length of c0 is less than 2ε since r′ ∈ (δε, ε). Also note
that the Euclidean distance between c0 and aν is at least δε sin (2/m). Let
h = (δ/10) sin(2/m).

We may assume that a ∈ F ∩∆1 and we construct the step 0 arc for ∆1

and a. The nth stage in the construction will be a polygonal arc and the
construction stops at the nth step cn if

distΩ(cn, F ) ≥ hε.

Otherwise there is some disk ∆ν such that

distΩ(cn,∆ν ∩ F ) < hε

and we have three alternatives according to whether the step 0 arc for ∆ν

has 0, 1, or more than 1 intersections with cn. Label these possibilities as
Case 0, Case I and Case II respectively. In each case the next step cn+1 will
satisfy

1. D(cn) ∪∆ν ⊂ D(cn+1).

2. distΩ(cn+1,∆ν) ≥ hε.

3. Each edge of cn+1 has Euclidean length at most 2ε.

4. The angle on the f(0) side of each corner is at most Ψ < π where Ψ
is a fixed angle which only depends on δ.

Conditions 1 and 2 imply that the construction halts in finitely many
steps at a polygonal arc c satisfying

distΩ(c, F ) ≥ hε.
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Conditions 3 and 4 imply that the constructed arc c satisfies

diam c < kε

where k > 0 is a constant depending only on δ. Then we have

diam c

distΩ(c, F )
< k

so that by Theorem 2.1 the proof of Theorem 3.1 will be completed when
we construct cn+1 satisfying conditions 1–4 in each of the cases 0, I, II.

Let a∗ denote a point of ∆ν ∩ F such that distΩ(cn, a
∗) < hε and let c∗0

denote the step 0 crosscut for a∗ and ∆ν .
In Case 0 we have

distΩ(c
∗
0,∆ν) > 9hε, distΩ(cn,∆ν) < hε.

We see that a∗ can be joined to a point of cn by an open Jordan arc lying
in Ω but not intersecting c∗0. So cn ⊂ D(c∗0). We take cn+1 = c∗0 and easily
verify 1–4.

For Cases I and II we may assume that c∗0 ∩ cn contains no corner of cn
by choosing a different r′ if necessary from the set of positive measure of
possibilities in the construction of c∗0.

Also notice that, since the Euclidean length of c∗0 is at most 2ε and

distΩ(c
∗
0,∆ν) > 9hε,

the largest angle that any line segment l ⊂ Ω which intersects c∗0 and satisfies
distΩ(l,∆ν) < hε can make with c∗0 is

Ψ ≡ π − arctan(7h/2) < π.

We are assuming inductively that all angles on the f(0) side of cn are less
than Ψ .

In Case I, let w∗ ∈ cn be a point such that

distΩ(w
∗, a∗) < hε

and let α be the open Jordan subarc of cn joining c∗0 ∩ c to w∗. Because
the Euclidean distance between c∗0 and a∗ is larger than 9hε we must have
w∗ ∈ D(c∗0) and therefore α ⊂ D(c∗0). Recall that by definition c∗0 separates
a∗ from f(0) and can be joined to a∗ by an open Jordan arc in Ω which
intersects neither the line segment with the same endpoints as γ(a∗, r′) nor
the circle of radius r′ centered at a∗. Since distΩ(w

∗, a∗) < hε, we can join
w∗ and a∗ by an open Jordan arc λ in Ω which does not exit the open
half-plane H containing a∗ and having c∗0 ⊂ ∂H.

Let β denote the closed segment (or point) on c∗0 joining the endpoints
of α and λ on c∗0. As Ω is simply connected, the endpoints of c∗0 (which are
not in Ω) are in the unbounded component of α ∪ λ ∪ β. This implies that
α ⊂ H, because by the induction assumption on the angles of cn, if after
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entering H, α exits on one side of c∗0, the only way for it to re-enter H is to
wind around c∗0. Now we can take cn+1 to be the union of the component
of cn − c∗0 on the f(0) side of c∗0 together with its endpoint on c∗0 and the
component of c∗0 − cn on the f(0) side of cn. Conditions 1–4 are clear.

In Case II, there exists a component α of cn− c∗0 with both endpoints on
c∗0. Let β(α) denote the open line segment joining the endpoints of α. Then
α ∪ β(α) ⊂ Ω is a Jordan curve and as Ω is simply connected, its interior
domain ∆(α) must be contained in Ω. Since each angle on the f(0) side
of cn is less than Ψ < π, we see that α is contained in an open half-plane
whose boundary contains c∗0. If there were another such arc α′ it would have
an endpoint in common with α and β(α′) ∩ β(α) 6= ∅. Further, one of the
two components of c− (α∪ α′) would be in ∆(α)∪∆(α′) ⊂ Ω, but then an
endpoint of cn would be contained in ∆(α)∪∆(α′) ⊂ Ω. This contradiction
shows that cn ∩ c∗0 consists of the two endpoints of α.

Since points of ∆(α) are on the f(0) side of cn, we must have cn − α ⊂
Ω−D(c∗0). For otherwise c−α ⊂ D(c∗0) and it would be possible to join f(0)
to α without touching c∗0 or D(c∗0) and so to reach the a side of cn without
touching cn.

This means that

distΩ(cn − α,∆ν) > 9hε

so α must intersect {w : |w − a∗| < hε}. Now since the Euclidean length of
c∗0 is less than 2ε and the Euclidean distance from c∗0 to ∆ν is more than h,
we can set cn+1 = (cn − α) ∪ β(α). The proof is complete.
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