ON THE EQUIVALENCE
OF THE RICCI-PSEUDOSYMMETRY AND PSEUDOSYMMETRY

BY

RYSZARD DESZCZ (WROCŁAW), MARIAN HOTŁOŚ (WROCŁAW) AND ZERRIN ŞENTÜRÜK (ISTANBUL)

1. Introduction. Let \((M, g)\) be a connected \(n\)-dimensional, \(n \geq 3\), semi-Riemannian manifold of class \(C^\infty\). We denote by \(\nabla, R, C, S\) and \(\kappa\) the Levi-Civita connection, the Riemann–Christoffel curvature tensor, the Weyl conformal curvature tensor, the Ricci tensor and the scalar curvature of \((M, g)\), respectively.

A semi-Riemannian manifold \((M, g)\) is said to be semisymmetric [18] if
\[
R \cdot R = 0
\]
on \(M\). Further, a semi-Riemannian manifold \((M, g)\) is said to be pseudosymmetric [6] if
\[
(\ast)_1 \quad \text{the tensors } R \cdot R \text{ and } Q(g, R) \text{ are linearly dependent}
\]
at every point of \(M\). This condition is equivalent to the equality
\[
(\ast)_2 \quad R \cdot R = L_R Q(g, R)
\]
holding on \(U_R = \{ x \in M \mid R - \frac{\kappa}{n(n-1)} G \neq 0 \text{ at } x \}\), where \(L_R\) is a certain function on \(U_R\). The definitions of the tensors used here will be given in Section 2. There exist various examples of pseudosymmetric manifolds which are non-semisymmetric and a review of results on pseudosymmetric manifolds is given in [5] (see also [19]).

It is easy to see that if \((\ast)_1\) is satisfied on a semi-Riemannian manifold \((M, g)\) then
\[
(\ast)_2 \quad \text{the tensors } R \cdot S \text{ and } Q(g, S) \text{ are linearly dependent}
\]
at every point of \(M\). The converse statement is not true ([5]). A semi-Riemannian manifold \((M, g)\) is called Ricci-pseudosymmetric if at every point of \(M\) the condition \((\ast)_2\) is satisfied. If a manifold \((M, g)\) is Ricci-

Key words and phrases: semisymmetric manifolds, pseudosymmetry type manifolds.

[211]
pseudosymmetric then
\[R \cdot S = L_S Q(g, S) \]
on \mathcal{U}_S = \{ x \in M \mid S \neq \frac{2}{n}g \text{ at } x \},
where \(L_S \) is a certain function on \(\mathcal{U}_S \). We note that \(\mathcal{U}_S \subset \mathcal{U}_R \). It is easy to see that
\[(\ast) \quad \text{the tensors } R \cdot R - Q(S, R) \text{ and } Q(g, C) \text{ are linearly dependent at every point of a pseudosymmetric Einstein manifold. It is known that every hypersurface } M, \dim M \geq 4, \text{ of a semi-Riemannian space of constant curvature satisfies } (\ast) \text{ (cf. [12]). Recently, pseudosymmetric manifolds satisfying } (\ast) \text{ were investigated in [8]. The condition } (\ast) \text{ is equivalent to} \]
\[R \cdot R - Q(S, R) = L_1 Q(g, C) \]
on \mathcal{U}_C = \{ x \in M \mid C \neq 0 \text{ at } x \},
where \(L_1 \) is a certain function on \(\mathcal{U}_C \). Warped products satisfying (\ast) were considered in [3]. For instance, in [3] it was shown that any warped product \(M_1 \times_F M_2, \dim M_1 = 1, \dim M_2 = 3, \) satisfies (\ast). In particular, every generalized Robertson–Walker spacetime satisfies (\ast).
Evidently, any semi-Riemannian semisymmetric manifold satisfies trivially at every point the following condition ([9]):
\[(\ast\ast) \quad \text{the tensors } R \cdot C \text{ and } Q(S, C) \text{ are linearly dependent.} \]
This condition is equivalent to
\[R \cdot C = L_2 Q(S, C) \]
on \mathcal{U}_2 = \{ x \in M \mid Q(S, C) \neq 0 \text{ at } x \},
where \(L_2 \) is a certain function on \(\mathcal{U}_2 \). There exist non-pseudosymmetric manifolds satisfying (\ast\ast) (cf. [9]). Recently 4-dimensional manifolds satisfying (\ast\ast) have been investigated in [10] and [11].
Semi-Riemannian manifolds satisfying (\ast)\(_1\), (\ast)\(_2\), (\ast) and (\ast\ast) or other conditions of this kind, described in [5], are called manifolds of pseudosymmetry type.
A semi-Riemannian manifold \((M, g), n \geq 3\), is said to be Ricci-semisymmetric if
\[R \cdot S = 0 \]
on \(M \). Evidently, every semisymmetric manifold is Ricci-semisymmetric. The converse is not true. However, if a Ricci-semisymmetric manifold satisfies certain additional assumptions then it is semisymmetric. For instance, every conformally flat Ricci-semisymmetric semi-Riemannian manifold is semisymmetric. This is an obvious consequence of the fact that every conformally flat Ricci-pseudosymmetric semi-Riemannian manifold is pseudosymmetric ([7], Lemma 2). It is a long-standing question whether (1) and (6) are equivalent for hypersurfaces of spaces of constant curvature; cf. Problem
P 808 of [17] by P. J. Ryan, and the references therein. The problem of the equivalence of Ricci-semisymmetry and semisymmetry was also studied in [1]. There one can find a review of partial solutions of this problem. The main result of [1] is the following:

Theorem 1.1 ([1], Theorem 5.2). Let (M, g), $n \geq 4$, be a Riemannian Ricci-semisymmetric manifold satisfying

$$R \cdot R = Q(S, R).$$

If (M, g) has pseudosymmetric Weyl tensor then $R \cdot R = 0$ on $U_S \subset M$.

We recall that every hypersurface M of E_{n+1}^n, $n \geq 3$, satisfies (7) ([12], Corollary 3.1).

Extending the above problem we consider the problem of the equivalence of Ricci-pseudosymmetry and pseudosymmetry on semi-Riemannian manifolds. It is clear that if at a point x of a manifold (M, g) condition (**1)** is satisfied then also (**2)** holds at x. The converse is not true. For instance, every warped product $M_1 \times_F M_2$, $\dim M_1 = 1$, $\dim M_2 = n - 1 \geq 3$, of a manifold (M_1, \tilde{g}) and a non-pseudosymmetric Einstein manifold (M_2, \tilde{g}) is a non-pseudosymmetric, Ricci-pseudosymmetric manifold (cf. [5]). Further, in [4] (Theorem 4) it was shown that (**1)** and (**2)** are equivalent on the subset U_S of a 4-dimensional warped product $M_1 \times_F M_2$. In particular, (1) and (6) are equivalent on the subset U_S of a 4-dimensional warped product $M_1 \times_F M_2$. We also note that there exist non-semisymmetric Einsteinian 4-dimensional warped products $M_1 \times_F M_2$, e.g. the Schwarzschild spacetimes. Moreover, the Schwarzschild spacetimes are pseudosymmetric manifolds.

It was proved in [16] that (1) and (6) coincide for hypersurfaces of Riemannian space forms with non-zero constant sectional curvature. This result cannot be extended to the level of pseudosymmetry. Namely, the main result of [13] (Theorem 1) shows that the Cartan hypersurface in the sphere $S_{n+1}^n(c)$, $n = 6, 12$ or 24, is a non-pseudosymmetric Ricci-pseudosymmetric manifold with non-pseudosymmetric Weyl tensor.

The paper is organized as follows. In Section 2 we fix the notations and present auxiliary lemmas. Moreover, we describe some curvature properties of Ricci-pseudosymmetric manifolds satisfying (**2)**. In Section 3 we continue investigations of such manifolds assuming additionally condition (**1)**. Finally, in Section 4 we restrict our considerations to the special case when $L_S = \frac{n}{n-1} L_2$. We prove that every Ricci-pseudosymmetric manifold satisfying (**1)** and (**2)**, with $L_S = \frac{n}{n-1} L_2$, must be pseudosymmetric (Theorem 4.1). We mention that a family of manifolds realizing the above conditions is described in [2]. Furthermore, we also show that the manifolds considered have additional, very interesting in our opinion, curvature properties. Some
of them appeared in the earlier papers devoted to manifolds of pseudosymmetry type. Moreover, we note that a certain converse statement (Theorem 4.2) is also true.

Throughout this paper all manifolds are assumed to be connected paracompact manifolds of class C^∞.

2. Preliminaries. Let (M, g) be an n-dimensional, $n \geq 3$, semi-Riemannian manifold. The Ricci operator S is defined by $g(SX, Y) = S(X, Y)$, where $X, Y \in \mathcal{X}(M)$, $\mathcal{X}(M)$ being the Lie algebra of vector fields on M. Next, we define the endomorphisms $\mathcal{R}(X, Y)$, $\mathcal{C}(X, Y)$ and $X \wedge Y$ of $\mathcal{X}(M)$ by

\[
\mathcal{R}(X, Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X,Y]}Z,
\]

\[
\mathcal{C}(X, Y)Z = \mathcal{R}(X, Y)Z - \frac{1}{n-2} \left(X \wedge SY + SY \wedge X - \frac{k}{n-1} X \wedge Y \right) Z,
\]

\[
(X \wedge Y)Z = g(Y, Z)X - g(X, Z)Y,
\]

where $X, Y, Z \in \mathcal{X}(M)$. Now the Riemann–Christoffel curvature tensor R, the Weyl conformal curvature tensor C and the $(0,4)$-tensor G of (M, g) are defined by

\[
R(X_1, X_2, X_3, X_4) = g(\mathcal{R}(X_1, X_2)X_3, X_4),
\]

\[
C(X_1, X_2, X_3, X_4) = g(\mathcal{C}(X_1, X_2)X_3, X_4),
\]

\[
G(X_1, X_2, X_3, X_4) = g((X_1 \wedge X_2)X_3, X_4).
\]

A tensor B of type $(1, 3)$ on M is a \textit{generalized curvature tensor} if

\[
B(X_1, X_2, X_3, X_5) = 0,
\]

\[
\mathcal{S}_{X_1, X_2, X_3} B(X_1, X_2)X_3 = 0,
\]

\[
B(X_1, X_2) + B(X_2, X_1) = 0,
\]

\[
B(X_1, X_2, X_3, X_5) = B(X_3, X_4, X_1, X_2),
\]

where $B(X_1, X_2, X_3, X_5) = g(B(X_1, X_2)X_3, X_5)$. For a $(0, 2)$-tensor field A on (M, g) we define the endomorphism $X \wedge_A Y$ of $\mathcal{X}(M)$ by $(X \wedge_A Y)Z = A(Y, Z)X - A(X, Z)Y$, where $X, Y, Z \in \mathcal{X}(M)$. In particular, $X \wedge g Y = X \wedge Y$. For a $(0, k)$-tensor field T, $k \geq 1$, a $(0, 2)$-tensor field A and a generalized curvature tensor B on (M, g) we define the tensors $B \cdot T$ and $Q(A, T)$ by

\[
(B \cdot T)(X_1, \ldots, X_k; X, Y) = -T(B(X, Y)X_1, X_2, \ldots, X_k) - \ldots
\]

\[
- T(X_1, \ldots, X_k, B(X, Y)X_1),
\]

\[
Q(A, T)(X_1, \ldots, X_k; X, Y) = -T((X \wedge_A Y)X_1, X_2, \ldots, X_k) - \ldots
\]

\[
- T(X_1, \ldots, X_k, (X \wedge_A Y)X_1),
\]

where $X, Y, Z, X_1, X_2, \ldots \in \mathcal{X}(M)$. Putting in the above formulas $B = \mathcal{R}$ or
\[B = C, \ T = R \text{ or } T = C \text{ or } T = S, \ A = g \text{ or } A = S, \] we obtain the tensors \(R \cdot R, \ R \cdot C, \ R \cdot S, \ C \cdot S, \ Q(g, R), \ Q(S, R), \ Q(g, C), \ Q(g, S) \) and \(Q(S, C) \), respectively. We note that the Weyl conformal curvature tensor \(C \) can also be presented in the following form:

\[
C = R - \frac{1}{n-2} U + \frac{\kappa}{(n-1)(n-2)} G,
\]

where

\[
U(X_1, X_2, X_3, X_4) = g(X_1, X_3)S(X_2, X_4) - g(X_1, X_4)S(X_2, X_3) + g(X_2, X_3)S(X_1, X_4) - g(X_2, X_4)S(X_1, X_3).
\]

Let \((M, g) \) be a semi-Riemannian manifold covered by a system of charts \(\{W; x^k\} \). We denote by \(g_{ij}, \ R_{hijk}, \ S_{ij}, \ G_{hijk}, \ C_{hijk} \) the local components of the metric tensor \(g \), the Riemann–Christoffel curvature tensor \(R \), the Ricci tensor \(S \), the tensor \(G \) and the Weyl tensor \(C \), respectively. Further, we denote by \(S^2_{ij} = S^r_i S^r_j \) and \(S^j_i = g^{ir} S_{ir} \) the local components of the tensor \(S^2 \) defined by \(S^2(X, Y) = S(SX, Y) \), and of the Ricci operator \(S \), respectively.

At the end of this section we present some results which will be used in the next sections.

Lemma 2.1 ([8], Lemma 3.6). If \(B \) is a generalized curvature tensor at a point \(x \) of a semi-Riemannian manifold \((M, g) \), \(\dim M \geq 3 \), such that

\[
S_{Y, Z} a(X)B(Y, Z) = 0, \quad X, Y, Z \in T_x(M),
\]

for a covector \(a \) at \(x \), then \(Q(a \otimes a, B) = 0 \) at \(x \).

Now we present the converse statement.

Lemma 2.2. Let \((M, g) \), \(\dim M \geq 3 \), be a semi-Riemannian manifold. Let \(a \) be a non-zero covector and \(B \) a generalized curvature tensor at a point \(x \) of \(M \) satisfying \(Q(a \otimes a, B) = 0 \). Then (10) holds at \(x \).

Proof. In local coordinates the equality \(Q(a \otimes a, B) = 0 \) takes the form

\[
a_h a_l B_{mijk} - a_h a_m B_{lijk} + a_l a_i B_{hmkj} - a_l a_m B_{hljk} + a_j a_l B_{himk} - a_j a_m B_{hilk} + a_k a_l B_{hijm} - a_k a_m B_{hijl} = 0.
\]

Alternating this identity in \(h, l, m \), and making use of properties of \(B \), we obtain
Putting \(P_{hmjk} = a_lB_{hmjk} + a_mB_{lhjk} + a_hB_{mljk} \) and applying Lemma 2 of [14], we easily obtain (10).

From Theorem 4.1, Proposition 4.2 and Corollary 4.1 of [8] we get

Lemma 2.3. Let \(x \) be a point of a semi-Riemannian manifold \((M, g)\), \(\dim M \geq 4 \), such that

\[
S = \mu g + \varrho a \otimes a, \quad S = X \cdot B(Y, Z) = 0
\]

for some non-zero covector \(a \), where \(B = R - \gamma \mathcal{G} \), \(\mu, \varrho, \gamma \in \mathbb{R} \). Then at \(x \) we have

\[
R \cdot R = \frac{\kappa}{n(n-1)} Q(g, R), \quad R \cdot R = Q(S, R) - \frac{(n-2)\kappa}{n(n-1)} Q(g, C).
\]

First we consider Ricci-pseudosymmetric manifolds satisfying (**)

Lemma 2.4. Let \((M, g)\), \(\dim M \geq 4 \), be a semi-Riemannian Ricci-pseudosymmetric manifold satisfying condition (5). If \(L_2 \neq 0 \) at \(x \in U \cap U_2 \subset M \) then

\[
\begin{align*}
S^r& R_{rijk} + S^r_i R_{rikh} + S^r_k R_{rhj} = 0, \\
S^r& C_{rijk} + S^r_i C_{rikh} + S^r_k C_{rhj} = 0, \\
C \cdot S &= 0, \\
S^2 &= \alpha S + \beta g
\end{align*}
\]

at \(x \), where

\[
\alpha = (n-2)L_S + \frac{\kappa}{n-1}, \quad \beta = \frac{\text{tr}(S^2)}{n} - \left(n - 2 \right) \frac{\kappa}{n} \left[(n-2)L_S + \frac{\kappa}{n-1} \right].
\]

Proof. In local coordinates, (3) takes the form

\[
S^r_h R_{rijk} + S^r_j R_{rikh} + S^r_k R_{rhj} = L_S(g_{hj}S_{ik} - g_{hk}S_{ij} + g_{ij}S_{hk} - g_{ik}S_{hj}).
\]

Summing cyclically this equation in \(h, j, k \) we obtain (11). Using (9) and (11) we easily obtain (12). On the other hand, the relation (5) in local coordinates takes the form

\[
C_{rijk} R^{r}_{hlm} + C_{hrjk} R^{r}_{ilm} + C_{hirk} R^{r}_{jlm} + C_{hijr} R^{r}_{klm} = L_2(S_{hl}C_{mijk} - S_{hm}C_{lijk} + S_{ld}C_{hmjk} - S_{im}C_{hijk} + S_{jl}C_{himk} - S_{jm}C_{hik} + S_{kl}C_{hijm} - S_{km}C_{hijl}).
\]

Contracting this equality with \(g^{hk} \) we get

\[
L_2(S^r_l (C_{rijm} + C_{rjim}) - S^r_m (C_{rijl} + C_{rjil})) = 0,
\]
whence, by the assumption that \(L_2 \neq 0 \), we obtain
\[S^r_{\tau} C_{\tauijklm} + S^r_{\mu} C_{\tauijkl} + S^r_{\nu} C_{\tauijklm} + S^r_{\kappa} C_{\tauijklm} = 0. \]
Applying now (12) we have
\[(C \cdot S)_{ijklm} = S^r_{\tau} C_{\tauijklm} + S^r_{\nu} C_{\tauijklm} = 0, \]
i.e. the equality (13). It is easy to see, in view of (9), that
\[C \cdot S = R \cdot S - \frac{1}{n-2} Q(g, S^2) + \frac{\kappa}{(n-1)(n-2)} Q(g, S). \]
Applying now (5) and (13) we get
\[Q\left(g, S^2 - \left((n-2)L_S + \frac{\kappa}{n-1}\right)S\right) = 0, \]
which, by Lemma 2.4(i) of [12], leads to
\[S^2 = \left((n-2)L_S + \frac{\kappa}{n-1}\right)S + \lambda g, \quad \lambda \in \mathbb{R}. \]
Hence we easily obtain (14). This completes the proof.

Proposition 2.1. Let \((M, g)\), \(\dim M \geq 4\), be a semi-Riemannian Ricci-pseudosymmetric manifold satisfying condition (5). If \(L_2 \neq 0 \) at \(x \in U_S \cap U_\kappa \) then
\[(nL_S - \kappa L_2)S^r_{\tau} C_{\tauijkl} = (\kappa L_S - \text{tr}(S^2)L_2)C_{ijkl} \]
at \(x \). Moreover, if \(L_S = \frac{\kappa}{\kappa} L_2 \) at \(x \), then
\[\text{tr}(S^2) = \frac{\kappa^2}{\kappa}. \]

Proof. First we observe that (14) and (12) or (13) lead to
\[S^2_{hr} C^r_{ijkl} + S^2_{jr} C^r_{ikh} + S^2_{kr} C^r_{hik} = 0, \]
\[C \cdot S^2 = 0, \]
respectively. Transvecting (16) with \(S^m_p \) we get
\[S^r_{p} R_{ahl} C^r_{ijkl} + S^r_{p} R_{al} S^r_{hjk} + S^r_{p} R_{alj} C^r_{hik} + S^r_{p} R_{lhr} C^r_{hij} = \]
\[= L_2(S^r_{h} S^r_{p} C_{ijkl} + S^r_{j} S^r_{p} C_{hrjk} + S^r_{l} S^r_{p} C_{hirk} + S^r_{k} S^r_{p} C_{hijk} - S^r_{p} C_{ijkl} - S^r_{p} C_{hijk} - S^r_{p} C_{hijk} - S^r_{p} C_{hijk}) \]
and, after symmetrization in \(p, l \), by (3),
\[L_S(g_{ph} S^r_{p} C_{ijkl} + g_{th} S^r_{p} C_{rhjk} - g_{th} S^r_{p} C_{rhjk} - g_{th} S^r_{p} C_{rhjk}) + g_{th} S^r_{p} C_{rhjk} + g_{th} S^r_{p} C_{rhjk} - g_{th} S^r_{p} C_{rhjk} - g_{th} S^r_{p} C_{rhjk} - g_{th} S^r_{p} C_{rhjk} = \]
\[= L_2(S^r_{h} S^r_{p} C_{ijkl} + S^r_{j} S^r_{p} C_{hrjk} + S^r_{l} S^r_{p} C_{hirk} + S^r_{k} S^r_{p} C_{hijk} - S^r_{p} C_{ijkl} - S^r_{p} C_{hijk} - S^r_{p} C_{hijk} - S^r_{p} C_{hijk}) \]

\[= S^r_{p} C_{hijk} - S^r_{p} C_{hijk} - S^r_{p} C_{hijk} - S^r_{p} C_{hijk} \]
Contracting (21) with g^{hp} and using (12), (13), (19) and (20), we obtain

$$L_S(nS_i g^{Cr} - \kappa C_{l ij}) = L_2 (\kappa S_i g^{Cr} - \text{tr}(S^2)C_{l ij}),$$

which immediately leads to (17). Finally, if $L_S = \frac{2}{n}L_2$, then (17), in view of $C \neq 0$ and $L_2 \neq 0$ at x, yields $\text{tr}(S^2) = \kappa^2 / n$. This completes the proof.

3. Ricci-pseudosymmetric manifolds satisfying (\ast) and $(\ast\ast)$. In the sequel we restrict our considerations to the set $\mathcal{U} = U_S \cap U_2$.

Lemma 3.1. Let (M, g), dim $M \geq 4$, be a semi-Riemannian Ricci-pseudosymmetric manifold satisfying conditions (4) and (5). If $L_2 \neq 0$ at $x \in \mathcal{U}$ then

$$L_S(nS_i g^{Cr} - \kappa C_{l ij}) = (n - 1)\frac{L_S}{n} \frac{2\kappa}{n} + \frac{2\kappa}{n} - \frac{\kappa^2}{n(n - 1)}$$

at x.

Proof. Contracting (15) with g^{hk}, we find

$$A_{ij} = \alpha S\cdot S_{rij} = S_{ij}^2 - nL_S S_{ij} + \kappa L_S g_{ij},$$

where $S^\alpha = g^{rs} S_{r\alpha}$. Applying the operation $R \cdot$ to this equality we obtain

$$(R \cdot S)_{rshk} R^r_{ij} = (R \cdot S)_{rshk} = (R \cdot S)_{ij} = nL_S (R \cdot S)_{ij} = 0.$$

In view of (3), (5) and $S^{\alpha r} S_{rij} = 0$, which follows immediately from (13), the left hand side of this identity is equal to

$$L_S(S^\alpha R_{rij} + S^\alpha R_{rj} - S^\alpha R_{rj} - S^\alpha R_{rij}) + S^\alpha R^r_{ijk} + S^\alpha R^r_{ijk} + L_1 (S^\alpha C_{rj} + S^\alpha C_{rj} - S^\alpha C_{rj} - S^\alpha C_{rj}).$$

Using twice (12) and next (13) we can easily see that the expression in the last brackets vanishes. Moreover, in view of (11), we have $S^\alpha R_{rij} - S^\alpha R_{rij} = -S^\alpha R_{rij}$. Analogously, using

$$S^\alpha R^r_{ij} + S^\alpha R^r_{ij} + S^\alpha R^r_{ij} = 0,$$

which follows immediately from (14) and (11), we get

$$S^\alpha R^r_{ijk} - S^\alpha R^r_{ijk} = -S^\alpha R^r_{ijk} = S^\alpha R^r_{ijk}.$$
Taking into account all these identities one can easily see that the left hand side of (24) can be written as follows:

\[-L_S(R \cdot S)_{ijhk} + (R \cdot S^2)_{ijhk} + S_{ih}A_{jk} - S_{ik}A_{jh} + S_{jh}A_{ik} - S_{jk}A_{ih}.

Substituting this expression into (24) we obtain

\[(n-1)L_S(R \cdot S)_{ijhk} = S_{ik}A_{jh} - S_{ih}A_{jk} + S_{jk}A_{ih} - S_{jh}A_{ik}.

Using now (23) we get

\[(n-1)L_S(R \cdot S) = (\beta + \kappa L_S)Q(g, S),

which, by the assumption that \(x \in U_S\), implies

\[\beta = L_S((n-1)L_S - \kappa).

Using the definition of \(\beta\) we immediately have (22). This completes the proof.

Remark 3.1. Under the assumptions of Lemma 3.1, if \(L_S = \frac{\kappa}{n} L_2\) at \(x\) then

\[L_S = \frac{\kappa}{n(n-1)}.

Moreover, if \(\kappa \neq 0\) at \(x\) then \(L_2 = 1/(n-1)\). In fact, substituting (18) into (22) we easily get (26). The equality \(L_2 = 1/(n-1)\) now follows immediately from our assumptions.

Proposition 3.1. Let \((M, g), \dim M \geq 4,\) be a semi-Riemannian Ricci-pseudosymmetric manifold satisfying conditions (4) and (5). If \(L_2 \neq 0\) at \(x \in U\) then

\[nL_1 \left(S_{ij}^r C_{rijk} - \frac{\kappa}{n} C_{lijk} \right) + (\kappa - nL_S)S_{ij}^r R_{rijk} + nL_S(S_{ik}S_{lj} - S_{ij}S_{lk}) - \kappa L_2(g_{ij}S_{lk} - g_{lk}S_{ij}) + nL_2^2(g_{ij}S_{lk} - g_{lk}S_{ij}) - \kappa L_2^2 G_{lijk} = 0\]

at \(x\).

Proof. In local coordinates (4) takes the form

\[R_{rijk} R'_{hlm} + R_{hrjk} R'_{dim} + R_{hirk} R'_{jlm} + R_{hijr} R'_{klm} = S_{hl} R_{mijk} - S_{hm} R_{lijk} + S_{il} R_{hmjk} - S_{im} R_{hljk} + S_{jl} R_{himk} - S_{jm} R_{hilk} + S_{kl} R_{hijm} + L_1(g_{hl} C_{mijk} - g_{hm} C_{lijk} + g_{il} C_{hmk} + g_{jm} C_{hihl} - g_{jm} C_{hijl} - g_{km} C_{hijk}).\]
Transvecting this with S_p^m we obtain

$$S_p^m R_{slkr} R_{ij}^r - S_p^m R_{slir} R_{hk}^r + S_p^m R_{sljr} R_{ki}^r - S_p^m R_{slkr} R_{ij}^r$$

$$= S_{hl} S_p^m R_{srij} - S_{jl} S_p^m R_{shjk} + S_{jl} S_p^m R_{shki} - S_{hl} S_p^m R_{srijk}$$

$$- S_{pl} R_{hljk} - S_{pl} R_{hljk} - S_{pl} R_{hljk} - S_{pl} R_{hljk}$$

$$+ L_1 (g_h S_p^m C_{sij} - g_h S_p^m C_{shj} + g_h S_p^m C_{scki} - g_h S_p^m C_{srijk})$$

$$- S_{pl} C_{sij} - S_{pl} C_{shjk} - S_{pl} C_{shjk} - S_{pl} C_{shjk}).$$

Symmetrizing the above equality in p, l and using (3), we have

$$L_S (g_{pl} S_p^m R_{sijkl} + g_{pl} S_p^m R_{sijkl} - g_{pl} S_p^m R_{sijkl} - g_{pl} S_p^m R_{sijkl})$$

$$+ g_{pl} S_p^m R_{sijkl} + g_{pl} S_p^m R_{sijkl} - g_{pl} S_p^m R_{sijkl} - g_{pl} S_p^m R_{sijkl})$$

$$= S_{hl} S_p^m R_{sijkl} + S_{hl} S_p^m R_{sijkl} - S_{hl} S_p^m R_{sijkl} - S_{hl} S_p^m R_{sijkl}$$

$$+ S_{jl} S_p^m R_{sijkl} - S_{jl} S_p^m R_{sijkl} - S_{jl} S_p^m R_{sijkl} - S_{jl} S_p^m R_{sijkl}$$

$$- S_{pl} R_{hljk} - S_{pl} R_{hljk} - S_{pl} R_{hljk} - S_{pl} R_{hljk}$$

$$+ L_1 (g_h S_p^m C_{sijkl} - g_h S_p^m C_{ijkl} - g_h S_p^m C_{ijkl} - g_h S_p^m C_{ijkl})$$

$$- S_{pl} C_{sijkl} - S_{pl} C_{ijkl} - S_{pl} C_{ijkl} - S_{pl} C_{ijkl}$$

$$- S_{pl} C_{ijkl} + S_{pl} C_{ijkl}).$$

Now we observe that the tensor A with components A_{ij} given by (23), in view of (14) and (25), can be written in the form

$$A = \left(\frac{\kappa}{n - 1} - 2 L_S \right) S + (n - 1) L_S^2 g.$$

Moreover, (14) and (3) imply

$$R \cdot S^2 = \alpha L_S Q(g, S).$$

On the other hand, transvecting (15) with S_t^l we get

$$S_t^l S_t^r R_{srijk} + S_t^l S_t^r R_{srijk} = L_S (S_t^l S_{hk} - S_t^l S_{hj} + S_t^l S_{hk} - g_h S_t^l S_{hk}).$$

Moreover, we note that the following identity is satisfied:

$$-S_t^r S_t^l S_t^r R_{srijk} + S_t^r S_t^l S_t^r R_{srijk} - S_t^r S_t^l S_t^r R_{srijk}$$

$$= S_t^l (S_t^r R_{srijk} + S_t^l R_{srijk} + S_t^r R_{srijk})$$

$$= S_t^l S_t^r R_{srijk} + S_t^r R_{srijk} = S_t^l S_t^r R_{srijk} + S_t^l R_{srijk}.$$
Contracting (28) with g^{ph} and using (11), (15), (29), (12), (25), the above equality and (31) and (30), we obtain, after standard but somewhat lengthy calculations, the relation (27). This completes the proof.

Lemma 3.2. If (M, g), $\dim M \geq 4$, is a semi-Riemannian Ricci-pseudo-symmetric manifold satisfying conditions (\ast) and $(\ast\ast)$ then we have on U:

\[
\begin{align*}
(32) \quad (L_2 - 1)Q(S, R) - L_1Q(g, R) &= \frac{1}{n-2} \left(L_2Q(S, U) + \left(\frac{L_2}{n-1} - L_1 - L_S \right) Q(g, U) \right), \\
(33) \quad (L_2 - 1)(\kappa R_{mijk} + S_i^r R_{rmjk}) - L_1(n-1)R_{mijk} &= \left(\frac{L_2}{n-2} + 1 \right) (S_{ik} S_{mj} - S_{mk} S_{ij}) \\
&\quad + \frac{1}{n-2} \left(\frac{n\kappa L_2}{n-1} - (n-1)L_1 - L_S \right) (g_{mk} S_{ij} - g_{mj} S_{ik}) \\
&\quad + \frac{n-1}{n-2} \left(\frac{L_2}{n-1} - L_1 - L_S \right) (g_{ij} S_{mk} - g_{ik} S_{mj}) \\
&\quad + \frac{L_2}{n-2} (g_{mj} S_{ik}^2 - g_{mk} S_{ij}^2) \\
&\quad + \frac{\kappa}{n-2} \left(\frac{L_2}{n-1} - L_1 - L_S \right) (g_{mj} g_{ik} - g_{mk} g_{ij}).
\end{align*}
\]

Proof. First we observe that (3) implies

\[R \cdot U = -L_S Q(S, G) = L_S Q(g, U). \]

Moreover, using (8), we obtain $R \cdot C = R \cdot R - \frac{1}{n-2} R \cdot U$. Substituting into this equality the previous one and (4) and (5) we get

\[
(34) \quad L_2Q(S, C) = Q(S, R) + L_1Q(g, C) - \frac{L_S}{n-2} Q(g, U).
\]

On the other hand, we have

\[
\begin{align*}
Q(S, C) &= Q(S, R) - \frac{1}{n-2} Q(S, U) + \frac{\kappa}{(n-1)(n-2)} Q(S, G) \\
&= Q(S, R) - \frac{1}{n-2} Q(S, U) - \frac{\kappa}{(n-1)(n-2)} Q(g, U)
\end{align*}
\]

and

\[
Q(g, C) = Q(g, R) - \frac{1}{n-2} Q(g, U).
\]

Combining the last three equalities we have (32). Using the definition of the tensor $Q(A, T)$, by a standard calculation, we obtain

\[
\begin{align*}
g_{hl}Q(S, R)_{hi\cdot j\cdot k\cdot lm} &= \kappa R_{mijk} + S_i^r R_{rmjk} + S_{ik} S_{mj} - S_{ij} S_{km}, \\
g_{hl}Q(g, R)_{hi\cdot j\cdot k\cdot lm} &= (n-1) R_{mijk} + g_{jm} S_{ik} - g_{km} S_{ij},
\end{align*}
\]
\[g^{hl} Q(S,U)_{ijklm} = n(g_{mk}S_{ij} - g_{mj}S_{ik}) + g_{mj}S_{ik}^2 - g_{mk}S_{ij}^2 + (n-1)(S_{ik}S_{mj} - S_{mk}S_{ij}), \]
\[g^{hl} Q(g,U)_{ijklm} = g_{mk}S_{ij} - g_{mj}S_{ik} + (n-1)(g_{ij}S_{mk} - g_{ik}S_{mj}) + \kappa(g_{jm}g_{ik} - g_{km}g_{ij}). \]

Contracting (32) with \(g^{hl} \) and using the above relations we get (33), which completes the proof.

4. On a certain subclass of pseudosymmetric manifolds. In this section we consider the special case of Ricci-pseudosymmetric manifolds satisfying conditions (\(* \)) and (\(** \)):

(S) \[L_S = \frac{\kappa}{n} L_2 \text{ and } L_S \neq 0. \]

According to Remark 3.1 we have

(35) \[L_S = \frac{\kappa}{n(n-1)}, \quad L_2 = \frac{1}{n-1}. \]

Moreover, in view of (14) and (18), we have

(36) \[S^2 = \frac{2\kappa}{n} S - \frac{\kappa^2}{n^2} g. \]

Lemma 4.1. Let \((M,g), \dim M \geq 4, \) be a semi-Riemannian Ricci-pseudosymmetric manifold satisfying (4) and (5). If at a point \(x \in U \) the hypothesis (S) is satisfied then

(37) \[\left(S^r_{C_{ijkl}} - \frac{\kappa}{n} C_{ijkl} \right) \left(L_1 + \frac{(n-2)\kappa}{n(n-1)} \right) = 0 \]

at \(x. \)

Proof. (27), in view of (35), takes the form

\[nL_1(S^r_{C_{ijkl}} - \frac{\kappa}{n} C_{ijkl}) + \frac{n-2}{n-1} \kappa (S^r_{C_{ijkl}} - \frac{\kappa}{n} R_{ijkl}) \]
\[+ \frac{\kappa}{n-1} (S_{ik}S_{lj} - S_{lj}S_{ik}) - \frac{\kappa^2}{n(n-1)} (g_{ij}S_{mk} - g_{im}S_{jk}) \]
\[+ \frac{\kappa^2}{n(n-1)^2} (g_{ij}S_{mk} - g_{mk}S_{ij}) - \frac{\kappa^3}{n^2(n-1)^2} (g_{ik}g_{lj} - g_{lj}g_{ik}) = 0. \]

Now using (18) and (36) we easily obtain (37). Further, we define the tensor \(T \) by

(38) \[T = S - \frac{\kappa}{n} g. \]

It is easy to see that (36) is equivalent to

(39) \[T^2 = 0. \]
According to the above lemma we consider two a priori possible cases:

(i) $L_1 = -\frac{(n-2)\kappa}{n(n-1)}$,

(ii) $L_1 \neq -\frac{(n-2)\kappa}{n(n-1)}$.

Case (i). In this case the equality (34) takes the form

$$\frac{1}{n-1} Q(S, C) = Q(S, R) - \frac{(n-2)\kappa}{n(n-1)} Q(g, C) - \frac{\kappa}{n(n-1)(n-2)} Q(g, U).$$

The identity $Q(S, G) = -Q(g, U)$ and (8) imply

$$Q(S, R) = Q(S, C) + \frac{1}{n-2} Q(S, U) + \frac{\kappa}{(n-1)(n-2)} Q(g, U).$$

Substituting this equality into (40) we obtain

$$\frac{n-2}{n-1} Q(T, C) + \frac{1}{n-2} Q(S + \frac{\kappa}{n} g, U) = 0.$$

Using the relations: $T \nu C'_{mjk} + T \nu C'_{ijk} = 0$, $T \nu C'_{skj} + T \nu C'_{ijm} + T \nu C'_{imk}$ = 0, and $T \nu C'_{rij} = 0$, which are obvious consequences of (13) and (12), by a standard calculation, we get $g^{hl} Q(T, C)_{hijklm} = -T \nu C'_{ijk}$. Similarly, using (36) we find

$$g^{hl} Q\left(S + \frac{\kappa}{n} g, U\right)_{hijklm} = (n-1)(T_{ik} T_{mj} - T_{mk} T_{ij}).$$

Thus contraction of (41) with g^{hl} leads to

$$\frac{n-2}{n-1} T \nu C'_{ijk} = \frac{n-1}{n-2} (T_{ik} T_{mj} - T_{mk} T_{ij}).$$

On the other hand, transvecting the equality

$$\frac{n-2}{n-1} Q(T, C)_{hijklm} + \frac{1}{n-2} Q\left(S + \frac{\kappa}{n} g, U\right)_{hijklm} = 0$$

with T_{pl} and using (39) and (42), in the same manner as above, we get

$$T_{ph}(T_{mj} T_{ik} - T_{mk} T_{ij}) + T_{pi}(T_{mk} T_{hj} - T_{mj} T_{hk}) + T_{pj}(T_{mh} T_{ik} - T_{mi} T_{hk}) + T_{pk}(T_{mi} T_{hj} - T_{mh} T_{ij}) = 0.$$

Putting $T_{hijk} = T_{hk} T_{ij} - T_{hj} T_{ik}$ and using the fact that the tensor T with components T_{hijk} is a generalized curvature tensor, we can rewrite the above equality in the form

$$T_{ph} T_{mijk} + T_{pi} T_{hmjk} + T_{pj} T_{himk} + T_{pk} T_{hjmn} = 0.$$
Since $T \neq 0$ at x we can choose a vector w at x such that $a_i = w^r T_{ri} \neq 0$. Transvecting now (43) with w^k we get

$$a_h T_{mi} + a_i T_{hm} + a_j T_{hmk} + a_k T_{hijm} = 0.$$

Applying now Lemma 4 of [15], in view of $a \neq 0$ at x, we have $T = 0$, whence we immediately obtain $T = \varrho a \otimes a$, $\varrho \in \mathbb{R}$. Thus

$$(44)
S = \frac{\kappa}{n} + \varrho a \otimes a.
$$

Applying (44) we have $Q(S + \frac{\kappa}{n} g, U) = 2 \kappa n Q(g, U) + \varrho Q(a \otimes a, U)$. But $Q(g, U) = -Q(S, G) = -\varrho Q(a \otimes a, G)$. On the other hand, using (44) we easily obtain $Q(a \otimes a, U) = \frac{\kappa}{n} Q(a \otimes a, G)$. Combining the last three equalities we have $Q(S + \frac{\kappa}{n} g, U) = 0$ and, in virtue of (41), $Q(T, C) = 0$, i.e. $Q(S, C) = \frac{\kappa}{n} Q(g, C)$. Thus (5) implies, in view of $L_2 = \frac{1}{n-2}$, $R C = \frac{\kappa}{n(n-2)} Q(g, C)$, and, in view of Ricci-pseudosymmetry of (M, g), $R R = \frac{n-1}{n(n-2)} Q(g, R)$. Moreover, using (44) we have $Q(a \otimes a, C) = 0$ whence, by Lemma 2.2, we obtain

$$S_{X,Y,Z} a(X) C(Y, Z) = 0.
$$

Case (ii). In this case (37) implies

$$(45)
T_{mr} C_{rjk} = 0.
$$

The equality (33) leads to

$$\lambda R = \frac{n-1}{n-2} S - \frac{1}{n-2} \left(\frac{\kappa}{n} - (n-1)L_1 \right) U + \frac{\kappa}{n-2} \left(\frac{\kappa}{n^2(n-1)} - L_1 \right) G,
$$

where $\lambda = \frac{n-2}{n} \kappa + (n-1) L_1$. This implies $\lambda C = \frac{n-1}{n-2} (S - \frac{\kappa}{n} U + \frac{\kappa}{n^2} G)$ and consequently $\frac{n-2}{n} \lambda C = T$. Hence, in view of (39) and $\lambda \neq 0$, we have $C_{rjk} C_{rpt} = 0$, and next $C \cdot C = 0$. On the other hand, we can check that the following identity is satisfied on any semi-Riemannian manifold:

$$(C \cdot C)_{hijklm} = (R \cdot C)_{hijklm} + \frac{1}{n-2} Q \left(\frac{\kappa}{n-1} g - S, C \right)_{hijklm}
$$

$$- \frac{1}{n-2} (g_{hi} S_{m}^{r} C_{rjk} - g_{hm} S_{l}^{r} C_{rjk})
- g_{hi} S_{m}^{r} C_{rjk} + g_{im} S_{l}^{r} C_{rjk} + g_{j} l S_{m}^{r} C_{rkhi}
- g_{jm} S_{l}^{r} C_{rkhi} - g_{kl} S_{m}^{r} C_{rjhi} + g_{km} S_{l}^{r} C_{rjhi}).$$

Using now (5) and (45) we get $C \cdot C = -\frac{1}{(n-1)(n-2)} Q(T, C)$. Thus $Q(T, C) = 0$, which, as we saw in the previous case, leads to (2).

Thus we have proved the following
Theorem 4.1. Let \((M, g)\), \(\dim M \geq 4\), be a semi-Riemannian Ricci-pseudosymmetric manifold satisfying \((*)\) and \((**\)) and let \(x \in U\). Assume that \(L_S = \frac{n}{n-1} L_2\) at \(x\), \(L_S \neq 0\), and let \(\lambda = \frac{n-2}{n} \kappa + (n-1) L_1\). Then (2) holds at \(x\) and

(i) if \(\lambda \neq 0\), then \(\frac{n-2}{n-1} \lambda C = \mathcal{T} \) at \(x\);

(ii) if \(\lambda = 0\), then the following identities hold at \(x\):

\[
S = \kappa \frac{n}{n-1} g + g a \otimes a, \quad S_{X,Y,Z} a(X)\mathcal{C}(Y, Z) = 0
\]

for some non-zero covector \(a\) at \(x\) and \(\varrho \in \mathbb{R}\).

We now present the converse statement to (ii).

Theorem 4.2. Let \(x\) be a point of a semi-Riemannian manifold \((M, g)\), \(\dim M \geq 4\), such that \(x \in U\) and the following conditions are satisfied at \(x\):

\[S = \mu g + \varrho a \otimes a, \quad S_{X,Y,Z} a(X)\mathcal{C}(Y, Z) = 0\]

for some non-zero covector \(a\) and \(\mu, \varrho \in \mathbb{R}\). Then (2), (4) and (5) hold at \(x\). Moreover,

\[
L_R = \frac{\kappa}{n(n-1)}, \quad L_1 = \frac{(n-2)\kappa}{n(n-1)}, \quad L_2 = \frac{1}{n-1}, \quad \mu = \frac{\kappa}{n}, \quad \kappa \neq 0.
\]

Proof. First we observe that the identity (47), which in local coordinates takes the form \(a_l C_{hijk} + a_h C_{iljk} + a_i C_{lhjk} = 0\), implies \(a_r C_{rijk} = 0\) and next \(a_r a_r = 0\). Thus the relation (46) leads to \(\mu = \kappa/n\). We assert that \(\kappa \neq 0\) at \(x\). Suppose that \(\kappa = 0\). Then \(S = \varrho a \otimes a\) and applying Lemma 2.1, in view of \(\varrho \neq 0\), we get \(Q(S, C) = 0\), a contradiction, because \(x \in U\). Using (8), (46) and \(\mu = \kappa/n\) we have

\[
C = R - \frac{\kappa}{n(n-1)} G + P,
\]

where the \((0,4)\)-tensor \(P\) is defined by \(P_{hijk} = g_{hk} a_i a_j + g_{ij} a_h a_k - g_{hj} a_i a_k - g_{ik} a_h a_j\). It is easy to see that \(S_{X,Y,Z} a(X)\mathcal{P}(Y, Z) = 0\). Taking into account this equality, (49) and (47) we obtain \(S_{X,Y,Z} a(X)\mathcal{B}(Y, Z) = 0\), where \(B = R - \frac{\kappa}{n(n-1)} G\). Applying now Lemma 2.3 we see that \((M, g)\) is pseudosymmetric and satisfies (4) with \(L_R\) and \(L_1\) given by (48). We can check that on any semi-Riemannian manifold the equality \(R \cdot R = \frac{\kappa}{n(n-1)} Q(g, R)\) implies

\[
R \cdot C = \frac{\kappa}{n(n-1)} Q(g, C).
\]

The relation (47), in view of Lemma 2.1, implies \(Q(a \otimes a, C) = 0\). On the other hand, using (46) we have \(Q(S, C) = \mu Q(g, C) + \varrho Q(a \otimes a, C)\). Thus
\[Q(g, C) = \frac{1}{\mu} Q(S, C) = \frac{n}{\kappa} Q(S, C). \] Substituting this equality into (50) we get \[R \cdot C = \frac{1}{n-1} Q(S, C). \] This completes the proof.

It is worth noticing that manifolds satisfying simultaneously conditions (5) and (47) have been considered in [9]. The main result of that paper says that the function \(L^2 \) of every such manifold must be equal to \(1/(n-1) \) or \(1/(n-2) \). Moreover, if \(L^2 = 1/(n-1) \) then such a manifold is pseudosymmetric. On the other hand, as shown in Example 5.1 of [9], there exist manifolds with \(L^2 = 1/(n-2) \) which are not pseudosymmetric.

REFERENCES

Ryszard Deszcz
Department of Mathematics
Agricultural University of Wroclaw
Grunwaldzka 53
50-357 Wroclaw, Poland
E-mail: rysz@oci.ar.wroc.pl

Marian Hotloś
Institute of Mathematics
Wroclaw University of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wroclaw, Poland

Zerrin Şentürk
Department of Mathematics
Technical University of Istanbul
80626 Maslak, Istanbul, Turkey

Received 9 February 1998
Revised 20 July 1998