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ON ADDITIVE FUNCTIONS FOR STABLE
TRANSLATION QUIVERS

BY

GRZEGORZ B O B I Ń S K I (TORUŃ)

Abstract. The aim of this note is to give a complete description of the positive addi-
tive functions for the stable nonperiodic translation quivers with finitely many orbits. In
particular, we show that all positive additive functions on the stable translation quivers of
Euclidean type (respectively, of wild type) are periodic, and hence bounded (respectively,
are unbounded, and hence nonperiodic).

1.Main results and related background. A quiver ∆=(∆0, ∆1, s, e)
is given by a set ∆0 of vertices, a set ∆1 of arrows, and two maps s, e : ∆1 →
∆0 which assign to each arrow α its source s(α) and its end e(α). We will
usually write ∆ = (∆0, ∆1) and omit the maps s and e.

Let ∆ = (∆0, ∆1) be a quiver and x, y ∈ ∆0 be vertices. A path from
x to y of length l > 0 in ∆ is a sequence of arrows αl . . . α1 such that
s(αi+1) = e(αi) for any i= 1, . . . , l − 1, and s(α1) = x and e(αl) = y. For
each vertex z ∈ ∆0 we also introduce a path (z|z) of length 0. A path of
positive length from z to z is called an oriented cycle. A quiver ∆ without
oriented cycles is said to be directed. The vertex x will be called a predecessor
of y provided there exists a path from x to y. In this case y is called a
successor of x. For each vertex x ∈ ∆0 we denote by x− the set of all direct
predecessors of x in ∆, that is, the set of all vertices y ∈ ∆0 such that there
exists an arrow α ∈ ∆1 with s(α) = y and e(α) = x. Similarly, by x+ we
denote the set of all direct successors of x. All quivers we deal with in the
paper are supposed to be locally finite, which means that, for each vertex
x ∈ ∆0, the sets x− and x+ are finite.

By a translation quiver Γ = (Γ0, Γ1, τ) we mean a quiver (Γ0, Γ1) with an
injective map τ : Γ ′0 → Γ0, where Γ ′0 ⊆ Γ0, such that for any vertices x ∈ Γ ′0
and y ∈ Γ0 the number of arrows from y to x is equal to the number of
arrows from τx to y. The function τ is called a translation. The translation
quiver Γ is said to be stable provided Γ ′0 = Γ0 and τ(Γ0) = Γ0 (that is,
τ : Γ0 → Γ0 is a bijection). Important examples of translation quivers are
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provided by the connected components of the Auslander–Reiten quivers of
finite-dimensional algebras.

Let ∆ = (∆0, ∆1) be a directed quiver. We define a stable translation
quiver Z∆. The set of vertices of Z∆ is given by Z×∆0, and given an arrow
α : x→ y in ∆ there are arrows (n, α) : (n, x)→ (n, y) and (n, α)′ : (n, y)→
(n+1, x) in Z∆, n ∈ Z. Finally, we define a translation τ : Z×∆0 → Z×∆0

by τ(n, x) := (n− 1, x) for any x ∈ ∆0 and n ∈ Z.
Let Γ = (Γ0, Γ1, τ) be a stable translation quiver. A function f : Γ0 → Z

is said to be an additive function for Γ provided

f(x) + f(τx) =
∑
y∈x−

dy,xf(y)

for any vertex x∈Γ0. Here dy,x denotes the number of arrows from y to x
in Γ . The function f is said to be positive if f(x) ≥ 0 for all x ∈ Γ0 and
there exists a vertex x ∈ Γ0 such that f(x) > 0. Finally, the function f
is said to be periodic with period n > 0 if f(τnx) = f(x) for any vertex
x ∈ Γ0.

Let ∆ = (∆0, ∆1) be a connected finite (∆0 and ∆1 are finite sets)
directed quiver. Consider the Cartan matrix C = C∆ ∈ Z∆0×∆0 whose
x-y-entry is the number of paths from y to x in ∆. Then C is invertible
over Z and we may consider the Coxeter matrix Φ = Φ∆ := −CTC−1. For
a function f : Z × ∆0 → Z and n ∈ Z, denote by f(n) the vector in Z∆0

such that f(n)x := f(n, x) for any x ∈ ∆0. Moreover, we denote by Dr(∆)
the set of the dimension-vectors of all regular finite-dimensional complex
representations of the quiver ∆ (see Section 2 for details). We note that
Dr(∆) is not empty if and only if ∆ is not of Dynkin type (Am, Dn, E6, E7,
E8).

We are now able to formulate the main result of this note.

Theorem. Let ∆ be a finite connected directed quiver and f : Z ×∆0

→ Z a function. Then f is a positive additive function for Z∆ if and only
if there exists a vector d ∈ Dr(∆) such that f(n)T = Φ−n∆ dT for any n ∈ Z.

We get the following direct consequences of the above theorem and the
known facts in the representation theory of quivers (see also [2], [3, 6.5], [4],
[5], [7, p. 362]).

Corollary 1. Let ∆ be a finite connected directed quiver not of Dynkin
type. The following conditions are equivalent :

(i) ∆ is of Euclidean type (Ãm, D̃n, Ẽ6, Ẽ7, Ẽ8).
(ii) Every positive additive function for Z∆ is periodic.
(iii) There exists a positive additive periodic function for Z∆.
(iv) Every positive additive function for Z∆ is bounded.
(v) There exists a positive additive bounded function for Z∆.
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Corollary 2. Let ∆ be a quiver of Dynkin type. Then there is no
positive additive function for Z∆.

2. Preliminaries on representations of quivers. The crucial tool in
our investigations is the theory of representations of quivers. Thus, through-
out the paper K denotes an algebraically closed field (as we treat representa-
tions of quivers as a tool, we can even assume that K is the field of complex
numbers). Throughout the note ∆ = (∆0, ∆1) denotes a fixed connected
finite directed quiver.

By a (finite-dimensional) representation of ∆ we mean a system V =
(Vx, Vα)x∈∆0,α∈∆1 of finite-dimensional K-linear spaces Vx, x ∈ ∆0, and K-
linear maps Vα : Vs(α) → Ve(α), α ∈ ∆1. If V = (Vx, Vα) and W = (Wx,Wα)
are two representations of ∆ then f = (fx)x∈∆0

, with fx : Vx →Wx a K-
linear, is a map of representations provided Wαfs(α) = fe(α)Vα for each
arrow α ∈ ∆1. In this way we obtain an abelian category rep∆ of repre-
sentations of the quiver ∆. If V = (Vx, Vα) is a representation of ∆ then
we assign to V its dimension-vector dimV ∈ ZQ0 in the following way:
(dimV )x := dimK Vx for any x ∈ ∆0.

There are two important endofunctors τ = τ∆ = D Tr, τ− = τ−∆ = Tr D :
rep∆ → rep∆, called the Auslander–Reiten translations of rep∆. They are
useful if we want to count the Ext-groups. Namely, we have the following
Auslander–Reiten formulas:

Ext(V,W ) ' D Hom(W, τV ) ' D Hom(τ−W,V )

for any representations V and W from rep∆. Here D denotes the standard
duality with respect to the field K and we write Ext instead of Ext1. In
particular, we get dim Ext(V,W ) = dim Ext(τV, τW ) if W is nonprojective
and dim Ext(V,W ) = dim Ext(τ−V, τ−W ) if V is noninjective.

The Auslander–Reiten translations allow us also to introduce three clas-
ses of indecomposable representations. The first class consists of preprojec-
tive representations, which are the indecomposable representations X for
which there exists an integer n ≥ 0 such that τnX is projective. Similarly,
an indecomposable representation X is called preinjective provided there
exists an integer n ≥ 0 such that τ−nX is injective. Finally, the indecom-
posable representation X is called regular if it is neither preprojective nor
preinjective. In the case of Dynkin quivers all indecomposable representa-
tions are both preprojective and preinjective. If ∆ is not of Dynkin type then
there are disjoint classes of preprojective and preinjective representations.
Moreover, in this case, the class of regular representations is not empty. If ∆
is of Euclidean type then the class of regular representations consists of all
indecomposable representations X for which there exists an integer n > 0
with τnX ' X. For the remaining (wild) quivers ∆ the indecomposable reg-
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ular representations of ∆ are never periodic with respect to τ . In general,
by a regular representation of ∆ we mean a (finite) direct sum of indecom-
posable regular representations. For more information about the structure
of the category of representations of quivers we refer to [1], [6], [7].

Let x be a vertex of ∆. We define a representation S(x) = (S(x)y, S(x)α)
putting S(x)y := δx,yK for any y ∈ ∆0 and S(x)α := 0 for any α ∈ ∆1.
Here δa,b denotes the Kronecker delta. Let P (x) be a projective cover of
S(x) and Q(x) be an injective envelope of S(x) in rep∆. It is known that
the representations P (x), x ∈ ∆0, form a complete set of pairwise noni-
somorphic indecomposable projective representations of ∆. Similarly, the
representations Q(x), x ∈ ∆0, form a complete set of pairwise nonisomor-
phic indecomposable injective representations of ∆. We denote by p(x) the
dimension-vector of P (x) and by q(x) the dimension-vector of Q(x). It is
easily seen that

p(x)y = #{paths from x to y} and q(x)y = #{paths from y to x}.
In addition, for any representation V from rep∆ we have

dimK Hom(P (x), V ) = (dimV )x = dimK Hom(V,Q(x)).

Let C = C∆ ∈ Z∆0×∆0 be the Cartan martix of ∆. It follows from
the above formulas that its yth column is given by p(y)T and its xth row
is given by q(x), hence its x-y-entry is given by dimK Hom(P (x), P (y)) =
dimK Hom(Q(x), Q(y)), for each x, y ∈ ∆0. The assumption that ∆ is di-
rected gives us that C is invertible (over Z) and we may define the Cox-
eter matrix Φ = Φ∆ as Φ := −CTC−1. It is an easy exercise to see that
Φp(x)T = −q(x)T for any x ∈ ∆0. Further (see [7, p. 75]),

(dim τV )T = Φ(dimV )T and (dim τ−W )T = Φ−1(dimW )T

for any nonprojective indecomposable representation V and any noninjective
indecomposable representation W from rep∆, which will play an important
role in our proofs.

3. Additive functions for Z∆. The aim of this section is to prove
some facts on the structure of additive functions for the translation quiver
Z∆. For two vertices x, y ∈ ∆0, we denote by dx,y the number of arrows
from x to y in ∆.

First we define a matrix A = A∆ = (ax,y)x,y∈∆0
by the following induc-

tive formula for the number of predecessors of the vertex x:

ax,y :=
∑
z∈x−

dz,xaz,y + dx,y − δx,y

for any x, y ∈ ∆0. Notice that the lack of oriented cycles in ∆ guarantees
that the above definition is correct.
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The origin of the above matrix becomes clear from the following lemma.

Lemma 3.1. If f is an additive function for Z∆ then

f(n+ 1)T = Af(n)T

for any n ∈ Z.

P r o o f. By induction on the number of predecessors of a given vertex of
∆ we get

f(n+ 1, x) =
∑
z∈x−

dz,xf(n+ 1, z) +
∑
y∈x+

dx,yf(n, y)− f(n, x)

=
∑
z∈x−

(
dz,x

∑
y∈∆0

az,yf(n, y)
)

+
∑
y∈∆0

dx,yf(n, y)− f(n, x)

=
∑
y∈∆0

( ∑
z∈x−

dz,xaz,y + dx,y − δx,y
)
f(n, y) =

∑
y∈∆0

ax,yf(n, y)

for any x ∈ ∆0.

Together with the above lemma the next property of the matrix A is not
suprising.

Lemma 3.2. The matrix A is invertible over Z.

P r o o f. Define a matrix B = (bx,y)x,y∈∆0 by the following inductive
formula for the number of successors of the vertex x:

bx,y :=
∑
z∈x+

dx,zbz,y + dy,x − δx,y

for any x, y ∈ ∆0. It is an easy exercise to check inductively on the number
of predecessors of a given vertex of ∆ that B is the inverse matrix of A.

Our final lemma completes the above observations.

Lemma 3.3. If d ∈ Z∆0 then the function f : Z×∆0 → Z given by

f(n)T := AndT

for any n ∈ Z is an additive function for Z∆.

P r o o f. It follows again by induction on the number of predecessors, for
n > 0 (successors, for n ≤ 0), that

f(n, x) + f(n− 1, x) =
∑
y∈x−

dy,xf(n, x) +
∑
y∈x+

dx,yf(n− 1, x)

for any x ∈ ∆0.

Now we are ready to identify the matrix A.

Proposition 3.4. If ∆ is a finite directed quiver then

A∆ = Φ−1∆ .
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P r o o f. Fix a vertex x ∈ ∆0. Define a function f : Z×∆0 → Z by

f(n)T := Anp(x)T

for any n ∈ Z. By Lemma 3.3 it is an additive function for Z∆. On the
other hand, using induction on the number of successors of a given vertex
of ∆ and the formulas listed in Section 2 we conclude that f(−1) = −q(x).
Indeed, for y ∈ ∆0 we have

f(−1, y) =
∑
z∈y+

dy,zf(−1, z) +
∑
z∈y−

dz,yf(0, z)− f(0, y)

= −
∑
z∈y+

dy,zq(x)z +
∑
z∈y−

dz,yp(x)z − p(x)y

= −
∑
z∈y+

dy,z#{paths from z to x}

+
∑
z∈y−

dz,y#{paths from x to z} −#{paths from x to y}

= −#{paths from y to x} = −q(x)y.

As a consequence of the above considerations we obtain

A−1p(x)T = −q(x)y = Φp(x)T

for any x ∈ ∆0. Since the vectors p(x), x ∈ ∆0, form a basis of the vector
space Q∆0 (because the Cartan matrix C is invertible), we conclude that
A−1 = Φ.

4.Proofs of the main results.Recall that ∆= (∆0, ∆1) is a finite
connected directed quiver. Assume d=dimV for a regular representation
V of∆ (so∆ is not of Dynkin type). Then it follows from Lemma 3.3, Propo-
sition 3.4 and the results mentioned in Section 2 that f(n)T := Φ−ndT =
(dim τ−nV )T defines a positive additive function for Z∆. Conversely, as-
sume that f : Z×∆0 → Z is an arbitrary positive additive function for Z∆.
We shall prove that f is of the required form.

Since f is positive, it follows from Lemma 3.1 that f(0) is a nonzero
vector of N∆0 . Choose a representation V in rep∆ with dimV = f(0) and
the smallest possible dimension of the endomorphism ring. We know (see
for example [1, VII.3.2]) that then Ext(V1, V2) = 0 for any decomposition
V1 ⊕ V2 of V .

Consider first the case when V has an indecomposable preprojective
direct summand. Choose such a summand V0 with the smallest possible
number m such that τmV0 is projective. If we decompose V into the di-
rect sum V0⊕ . . .⊕Vl of indecomposable representations then we know by
our assumption that τmVi 6= 0 for any i = 0, . . . , l. In addition, using the
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Auslander–Reiten formulas we obtain Ext(τmVi, τ
mV0) = 0 for any i =

1, . . . , l. As a consequence, using again the same formulas we conclude that
Hom(τmV0, τ

m+1Vi) = 0 for any i = 1, . . . , l. However, τmV0 = P (x) for
some vertex x ∈ ∆0. Thus the above equalities mean that (dim τm+1Vi)x =
0 for all i=1,. . ., l, so that τmVi is not projective. Without loss of generality
we may assume that the representations τmV1, . . . , τ

mVk are projective and
τmVk+1, . . . , τ

mVl are not. For each i=1, . . . , k, we may write τmVi=P (xi)
for some vertex xi ∈ ∆0. Using Proposition 3.4, Lemma 3.1 and the facts
listed in Section 2, we get

f(−m− 1)T = Φm+1(dimV )T = Φ(dim τmV )T

= Φ(dim τmV0)T +

k∑
i=1

Φ(dim τmVi)
T +

l∑
i=k+1

Φ(dim τmVi)
T

= Φp(x)T +

k∑
i=1

Φp(xi)
T +

l∑
i=k+1

dim(τm+1Vi)
T

= −q(x)T −
k∑
i=1

q(xi)
T +

l∑
i=k+1

dim(τm+1Vi)
T.

In particular, we have

f(−m− 1)x = −q(x)x −
k∑
i=1

q(xi)x +

l∑
i=k+1

dim(τm+1Vi)x

= −1−
k∑
i=1

q(xi)x < 0

and this contradicts the positivity of f . We proceed dually when V has an
indecomposable preinjective direct summand. Therefore, V is regular and
d := f(0) = dimV ∈ Dr(∆). A direct application of Lemmas 3.1, 3.2 and
Proposition 3.4 shows that f is of the required from. This finishes the proof
of the theorem.

Assume now that ∆ is of Euclidean type. Then it is well known (see [7])
that for any regular representation X of ∆ there exists m ≥ 1 such that
τmX ' X. Hence, it follows from the theorem that every positive additive
function for Z∆ is periodic, and hence bounded. Assume now that ∆ is nei-
ther of Dynkin nor of Euclidean type. Then it follows from [6], [8] that for
any indecomposable regular representation M of ∆ the dimension-vectors
dim τnM , n ∈ Z, are pairwise different. In particular, for any regular rep-
resentation V of ∆, the associated positive additive function f for Z∆, with
f(n) := dim τ−nV , is not bounded, and hence is not periodic. Therefore,
by the theorem, every positive additive function for Z∆ is neither periodic
nor bounded. This completes the proof of Corollary 1.
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Finally, Corollary 2 follows from the theorem and the fact that the quiv-
ers of Dynkin type do not admit regular indecomposable representations.
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