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ON NONSTATIONARY MOTION OF A FIXED MASS OF A VISCOUS

COMPRESSIBLE BAROTROPIC FLUID BOUNDED

BY A FREE BOUNDARY

BY

EWA ZADRZYŃSKA AND

WOJCIECH M. ZAJ A̧CZKOWSKI (WARSZAWA)

1. Introduction. In this paper we consider the global motion of a drop
of a viscous barotropic fluid in the general case, i.e. without assuming any
conditions on the form of the pressure p = p(̺). Here ̺ = ̺(x, t) (where
x ∈ Ωt, t ∈ [0, T ], Ωt ⊂ R3 is a bounded domain of the drop at time t) is
the density of the drop.

Next, let v = v(x, t) (v = (vi)i=1,2,3) denote the velocity of the fluid,
f = f(x, t) the external force field per unit mass, µ and ν the constant
viscosity coefficients, and p0 the external (constant) pressure. Then the mo-
tion of the drop is described by the following system of equations (see [2,
Chs. 1, 2]):

̺[vt + (v · ∇)v]− divT(v, p) = ̺f in Ω̃T ,

̺t + div(̺v) = 0 in Ω̃T ,

Tn = −p0n on S̃T ,

v · n = −
φt

|∇φ|
on S̃T ,

̺|t=0 = ̺0, v|t=0 = v0 in Ω,

(1.1)

where Ω̃T =
⋃

t∈(0,T )Ωt×{t}, S̃T =
⋃

t∈(0,T ) St×{t}, St = ∂Ωt, φ(x, t) = 0

describes St (at least locally), n is the unit outward vector normal to the
boundary, i.e. n = ∇φ/|∇φ|, and Ω = Ωt|t=0 = Ω0. In (1.1), T = T(v, p) =
{Tij}i,j=1,2,3 = {−pδij+µ(vixj

+vjxi
)+(ν−µ)δij div v}i,j=1,2,3 is the stress

tensor. Moreover, we assume ν > 1
3µ > 0.

Let the domain Ω be given. Then by (1.1)4, Ωt = {x ∈ R3 : x =
x(ξ, t), ξ ∈ Ω}, where x = x(ξ, t) is the solution of the Cauchy problem
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∂x

∂t
= v(x, t), x|t=0 = ξ ∈ Ω, ξ = (ξ1, ξ2, ξ3).(1.2)

Hence, we obtain the following relation between the Eulerian x and the
Lagrangian ξ coordinates of the same fluid particle:

x = ξ +

t\
0

u(ξ, t′) dt′ ≡ Xu(ξ, t),(1.3)

where u(ξ, t) = v(Xu(ξ, t), t). Moreover, by (1.1)4, St = {x : x = x(ξ, t), ξ ∈
S = ∂Ω}.

By the continuity equation (1.1)2 and the kinematic condition (1.1)4 the
total mass is conserved, i.e.\

Ωt

̺(x, t) dx =
\
Ω

̺0(ξ) dξ =M,(1.4)

where M is a given constant.
In [15] the local existence of a unique solution is proved for a problem

analogous to (1.1), but describing the motion of a drop of a viscous heat–
conducting fluid.

Let u = u(ξ, t), η = η(ξ, t) denote v and ̺ written in Lagrangian coor-
dinates. In the same way as in [15] (see Theorem 4.2 of [15]) one can prove
the local existence of a unique solution (v, ̺) of problem (1.1) such that
u ∈ AT,Ω , η ∈ BT,Ω, where AT,Ω ≡ AT,Ω0T

, BT,Ω ≡ BT,Ω0T
and

BT,ΩiT
= {f ∈ C(iT, (i+ 1)T ;H2(ΩiT )) :(1.5)

ft ∈ C(iT, (i+ 1)T ;H1(ΩiT )) ∩ L2(iT, (i+ 1)T ;H2(ΩiT )),

ftt ∈ C(iT, (i+ 1)T ;L2(Ω)) ∩ L2(iT, (i+ 1)T ;H1(ΩiT ))},

AT,ΩiT
= BT,ΩiT

∩ L2(iT, (i+ 1)T ;H3(ΩiT )),(1.6)

i ∈ N ∪ {0}, T ≤ T∗, where T∗ > 0 is a certain constant.
The aim of this paper is to prove the existence of a global-in-time solu-

tion of problem (1.1) near a constant state. Consider the equation

p(̺) = p0,(1.7)

where ̺ ∈ R+, p ∈ C3(R+), and p
′ > 0.

We introduce the following definition of a constant state.

Definition 1.1. Let f = 0. Then by a constant (equilibrium) state we
mean a solution (v, ̺) of problem (1.1) such that v = 0, ̺ = ̺e, and Ωt = Ωe

for t ≥ 0, where ̺e is a solution of (1.7) and |Ωe| =M/̺e (|Ωe| = volΩe).

First, in Section 2 we derive a differential inequality (2.58) which enables
extending the local solution of (1.1) step by step from the interval [0, T ] to
[0,∞). To prove the global existence we also use Lemma 2.1, which gives
an energy estimate (2.8), and Lemmas 3.3–3.4. The above lemmas yield in
particular global estimates for ‖v‖2L2(Ωt)

and ‖pσ‖2L2(Ωt)
(where pσ = p−p0),
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which are used in the proofs of Lemma 3.4 and Theorem 3.9, the main result
of the paper.

The global motion of a fluid described by (1.1) has been considered
earlier in papers [7] and [17].

In [17] the global existence for problem (1.1) is proved for a special form
of p = p(̺):

p = a0̺
α,(1.8)

where a0 > 0 and α > 0 are constants. The global solution obtained in [17]
is more regular than the one obtained in this paper.

A result analogous to that of [17] is proved (under assumption (1.8)) in
[18] for the fluid bounded by a free boundary the shape of which is governed
by surface tension.

Paper [7] of V.A. Solonnikov and A.Tani is concerned with problem (1.1)
with the boundary condition Tn− σHn = 0 (where H is the double mean
curvature of St, and σ > 0 is the constant coefficient of surface tension).
In [7] the existence of a solution is proved in some anisotropic Sobolev–
Slobodetskĭı spaces; it is a little less regular than ours. To prove the local
existence the authors of [7] apply potential techniques.

Both in [17] and in [7] the energy conservation law is used in order to
derive a global estimate for ‖v‖2L2(Ωt)

.

Papers [8]–[10] are concerned with the free boundary problem for a vis-
cous barotropic self-gravitating fluid with p of the form (1.8).

Next, papers [11]–[14] are devoted to the free boundary problem for a vis-
cous heat-conducting fluid under the assumption that the internal energy ε
has a special form:

ε = a0̺
α + h(̺, θ),

where a0 > 0, α > 0, h(̺, θ) ≥ h∗ > 0; a0, α and h∗ are constants.

The free boundary problem for a viscous incompressible fluid was ex-
amined by V. A. Solonnikov in [3]–[6].

Finally, we present the notation used in the paper. We denote by ‖ ·‖l,Q
(where l ≥ 0, Q ⊂ R3) the norms in the Sobolev spaces H l(Q), and by
Γ l
k(Q) (l > 0, k ≥ 0, Q ⊂ R3) the space of functions u = u(x, t) (x ∈ Q,
t ∈ (0, T ), T > 0) with the norm

‖u‖Γk
l
(Q) =

∑

i≤l−k

‖∂itu‖l−i,Q ≡ |u|l,k,Q.

2. Differential inequality. Assume that the existence of a sufficiently
smooth local solution of problem (1.1) has been proved and let

f = 0.(2.1)
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In this section we obtain a special differential inequality which enables us
to prove the global existence. To get the inequality we consider the motion
near the constant state. Let

pσ = p− p0, ̺σ = ̺− ̺e,(2.2)

where ̺e is introduced in Definition 1.1. Then problem (1.1) takes the form

̺[vt + (v · ∇)v]− divT(v, pσ) = 0 in Ωt, t ∈ (0, T ),

̺σt + div(̺v) = 0 in Ωt, t ∈ (0, T ),

T(v, pσ)n = 0 on St, t ∈ (0, T ),

̺σ|t=0 = ̺σ0 = ̺0 − ̺e, v|t=0 = v0, in Ω.

(2.3)

In the sequel we use the following Taylor formula for pσ:

pσ = (̺− ̺e)

1\
0

p′(̺e + s(̺− ̺e)) ds = p1̺σ,(2.4)

where the function p1 is positive.
Now, let ̺∗ and ̺∗ be positive constants such that

̺∗ < ̺ < ̺∗ for x ∈ Ωt, t ∈ [0, T ].(2.5)

In the lemmas below we denote by ε small constants, by c0<1 a positive
constant depending on µ, ν, and by c a positive constants depending on T

(the time of local existence), ̺∗, ̺
∗,
Tt
0
‖v‖23,Ωt′

dt′, ‖S‖5/2, on the parameters

which guarantee the existence of the inverse transformation to x = x(ξ, t)
and on the constants of imbedding theorems and Korn inqualities. We do
not distinguish different ε’s or c’s.

We underline that all the estimates below are obtained under the as-
sumption that there exists a local-in-time solution of problem (1.1), so all

the quantities ̺∗, ̺
∗,T ,

Tt
0
‖v‖23,Ωt′

dt′, ‖S‖5/2 are estimated by the data func-

tions. Moreover, the existence of the inverse transformation to x = x(ξ, t) is
guaranteed by the estimates for the local solution (see [15]).

Now, assume the relations \
Ωt

̺v dx = 0,(2.6) \
Ωt

̺v · η dx = 0,(2.7)

where η = a+ b× x and a and b are arbitrary vectors.

Lemma 2.1. Let (v, ̺σ) be a sufficiently smooth solution of (2.3). Then

1

2

d

dt

\
Ωt

(
̺v2 +

p1
̺
̺2σ

)
dx+ c0‖v‖

2
1,Ωt

≤ cX2
1 (1 +X1),(2.8)

where X1 = ‖v‖22,Ωt
+ ‖̺σ‖22,Ωt

.
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P r o o f. Multiplying (2.3)1 by v, integrating over Ωt and using the con-
tinuity equation (2.3)2, boundary condition (2.3)4 and (2.4) we obtain

1

2

d

dt

\
Ωt

̺v2 dx+
µ

2
EΩt

(v) + (ν − µ)‖div v‖20,Ωt
−
\
Ωt

p1̺σ div v dx = 0,(2.9)

where EΩt
(v) =

T
Ωt

∑3
i,j=1(vixj

+ vjxi
)2 dx.

In [13] it is proved that

µ

2
EΩt

(v) + (ν − µ)‖div v‖20,Ωt
≥ cEΩt

(v),

where c > 0 is a constant.
Next, by the continuity equation (2.3)2 we have

−
\
Ωt

p1̺σ div v dx =
1

2

d

dt

\
Ωt

p1̺
2
σ

̺
dx+ J,(2.10)

where

|J | ≤ ε(‖̺σt‖
2
0,Ωt

+ ‖v‖21,Ωt
) + cX2

1 (1 +X1).(2.11)

Moreover, in view of assumptions (2.6) and (2.7), Lemma 5.2 of [17]
yields

‖v‖21,Ωt
≤ c(EΩt

(v) + ‖̺σ‖
2
0,Ωt

‖v‖20,Ωt
)(2.12)

and by the continuity equation (2.3)2,

‖̺σt‖
2
0,Ωt

≤ c‖v‖21,Ωt
+ c‖v‖21,Ωt

‖̺σ‖
2
2,Ωt

.(2.13)

Taking into account (2.9)–(2.13) we get estimate (2.8).

Lemma 2.2. Let (v, ̺σ) be a sufficiently smooth solution of (2.3). Then

1

2

d

dt

\
Ωt

(
̺v2t +

p̺σ
̺
̺2σt

)
dx+ c0(‖vt‖

2
1,Ωt

+ ‖̺σt‖
2
0,Ωt

)(2.14)

≤ c‖v‖21,Ωt
+ cY 2

1 (1 +X2),

where

X2 = |v|22,0,Ωt
+ |̺σ|

2
2,0,Ωt

+

t\
0

‖v‖23,Ωt′
dt′,(2.15)

Y1 = X2 −

t\
0

‖v‖23,Ωt′
dt′.(2.16)

P r o o f. Differentiating (2.3)1 with respect to t, multiplying by vt and
integrating over Ωt yields
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1

2

d

dt

\
Ωt

̺v2t dx+
µ

2
EΩt

(vt) + (ν − µ)‖div vt‖
2
0,Ωt

(2.17)

−
\
Ωt

pσ̺̺σt div vt dx ≤ cY 2
1 (1 +X2),

where we have used the boundary condition (2.3)4.

By Lemma 5.3 of [17] we have the following Korn type inequality:

‖vt‖
2
1,Ωt

≤ c[EΩt
(vt) + Y 2

1 (1 + Y1)].(2.18)

Finally, using the continuity equation (2.3)3 we get

−
\
Ωt

pσ̺̺σt div vt dx =
1

2

d

dt

\
Ωt

pσ̺
̺
̺2σt dx+ J,(2.19)

where

|J | ≤ ε(‖vt‖
2
1,Ωt

+ ‖̺σt‖
2
0,Ωt

) + cY 2
1 (1 + Y1).(2.20)

In view of inequalities (2.17)–(2.20) and (2.13) we obtain (2.14).

Lemmas 2.1 and 2.2 yield

Lemma 2.3. Let (v, ̺σ) be a sufficiently smooth solution of (2.3). Then

1

2

d

dt

\
Ωt

[
̺(v2 + v2t ) +

p1
̺
̺2σ +

pσ̺
̺
̺2σt

]
dx(2.21)

+ c0(‖v‖
2
1,Ωt

+ ‖vt‖
2
1,Ωt

+ ‖̺σt‖
2
0,Ωt

) ≤ cY 2
1 (1 +X2),

where X2 and Y1 are given by (2.15) and (2.16), respectively.

Next, we obtain

Lemma 2.4. Let v, ̺σ be a sufficiently smooth solution of (2.3). Then

1

2

d

dt

\
Ωt

(
̺v2tt +

pσ̺
̺
̺2σtt

)
dx+ c0(‖vtt‖

2
1,Ωt

+ ‖̺σtt‖
2
0,Ωt

)

≤ c(‖v‖21,Ωt
+ ‖vt‖

2
1,Ωt

) + cX2Y2(1 +X2
2 ),

where X2 is given by (2.15) and

Y2 = |v|23,1,Ωt
+ ‖̺σ‖

2
2,Ωt

+ ‖̺σt‖
2
2,Ωt

+ ‖̺σtt‖
2
1,Ωt

.(2.22)

The above lemma can be proved in the same way as Lemmas 2.1 and
2.2. To estimate EΩt

(vtt) we use here Lemma 5.4 of [17].

In order to obtain estimates for derivatives with respect to x we rewrite
problem (2.3) in Lagrangian coordinates. We have
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ηuit −∇uj
Tuij(u, pσ) = 0 (i = 1, 2, 3) in ΩT ≡ Ω × (0, T ),

ησt + η∇u · u = 0 in ΩT ,

Tu(u, pσ)nu = 0 on ST ≡ S × (0, T ),

u|t=0 = v0, ησ|t=0 = ̺σ0, in Ω,

(2.23)

where η(ξ, t) = ̺(Xu(ξ, t), t), u(ξ, t) = v(Xu(ξ, t), t) (Xu is given by (1.3)),
ησ = η − ̺e, ̺σ0 = ̺0 − ̺e, Tu(u, pσ) = {Tuij(u, pσ)}i,j=1,2,3 = {−pσδij +
µ(∂xi

ξk∂ξkuj + ∂xj
ξk∂ξkui) + (ν − µ)δij divu u}i,j=1,2,3, divu u = ∇u · u =

∂xi
ξk∂ξkui, ∇u = (ξkxi

∂ξk)i=1,2,3, ∇uj
= ξkxj

∂ξk , ∂xi
ξk are the elements of

the matrix ξx which is inverse to xξ = I +
Tt
0
uξ(ξ, t

′) dt′, I = {δij}i,j=1,2,3

is the unit matrix, nu = n(Xu(ξ, t), t) = ∇xφ(x, t)/|∇xφ(x, t)|x=Xu(ξ,t) (St

is determined at least locally by the equation φ(x, t) = 0) and summation
over repeated indices is assumed.

By (2.4) we have pσ = p1ησ, where p1 = p1(η).

Now, introduce a partition of unity ({Ω̃i}, {ζi}), Ω =
⋃

i Ω̃i. Let Ω̃ be

one of the Ω̃i’s and ζ(ξ) = ζi(ξ) be the corresponding function. If Ω̃ is an

interior subdomain then let ω̃ be a set such that ω̃ ⊂ Ω̃ and ζ(ξ) = 1 for

ξ ∈ ω̃. Otherwise, we assume that Ω̃ ∩ S 6= ∅, ω̃ ∩ S 6= ∅, ω̃ ⊂ Ω̃. Take any

β ∈ ω̃ ∩ S = S̃ and introduce local coordinates {y} associated with {ξ} by

yk = αkl(ξl − βl), α3k = nk(β), k = 1, 2, 3,(2.24)

where {αkl} is a constant orthogonal matrix such that S̃ is determined by
the equation y3 = F (y1, y2), F ∈ H5/2 and

Ω̃ = {y : |yi| < d, i = 1, 2, F (y′) < y3 < F (y′) + d, y′ = (y1, y2)}.

Next, we introduce u′, η′, η′σ by

u′i(y) = αijuj(ξ)|ξ=ξ(y) (i = 1, 2, 3), η′(y) = η(ξ)|ξ=ξ(y),

η′σ(y) = η′(y)− ̺e,

where ξ = ξ(y) is the inverse transformation to (2.24).
Next, we introduce new variables by

zi = yi (i = 1, 2), z3 = y3 − F̃ (y), y ∈ Ω̃,

which will be denoted by z = Φ(y) (where F̃ ∈ H3 is an extension of F ).
Let

Ω̂ = Φ(Ω̃) = {z : |zi| < d, i = 1, 2, 0 < z3 < d} and Ŝ = Φ(S̃).(2.25)

Define

û(z) = u′(y)|y=Φ−1(z), η̂(z) = η′(y)|y=Φ−1(z), η̂σ(z) = η̂(z)− ̺e.
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Set ∇̂k = ξlxk
ziξl∇zi |ξ=χ−1(z), where χ(ξ)=Φ(ψ(ξ)) and y=ψ(ξ) is descri-

bed by (2.24). We also introduce the following notation:

ũ(ξ) = u(ξ)ζ(ξ), η̃(ξ) = η(ξ)ζ(ξ), η̃σ(ξ) = ησ(ξ)ζ(ξ)

for ξ ∈ Ω̃, Ω̃ ∩ S = ∅ and

ũ(z) = û(z)ζ̂(z), η̃(z) = η̂(z)ζ̂(z), η̃σ(z) = η̂σ(z)ζ̂(z)

for z ∈ Ω̂ = Φ(Ω̃), Ω̃ ∩ S 6= ∅, where ζ̂(z) = ζ(ξ)|ξ=χ−1(z).
Using the above notation we rewrite problem (2.23) in the following form

in an interior subdomain:

ηũit−∇uj
Tuij(ũ, p̃σ) = −∇uj

Buij(u, ζ)−Tuij(u, pσ)∇uj
ζ ≡ k1, i=1, 2, 3,

η̃σt + η∇u · ũ = ηu · ∇uζ ≡ k2,

where p̃σ=pσζ and Bu(u, ζ)={Buij(u, ζ)}i,j=1,2,3={µ(ui∇uj
ζ+uj∇ui

ζ)+
(ν − µ)δiju · ∇uζ}i,j=1,2,3.

In boundary subdomains we have

η̂ ũit − ∇̂j T̂ij = −∇̂jB̂ij(û, ζ̂)− T̂ij(û, pσ)∇̂j ζ̂ ≡ k3i, i = 1, 2, 3,

η̃σt + η̂ ∇̂ · ũ = η̂ û · ∇̂ζ̂ ≡ k4,

T̂(ũ, p̃σ)n̂ = k5,

(2.26)

where k5i = B̂ij(û, ζ̂)n̂j , ∇̂ = (∇̂j)j=1,2,3 and T̂ and B̂ indicate that the

operator ∇u is replaced by ∇̂.
In Lemmas 2.5–2.7 below we denote z1, z2, by τ , i.e. τ = (z1, z2), and

z3 by n.

Lemma 2.5. Let (v, ̺σ) be a sufficiently smooth solution of (2.3). Then

1

2

d

dt

\
Ωt

(
̺v2x +

pσ̺
̺
̺2σx

)
dx+ c0(‖v‖

2
2,Ωt

+ ‖̺σx‖
2
0,Ωt

)(2.27)

≤ c(‖v‖21,Ωt
+ ‖vt‖

2
1,Ωt

+ ‖̺σt‖
2
0,Ωt

+ ‖pσ‖0,Ωt
) + cX2

2 (1 +X2),

where X2 is given by (2.15), v2x =
∑3

i,j=1 v
2
ixj

, and ̺2σx =
∑3

i=1 ̺
2
σxi

.

P r o o f. First, we consider the following elliptic problem:

µ∇2
uu+ ν∇u∇u · u− pση∇uη = ηut in Ω,

divu u = divu u in Ω,

Tu(u, pσ)nu = 0 on S.

(2.28)

Since the complementarity condition for (2.28) is satisfied we can apply to
problem (2.28) the Agmon–Douglis–Nirenberg theory (see [1]). Thus, we get

‖u‖22,Ω + ‖ησ‖
2
1,Ω ≤ c(‖ηut‖

2
0,Ω + ‖divu u‖

2
1,Ω)(2.29)

≤ c(‖ut‖
2
0,Ω + ‖div u‖21,Ω + cX2

2 (Ω)(1 +X2(Ω))),
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where we have used the fact that ‖divu u − div u‖21,Ω ≤ ε‖u‖22,Ω (ε > 0 is
sufficiently small), and

X2(Ω) = |u|22,0,Ω + |ησ|
2
2,0,Ω +

t\
0

‖u‖23,Ω dt
′.(2.30)

In view of (2.29) we see that in order to obtain inequality (2.27) it
remains to get appropriate estimates for ‖div u‖21,Ω and for 1

2
d
dt

T
Ωt
(̺v2x +

(pσ̺/̺)̺
2
σx) dx. To do this, consider first boundary subdomains. Differen-

tiate (2.26)1 with respect to τ , multiply the result by ũτJ (J is the Jacobian

of the transformation x = x(z)) and integrate over Ω̂. Hence using the Korn
inequality and equation (2.26)2 we obtain

1

2

d

dt

\̂
Ω

η̂ ũ2τJ dz + c0‖ũτ‖
2

1,Ω̂
(2.31)

−
\̂
S

(T̂(ũ, p̃σ)n̂),τ ũτJ dz −
\̂
Ω

p̃στ∇ · ũτJ dz

≤ ε(‖η̂σ‖
2

0,Ω̂
+ ‖ũτ‖

2

1,Ω̂
) + c(‖û‖2

1,Ω̂
+ ‖pσ‖

2

0,Ω̂
) + cX2

2 (Ω̂)(1 +X2(Ω̂)),

where

X2(Ω̂) = |û|2
2,0,Ω̂

+ |η̂σ|
2

2,0,Ω̂
+

t\
0

‖û‖2
3,Ω̂

dt′, ũ2τ =

3∑

i=1

2∑

j=1

ũizj .(2.32)

Using the boundary condition (2.26)3 we have

−
\̂
S

(T̂(ũ, p̃σ)n̂),τ ũτJ dτ = −
\̂
S

(B̂ij(û, ζ̂)n̂j),τ ũiτJ dτ(2.33)

=
\̂
S

∂1/2τ (B̂ij(û, ζ̂)n̂j)∂
1/2
τ (ũiτJ) dτ ≤ ε‖ũτ‖

2

1,Ω̂
+ ‖û‖2

1,Ω̂
+ cX2

2 (Ω̂),

where to use the derivative ∂
1/2
τ we have to apply the Fourier transformation.

Next,

−
\̂
Ω

p̃στ∇u · ũτJ dz = −
\̂
Ω

p
ση̂
η̃στ ∇̂ · ũτJ dz + J1,(2.34)

where |J1| ≤ ε‖ũτ‖2
1,Ω̂

+ c‖pσ‖2
0,Ω̂

and

−
\̂
Ω

p
ση̂
η̃στ ∇̂ · ũτJ dz =

1

2

d

dt

\̂
Ω

p
ση̂

η̂
η̃ 2
στJ dz + J2,(2.35)

where

|J2| ≤ ε‖η̃στ‖
2

0,Ω̂
+ c‖û‖2

1,Ω̂
+ cX2

2 (Ω̂).(2.36)
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Taking into account (2.31), (2.33)–(2.36) and assuming that ε is sufficiently
small we obtain

1

2

d

dt

\̂
Ω

(
η̂ ũ2

τ +
p
ση̂

η̂
η̃ 2
στ

)
J dz + c0‖ũτ‖

2

1,Ω̂
(2.37)

≤ ε‖η̂στ‖
2

0,Ω̂
+ c(‖û‖2

1,Ω̂
+ ‖pσ‖

2

0,Ω̂
) + cX2

2 (Ω̂)(1 +X2(Ω̂)).

Now, applying the operator (µ+ν)∇zi to (2.26)2, dividing the result by
η̂, adding to (2.26)1 and multiplying both sides of the result by p

ση̂
gives

µ+ ν

η̂
p
ση̂
∇zi η̃σt + p2

ση̂
∇zi η̃σ(2.38)

= p2
ση̂
η̂σ∇zi ζ̂ − p1pση̂ η̂σ∇zi ζ̂ + p

ση̂
k3i + µp

ση̂
(∇̂2ũi − ∇̂i∇̂ · ũ)

+ (µ+ ν)p
ση̂
(∇̂i −∇zi)∇̂ · ũ+

µ+ ν

η̂
p
ση̂
∇zi(η̂û · ∇̂ζ̂)

− p
ση̂
η̂ ũit −

µ+ ν

η̂
p
ση̂
∇zi η̂∇̂ · ũ, i = 1, 2, 3.

Multiplying the normal component of (2.38) by ησnJ and integrating over

Ω̂ we obtain

1

2

d

dt

\̂
Ω

p
ση̂

η̂
η̃ 2
σnJ dz + c0‖η̃σn‖

2

0,Ω̂
(2.39)

≤ (ε+ cd)‖ũnn‖
2

0,Ω̂
+ ε‖η̃σn‖

2

0,Ω̂

+ c(‖ũzτ‖
2

0,Ω̂
+ ‖û‖2

1,Ω̂
+ ‖ũt‖

2

0,Ω̂
+ ‖pσ‖

2

0,Ω̂
) + cX2

2 (Ω̂)(1 +X2(Ω̂)),

where d is from formula (2.25).
Now, we write (2.26)1 in the form

η̂ ũit − µ∆ũi − ν∇zi∇ · ũ = ∇̂ip̃σ + k3i − k6i,(2.40)

where k6i = (µ∆ũi + ν∇zi∇ · ũ)− (µ∇̂2ũi + ν∇̂i∇̂ · ũ).
Multiplying the third component of (2.40) by ũ3nnJ and integrating over

Ω̂ yields

1

2

d

dt

\̂
Ω

η̂ ũ2
3nJ dz + c0‖ũ3nn‖

2

0,Ω̂
(2.41)

≤ (ε+ cd)‖ũnn‖
2

0,Ω̂
+ c(‖ũzτ‖

2

0,Ω̂
+ ‖û‖2

1,Ω̂

+ ‖ũt‖
2

1,Ω̂
+ ‖η̃σn‖

2

0,Ω̂
+ ‖pσ‖

2

0,Ω̂
) + cX2

2 (Ω̂)(1 +X2(Ω̂)).

For an interior subdomain the following estimate is obtained in the same
way as (2.37):
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1

2

d

dt

\̃
Ω

(
ηũ2ξ +

pση
η
η̃ 2
σξ

)
Adξ + c0‖ũ‖

2

2,Ω̃
(2.42)

≤ ε(‖η̃σξ‖
2

0,Ω̃
+ ‖ũξξ‖

2

0,Ω̃
)

+ c(‖u‖2
1,Ω̃

+ ‖pσ‖
2
0,Ωt

) + cX2
2 (Ω̃)(1 +X2(Ω̃)),

where

X2(Ω̃) = |u|2
2,0,Ω̃

+ |ησ|
2

2,0,Ω̃
+

t\
0

‖u‖2
3,Ω̃

dt′(2.43)

and A is the Jacobian of the transformation x = x(ξ).
Finally, we have

1

2

d

dt

\
Ω

ηu2ξAdξ ≤ c(‖u‖2
1,Ω̃

+ ‖ut‖
2

1,Ω̃
),(2.44)

where we have used (2.23)1.
Going back to the old variables ξ in estimates (2.37), (2.39), (2.41) and

summing them and (2.42) over all neighbourhoods of the partition of unity,
using (2.29) and (2.44), assuming that ε and d are sufficiently small and
passing to the variables x we obtain (2.27).

Lemma 2.6. Let (v, ̺σ) be a sufficiently smooth solution of (2.3). Then

1

2

d

dt

\
Ωt

(
̺v2xt +

pσ̺
̺
̺2xt

)
dx+ c0(‖vt‖

2
2,Ωt

+ ‖̺σt‖
2
1,Ωt

)

≤ c(‖v‖21,Ωt
+ ‖vt‖

2
1,Ωt

+ ‖vtt‖
2
1,Ωt

+ ‖̺σt‖
2
0,Ωt

+ ‖pσ‖
2
0,Ωt

)

+ cX2Y2(1 +X2
2 ),

where X2 is given by (2.15) and Y2 is given by (2.22).

P r o o f. Differentiating problem (2.28) with respect to t we get the fol-
lowing elliptic problem:

µ∇2
uut + ν∇u∇u · ut − pση∇uησt = ησtut + ηutt − ν(∇u∇u),t · u

−µ(∇2
u),tu+ pσηηησt∇uησ + pση(∇u),tησ ≡ K1 in Ω,

divu ut = divu ut in Ω,

Tu(ut, pσt)nu = −(Tu),t(u, pσ)nu − Tu(u, pσ)(nu),t ≡ K2 on S.

By the Agmon–Douglis–Nirenberg theory (see [1]) we have the estimate

‖ut‖
2
2,Ω + ‖ησt‖

2
1,Ω ≤ c(‖K1‖

2
0,Ω + ‖K2‖

2
1/2,S + ‖divu ut‖

2
1,Ω),

where

‖K1‖
2
0,Ω + ‖K2‖

2
1/2,S ≤ c(‖ησζ‖

2
0,Ω + ‖utt‖

2
0,Ω + ‖pσ‖

2
0,Ω)

+X2(Ω)Y2(Ω)(1 +X2
2 (Ω)),
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with X2(Ω) given by (2.30) and

Y2(Ω) = |u|23,1,Ω + ‖ησ‖
2
2,Ω + ‖ησt‖

2
2,Ω + ‖ησtt‖

2
1,Ω.(2.45)

The remaining part of the proof is analogous to that in Lemma 2.5.

Lemma 2.7. Let (v, ̺σ) be a sufficiently smooth solution of (2.3). Then

1

2

d

dt

\
Ωt

(
̺v2xx +

pσ̺
̺
̺2σxx

)
dx + c0(‖v‖

2
3,Ωt

+ ‖̺σx‖
2
1,Ωt

)(2.46)

≤ c(‖v‖22,Ωt
+ ‖vt‖

2
1,Ωt

+ ‖̺σx‖
2
0,Ωt

+ ‖pσ‖
2
0,Ωt

)

+ ε‖vt‖
2
2,Ωt

+ cX2Y2(1 +X2
2 ),

where X2 and Y2 are given by (2.15) and (2.22), respectively, and

v2xx =

3∑

i,j,k=1

v2ixjxk
, ̺2σxx =

3∑

j,k=1

̺2σxjxk
.

P r o o f. First, we consider problem (2.28). By the Agmon–Douglis–
Nirenberg theory (see [1]) we have

‖u‖23,Ω + ‖ησ‖
2
2,Ω ≤ c(‖ut‖

2
1,Ω + ‖div u‖22,Ω)(2.47)

+cX2(Ω)Y2(Ω)(1 +X2
2 (Ω)),

whereX2(Ω) andY2(Ω) are given by (2.30) and (2.45), respectively. Thus, to
obtain (2.46) we have to estimate ‖div u‖22,Ω and 1

2
d
dt

T
Ωt
(̺v2xx+

pσ̺

̺ ̺2σxx) dx.

To do this, consider first boundary subdomains. Differentiate (2.26)1 twice

with respect to τ , multiply the result by ũττJ and integrate over Ω̂. Using the
Korn inequality, the continuity equation (2.26)2, and the boundary condi-
tion (2.26)3 we get

1

2

d

dt

\̂
Ω

(
η̂ ũ2

ττ +
p
ση̂

η̂
η̃ 2
σττ

)
J dz + c0‖ũττ‖

2

1,Ω̂
(2.48)

≤ ε(‖η̂σττ‖
2

0,Ω̂
+ ‖ũττ‖

2

1,Ω̂
) + c(‖û‖2

2,Ω̂
+ ‖η̂σz‖

2

0,Ω̂
)

+ cX2(Ω̂)Y2(Ω̂)(1 +X2
2 (Ω̂)),

where X2(Ω̂) is given by (2.32) and

Y2(Ω̂) = |û|2
3,1,Ω̂

+ ‖η̂σ‖
2

2,Ω̂
+ ‖η̂σt‖

2

2,Ω̂
+ ‖η̂σtt‖

2

1,Ω̂
.

In the same way we obtain the following estimate in an interior subdomain:

1

2

d

dt

\̃
Ω

(
ηũ2

ξξ +
pση
η
η̃ 2
σξξ

)
Adξ + c0‖ũ‖

2

3,Ω̃
(2.49)

≤ ε(‖η̃σξξ‖
2

0,Ω̃
+ ‖ũξξξ‖

2

0,Ω̃
)

+ c(‖u‖2
2,Ω̃

+ ‖ησξ‖
2

0,Ω̂
+ ‖pσ‖

2

0,Ω̃
) + cX2(Ω̃)Y2(Ω̃)(1 +X2

2 (Ω̃)),
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where X2(Ω̃) is given by (2.43) and

Y2(Ω̃) = |u|2
3,1,Ω̃

+ ‖ησ‖
2

2,Ω̃
+ ‖ησt‖

2

2,Ω̃
+ ‖ησtt‖

2

1,Ω̃
.

Now, differentiate the third component of (2.38) in τ , multiply the result

by η̃σnτJ and integrate over Ω̂ to get

1

2

d

dt

\̂
Ω

p
ση̂

η̂
η̃ 2
σnτJ dz +

\̂
Ω

p2

ση̂
η̃2σnτJ dz(2.50)

≤ ε‖η̃σnτ‖
2

0,Ω̂
+ c(‖û‖2

2,Ω̂
+ ‖ût‖

2

1,Ω̂
+ ‖η̂σz‖

2

0,Ω̂
+ ‖pσ‖

2

0,Ω̂
)

+ cd‖ũ‖2
3,Ω̂

+ c‖ũzττ‖
2

0,Ω̂
+ cX2(Ω̂)Y2(Ω̂)(1 +X2

2 (Ω̂)),

where d is from formula (2.25).
In the same way we obtain

1

2

d

dt

\̂
Ω

p
ση̂

η̂
η̃ 2
σnnJ dz +

\̂
Ω

p2
ση̂
η̃ 2
σnnJ dz(2.51)

≤ ε‖η̃σnn‖
2

0,Ω̂
+ c(‖û‖2

2,Ω̂
+ ‖ût‖

2

1,Ω̂
+ ‖η̂σz‖

2

0,Ω̂
+ ‖pσ‖

2

0,Ω̂
)

+ cd‖ũ‖2
3,Ω̂

+ c‖ũznτ‖
2

0,Ω̂
+ cX2(Ω̂)Y2(Ω̂)(1 +X2

2 (Ω̂)).

Next, differentiating the third component of (2.40) in τ , multiplying by

ũ3nnτJ and integrating over Ω̂ we have

1

2

d

dt

\̂
Ω

η̂ ũ2
3nτJ dz + c0‖ũ3nnτ‖

2

0,Ω̂
(2.52)

≤ ε‖ũ3nnτ‖
2

0,Ω̂
+ ε‖ũt‖

2

2,Ω̂
+ c(‖ũ‖2

2,Ω̂
+ ‖ũt‖

2

1,Ω̃
+ ‖ũzττ‖

2

0,Ω̂

+ ‖η̂σnτ‖
2

0,Ω̂
+ ‖η̂σz‖

2

0,Ω̂
+ ‖pσ‖

2

0,Ω̂
) + cd‖û‖2

3,Ω̂

+ cX2(Ω̂)Y2(Ω̂)(1 +X2
2 (Ω̂)).

In order to estimate ‖(div ũ),nn‖2
0,Ω̂

rewrite equation (2.26)1 in the form

(ν + µ)∇zi div ũ = −µ(∆ũi −∇zi div ũ) + η̂ ũit − k3i(2.53)

+(µ∆ũi + ν∇zi div ũ− µ∇̂2ũi − ν∇̂i∇̂ · ũ)

+p1η̂σ∇̂iζ̂ + ζ̂p
ση̂
∇̂iη̂σ, i = 1, 2, 3.

Differentiating the third component of (2.53) with respect to n gives

‖(div ũ),nn‖
2

0,Ω̂
≤ cd‖ũnnn‖

2

0,Ω̂
+ c(‖ũτ‖

2

2,Ω̂
+ ‖û‖2

2,Ω̂
+ ‖ũt‖

2

1,Ω̂
(2.54)

+‖η̂σn‖
2

1,Ω̂
+ ‖pσ‖

2

0,Ω̂
) + cX2(Ω̂)Y2(Ω̂).
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To obtain an estimate for ‖ũτ‖2
2,Ω̂

consider the following elliptic problem:

µ∇̂2ũ+ ν∇̂∇̂ · ũ− p
ση̂
η̂σ = η̂ ũt + (p1 − p

ση̂
)η̂σ∇̂ζ̂(2.55)

+ ∇̂ · B̂(û, ζ̂) + T̂(û, pσ) · ∇̂ζ̂,

∇̂ · ũ = ∇̂ · ũ,

T̂(ũ, pσ)n̂ = k5,

where ∇̂·B̂(û, ζ̂)={∇̂jB̂ij(û, ζ̂)}i=1,2,3, T̂(û, pσ)·∇̂ζ̂={T̂ij(û, pσ)∇̂j ζ̂}i=1,2,3.
Differentiating (2.55) with respect to τ and next using the Agmon–

Douglis–Nirenberg theory we get

‖ũτ‖
2

2,Ω̂
+ ‖η̃στ‖

2

1,Ω̂
(2.56)

≤ c(‖ũττ‖
2

1,Ω̂
+ ‖ũ3nnτ‖

2

0,Ω̂
+ ‖û‖2

2,Ω̂
+ ‖ũt‖

2

1,Ω̂

+ ‖η̂σz‖
2

0,Ω̂
+ ‖pσ‖

2

0,Ω̂
) + cX2(Ω̂)Y2(Ω̂)(1 +X2(Ω̂)).

Finally, we have

1

2

d

dt

\
Ω

ηu2ξξAdξ ≤ c‖u‖22,Ω + ε‖ut‖
2
2,Ω.(2.57)

Going back to the old variables ξ in estimates (2.48), (2.50)–(2.52),
(2.54), (2.56) and summing them and (2.49) over all neighbourhoods of
the partition of unity, using (2.47) and (2.57), assuming that ε and d are
sufficiently small and passing to the variables x we obtain (2.46).

Lemmas 2.1–2.7 and the estimates

‖̺σtt‖
2
1,Ωt

≤ c‖vt‖
2
2,Ωt

+ c(‖̺σt‖
2
2,Ωt

‖v‖22,Ωt
+ ‖̺σ‖

2
2,Ωt

‖vt‖
2
2,Ωt

)

and

‖̺σt‖
2
2,Ωt

≤ c‖v‖23,Ωt
+ cX2Y2(1 +X2)

(which follow from equations (2.3)2 and (2.23)2, respectively) imply the
following theorem.

Theorem 2.8. Let ν > 1
3µ > 0 and let relations (2.6) and (2.7) be

satisfied. Then for a sufficiently smooth solution (v, ̺σ) of problem (2.3) we
have

dφ

dt
+ c0Φ ≤ c1

(
φ+

t\
0

‖v‖23,Ωt′
dt′

)
(2.58)

·
[
1 +

(
φ+

t\
0

‖v‖23,Ωt′
dt′

)2]
Φ+ c2Ψ for t ≤ T,



NONSTATIONARY MOTION OF FLUID 297

where

φ(t) =
\
Ωt

̺
∑

0≤|α|+i≤2

|Dα
x∂

i
tv|

2 dx+
\
Ωt

p1
̺
̺2σ dx

+
\
Ωt

pσ̺
̺

∑

1≤|α|+i≤2

|Dα
x∂

i
t̺σ|

2 dx,

φ(t) = |v|22,0,Ωt
+ |̺σ|22,0,Ωt

,

Φ(t) = |v|23,1,Ωt
+ ‖̺σ‖22,Ωt

+ ‖̺σt‖22,Ωt
+ ‖̺σtt‖21,Ωt

,

Ψ(t) = ‖pσ‖20,Ωt
,

(2.59)

ci (i = 1, 2) are positive constants depending on ̺∗, ̺
∗, µ, ν,

Tt
0
‖v‖23,Ωt′

dt′,

‖S‖5/2,T and on the constants of imbedding theorems and Korn inequalities ;
c0 < 1 is a positive constant depending on µ and ν; and ̺σ and pσ are given

by (2.2).

3. Global existence. Assume (2.1) and rewrite problem (1.1) in La-
grangian coordinates as follows (see problem (2.23)):

ηut − µ∇2
uu− ν∇u∇u · u+∇p = 0 in ΩT ,

ηt + η∇u · u = 0 in ΩT ,

Tu(u, p)nu = −p0nu on ST ,

u|t=0 = v0, η|t=0 = ̺0, in Ω.

(3.1)

The local existence of a solution of problem (3.1) can be proved by the
method of successive approximations (see [15]), taking as a zero step function
the solution u0 ∈ AT,Ω (AT,Ω is given by (1.6)) of the following parabolic
problem:

u0t − divD(u0) = 0 in ΩT ,

D(u0)n0 = (p(̺0)− p0)n0 on ST ,

u0|t=0 = v0 in Ω,

(3.2)

where D(u0) = {µ(u0iξj +u
0
jξi

)+ (ν−µ)δij div u0}i,j=1,2,3 and n0 is the unit
outward vector normal to S.

Assume that

l > 0 is a constant such that ̺e − l > 0 and ̺1 < ̺0 < ̺2,(3.3)

where ̺1 = ̺e − l, ̺2 = ̺e + l, and ̺e is given in Definition 1.1.
The function u0 satisfies the estimate (see [15], estimate (4.3))

‖u0‖2AT,Ω
(3.4)

≤ C1(T )(‖(p(̺0)− p0)n0‖
2
3/2,S + ‖v0‖

2
2,Ω + ‖u0t (0)‖

2
1,Ω + ‖u0tt(0)‖

2
0,Ω)

< C1(T )(c̃φ(0) + ‖v0‖
2
2,Ω + ‖u0t (0)‖

2
1,Ω + ‖u0tt(0)‖

2
0,Ω) ≡ A0,
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where C1(T ) is a positive constant; c̃ > 0 is a constant depending on ̺1, ̺2
and on the volume and shape of Ω; φ is defined in (2.59); u0t (0), u

0
tt(0) are

calculated from (3.2); and to obtain A0 in (3.4) we have used (2.4).

Next, define

H0 =
1

̺1
+ ‖̺0‖

2
2,Ω + ‖v0‖

2
2,Ω + ‖ut(0)‖

2
1,Ω + ‖utt(0)‖

2
0,Ω(3.5)

≤
1

̺1
+ cφ(0) + |Ω|̺2e < H̃0,

where ut(0), utt(0) are calculated from (3.1)1; c > 0 is a constant depending

on ̺1, ̺2; and H̃0 > 0 is a constant. Then the following theorem holds.

Theorem 3.1. (see [15, Theorem 4.2]). Assume that ̺0, v0 ∈ H2(Ω),
̺0 > 0, ut(0), u

0
t (0) ∈ H1(Ω), utt(0), u

0
tt(0) ∈ L2(Ω) (where ut(0), utt(0) are

calculated from (3.1)), S ∈ H5/2, and p ∈ C3(R2
+). Let assumption (3.3)

and the following compatibility conditions be satisfied :

D(v0)n0 = (p(̺0)− p0)n0 on S.(3.6)

Assume that A0 < A, where A > 0 is a constant depending also on H̃0 (i.e.

there exists a positive continuous increasing function F = F (H̃0) satisfying

F (H̃0) < A). Then there exists T∗ > 0 (depending on A) such that for

T ≤ T∗ there exists a unique solution of (1.1) such that u ∈ AT,Ω , η ∈ BT,Ω

and

‖u‖2AT,Ω
≤ A,(3.7)

‖η‖2BT,Ω
≤ ψ1(A),(3.8)

where ψ1 is a positive continuous increasing function of A (AT,Ω and BT,Ω

are given by (1.6) and (1.5), respectively).

Now, we shall derive an estimate for the local solution (u, ησ) of problem
(2.23). Using (3.7) and (3.8) and the interpolation inequality we have

‖∇pσ‖
2
1,2,2,ΩT

+ ‖∇pσt‖
2
0,ΩT

+ ε∗‖∇pσtt‖
2
0,ΩT

(3.9)

+ sup
t

‖∇pσ‖
2
0,Ω + ‖pσnu‖

2
3/2,2,2,ST + ‖(pσnu),t‖

2
1/2,2,2,ST

+ ε∗‖(pσnu),tt‖
2
0,ST + sup

t
‖pσnu‖

2
0,S

≤ ψ′(A, T )(‖̺σ0‖
2
2,Ω + ‖v0‖

2
2,Ω + ‖ut(0)‖

2
1,Ω)

+ (ε+ T )ψ′′(A, T )‖u‖2AT,Ω
,

where ψ′ and ψ′′ are positive continuous increasing functions of their argu-
ments, and ε∗, ε ∈ (0, 1) are sufficiently small constants.
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By estimate (3.9), Lemmas 3.5 and 2.3 of [15] and by Theorem 3.1 the
local solution (u, ησ) of problem (2.23) satisfies, for sufficiently small ε and T ,

‖u‖2AT,Ω
+ ‖ησ‖

2
BT,Ω

(3.10)

≤ ψ2(A, T )(‖̺σ0‖
2
2,Ω + ‖v0‖

2
2,Ω + ‖ut(0)‖

2
1,Ω + ‖utt(0)‖

2
0,Ω),

where ψ2 is a positive continuous function.

Now, let φ(t), φ(t) and Φ(t) be defined by (2.59). Introduce the spaces

N(t) = {(v, ̺σ) : φ(t) <∞},

M(t) =
{
(v, ̺σ) : φ(t) +

t\
0

Φ(t′) dt′ <∞
}
.

Notice that (v, ̺σ) ∈ N(t) iff φ(t) < ∞, and (v, ̺σ) ∈ M(t) iff φ(t) +Tt
0
Φ(t′) dt′ ≤ ∞. Moreover,

c′φ(t) ≤ φ(t) ≤ c′′φ(t),(3.11)

where c′, c′′ > 0 are constants depending on ̺∗, ̺
∗ given by (2.5).

From inequality (3.10) and from the definitions of N(t) and M(t) it
follows that the local solution satisfies the estimate

φ(t) +

t\
0

Φ(t′) dt′ ≤ c3φ(0),(3.12)

where c3 > 0 is a constant depending on the same quantities as c1 and c2
from Theorem 2.8.

Hence we obtain the following lemma.

Lemma 3.2. Let (v, ̺σ) ∈ N(0), S ∈ H5/2, u0t (0) ∈ H1(Ω), u0tt(0) ∈
L2(Ω) (u0 is the solution of problem (3.2)), and p∈C3(R2

+). Let assumption

(3.3) and the compatibility condition (3.6) be satisfied. Moreover , assume

φ(0) ≤ α,(3.13)

where α > 0 is sufficiently small. Then the local solution (v, ̺) of problem

(1.1) is such that (v, ̺σ) ∈ M(t) for t ≤ T , where T > 0 is the time of local

existence, and the following estimate holds :

φ(t) +

t\
0

Φ(t′) dt′ ≤ c3α,

where c3 > 0 is a constant depending on the same quantities as c1 and c2
from Theorem 2.8.

Next, we prove

Lemma 3.3. Let the assumptions of Lemma 3.2 be satisfied. Then there

exist constants µ1 > 1 and µ2 > 0 (depending on the same quantities as c1
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and c2 from (2.58)) such that

φ(t) ≤ µ1φ(0)e
−µ2t for t ≤ T,(3.14)

where T > 0 is the time of local existence.

P r o o f. Consider inequality (2.58) and assume that α from (3.13) is so
small that

c1

(
φ+

t\
0

‖v‖23,Ωt′
dt′

)[
1 +

(
φ+

t\
0

‖v‖23,Ωt′
dt′

)2]
<
c0
4
.(3.15)

Then inequality (2.58) implies

dφ

dt
+

3

4
c0Φ < c2‖pσ‖

2
0,Ωt

.(3.16)

Applying the same argument as in the proof of Lemma 6.2 of [17] yields

‖pσ‖
2
0,Ωt

≤ ε(‖pσx‖
2
0,Ωt

+ ‖vxx‖
2
0,Ωt

) + c(ε)(‖v‖20,Ωt
+ ‖vt‖

2
0,Ωt

).(3.17)

Since ‖pσx‖20,Ωt
≤ c4‖̺σx‖20,Ωt

, inequalities (3.16) and (3.17) imply, for suf-
ficiently small ε,

dφ

dt
+

3

4
c0Φ < c5(‖v‖

2
0,Ωt

+ ‖vt‖
2
0,Ωt

).(3.18)

Now, multiplying (2.21) by a constant c6 so large that c0c6− c5 > 0 and
c6 > 1, adding to (3.18) and using Lemma 3.2 we obtain

d

dt
(φ+ c6J) +

3

4
c0Φ(3.19)

+ (c0c6 − c5)(‖v‖
2
1,Ωt

+ ‖vt‖
2
1,Ωt

+ ‖̺σt‖
2
0,Ωt

) < c7αφ,

where

J =
1

2

\
Ωt

[
̺(v2 + v2t ) +

p1
̺
̺2σ +

pσ̺
̺
̺2σt

]
dx.

Since φ/c′′ ≤ φ ≤ Φ and φ ≥ J for sufficiently small α (so small that
c7α <

1
4c0), inequality (3.19) implies

d

dt
(φ+ c6J) + c8(φ + c6J) < 0,(3.20)

where c8 = c0/(4c
′′c6) (c

′′ > 0 is the constant from (3.11)).

Inequality (3.20) yields (3.14) with µ1 = c6 + 1 and µ2 = c8.

By using Lemma 3.3 we prove

Lemma 3.4. Let the assumptions of Lemma 3.2 be satisfied. Moreover ,
assume

C0 ≡ ‖v0‖
2
0,Ω + ‖̺σ0‖

2
0,Ω ≤ δ,(3.21)



NONSTATIONARY MOTION OF FLUID 301

where ̺σ0 = ̺0 − ̺e. Then

‖v‖20,Ωt
+ ‖̺σ‖

2
0,Ωt

≤ c9α
2 + c10c11δ for t ≤ T,(3.22)

where c9 =
c11µ

2

1

c′µ2

c3c(1 + c3α); c
′ is the constant from inequality (3.11); α

and c3 are the constants from Lemma 3.2; µ1, µ2 are the constants from

Lemma 3.3; c is the constant from Lemma 2.1 and c10, c11 > 0 are constants

depending on ̺∗, ̺
∗ such that

1

c11
(‖v‖20,Ωt

+ ‖̺σ‖
2
0,Ωt

) ≤
1

2

\
Ωt

(
̺v2 +

p1
̺
̺2σ

)
dx

≤ c10(‖v‖
2
0,Ωt

+ ‖̺σ‖
2
0,Ωt

) for t ≤ T ;

and T > 0 is the time of local existence. Moreover ,

‖pσ‖
2
0,Ωt

≤ c12(c9α
2 + c10c11δ),(3.23)

where c12 > 0 is a constant depending on p, ̺∗, ̺
∗.

P r o o f. Integrating (2.8) with respect to t over (0, t) (t ≤ T ) we get

‖v‖20,Ωt
+ ‖̺σ‖

2
0,Ωt

(3.24)

≤ c11c sup
0≤t′≤t

φ(t′)

t\
0

φ(t′) dt′ (1 + sup
0≤t′≤t

φ(t′)) + c10c11C0.

Using Lemmas 3.2–3.3 and assumption (3.21) we obtain

‖v‖20,Ωt
+ ‖̺σ‖

2
0,Ωt

≤
c11cµ1

c′
c3α

2(1 + c3α)

t\
0

e−µ2t
′

dt′ + c10c11C0(3.25)

≤ c9α
2 + c10c11δ.

Estimate (3.23) follows from (3.22) and (2.4).

Remark 3.5. Estimate (3.12) and assumption (3.13) yield

∣∣∣
t\
0

u(ξ, t′) dt′
∣∣∣ < c13T

1/2
( T\

0

‖u‖22,Ω dt
′
)1/2

(3.26)

≤ c13ψ3(A, T )T
1/2α1/2 ≡ c14T

1/2α1/2,

where ψ3 is a positive continuous function; c13 > 0 is a constant from the
imbedding theorem depending on Ω. Hence, relation (1.3) implies that both
the shape and the volume of Ωt do not change much for t ≤ T and the
constants ci (i = 1, . . . , 12), µi (i = 1, 2) (from Lemma 3.3) and c (from
Lemma 3.4) can be chosen independent of time for t ≤ T .
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Remark 3.6. Under assumption (2.1) one can prove the following mo-
mentum conservation law (see [18]):

d

dt

\
Ωt

̺v · η dx = 0,(3.27)

where η = a+ b× x and a, b are arbitrary constant vectors. Moreover,

d

dt

\
Ωt

̺x dx =
\
Ωt

̺v dx.(3.28)

Assuming \
Ω

̺0v0 · η dξ = 0,
\
Ω

̺0ξ dξ = 0,(3.29)

in view of (3.27) and (3.28) we get (2.6) and (2.7), respectively. Condition
(2.6) guarantees that the barycentre of Ωt coincides with the origin of coor-
dinates.

Now, we can prove

Lemma 3.7. Let the assumptions of Lemma 3.2 and estimate (3.22) be
satisfied. Then

φ(t) ≤ α for t ≤ T,(3.30)

where α is sufficiently small (so that (3.15) and (3.32) are satisfied), and
T > 0 is the time of local existence.

P r o o f. For α so small that (3.15) is satisfied, the differential inequality
(2.58) implies (3.16). Hence by estimate (3.23) of Lemma 3.4 we have

dφ

dt
+

3

4
c0Φ < c2c12(c9α

2 + c10c11δ).

Therefore, since φ/c′′ ≤ Φ (where c′′ is the constant from inequality (3.11))
we obtain

dφ

dt
+

3

4

c0
c′′
φ < c2c12(c9α

2 + c10c11δ).(3.31)

Now, assume that t∗ = inf{t ∈ [0, T ] : φ(t) > α} and consider (3.31) in
the interval (0, t∗]. From the definition of t∗ we have φ(t∗) = α. Therefore
(3.31) yields

dφ

dt
(t∗) < −

3

4

c0
c′′
α+ c2c12(c9α

2 + c10c11δ).

Let α and δ be so small that

c2c12(c9α
2 + c10c11δ) <

3

4

c0
c′′
α.(3.32)

Then (dφ/dt)(t∗) < 0, a contradiction. Therefore, (3.30) holds.
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Lemma 3.7 suggests that the solution can be continued to the interval
[T, 2T ]. However, to do this we also need the analogous lemma for the so-
lution of (3.2), to have the sum on the right-hand side of (3.4) with initial
condition at T estimated by A.

Set

φ1(t) = |u0(t)|22,0,Ω, Φ1(t) = |u0(t)|23,1,Ω − ‖u0(t)‖23,Ω,

where u0 is the solution of (3.2).

Lemma 3.8. Let the assumptions of Lemma 3.7 and (3.21) be satisfied.

Moreover , assume that φ1(0) ≤ α1, where α1 > 0 is a constant. Then if the

constants δ from Lemma 3.4 and α are sufficiently small we have

φ1(t) ≤ α1 for t ≤ T.(3.33)

P r o o f. First, we shall obtain a differential inequality similar to (2.58).
Multiplying (3.2)1 by u0, integrating over Ω and using the boundary condi-
tion (3.2)2 and (2.4) (where p1 = p1(̺0)) we get

1

2

d

dt

\
Ω

(u0)2 dξ +
µ

2
EΩ(u

0) +
\
S

p1̺σ0n0u
0 dξs = 0,(3.34)

where EΩ(u
0) =

T
Ω

∑3
i,j=1(u

0
ixj

+ u0jxi
)2 dξ.

In view of assumptions (3.29), Lemma 5.2 of [14] and the interpolation
inequality, equality (3.34) yields

1

2

d

dt

\
Ω

(u0)2 dξ + c0‖u
0‖21,Ω(3.35)

≤ c‖̺σ0‖
2
0,Ω‖u

0‖20,Ω + ε‖̺σ0‖
2
1,Ω + c(ε)‖̺σ0‖

2
0,Ω, where ε ∈ (0, 1).

Next, differentiating (3.2)1 with respect to t, multiplying by u0t , integra-
ting over Ω and using the Korn inequality we get

1

2

d

dt

\
Ω

(u0t )
2 dξ + c0‖u

0
t‖

2
1,Ω ≤ c‖u0t‖

2
0,Ω(3.36)

and from (3.2)1 we obtain

‖u0t‖
2
0,Ω ≤ ε‖u0t‖

2
1,Ω + ε‖̺σ0‖

2
1,Ω + c(ε)‖̺σ0‖

2
0,Ω + c‖u0‖21,Ω.(3.37)

By (3.36) and (3.37) we have

1

2

d

dt

\
Ω

(u0t )
2 dξ + c0‖u

0
t‖

2
1,Ω ≤ ε‖̺σ0‖

2
1,Ω + c(ε)‖̺σ0‖

2
0,Ω + c‖u0‖21,Ω.(3.38)

In the same way we obtain

1

2

d

dt

\
Ω

(u0tt)
2 dξ + c0‖utt‖

2
1,Ω ≤ c‖u0t‖

2
1,Ω.(3.39)
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Now, consider the elliptic problem

− divD(u0) = −u0t ,

D(u0)n0 = (p(̺0)− p0)n0.

By the Agmon–Douglis–Nirenberg theory (see [1])

‖u0‖22,Ω ≤ c(‖u0t‖
2
0,Ω + ‖u0‖20,Ω) + ε‖̺σ0‖

2
2,Ω + c(ε)‖̺σ0‖

2
0,Ω.(3.40)

Moreover,

1

2

d

dt

\
Ω

(u0ξ)
2 dξ ≤ c(‖u0‖21,Ω + ‖u0t‖

2
1,Ω).(3.41)

Using the same argument we get the estimates

1

2

d

dt

\
Ω

(u0tξ)
2 dξ + c0‖u

0
t‖

2
2,Ω ≤ c(‖u0t‖

2
1,Ω + ‖u0tt‖

2
1,Ω),(3.42)

1

2

d

dt

\
Ω

(u0ξξ)
2 dξ ≤ c(‖u0‖22,Ω + ‖u0t‖

2
2,Ω).(3.43)

Now, estimates (3.35) and (3.38)–(3.43) yield the following differential
inequality:

d

dt
φ1(t) + c0Φ1(t) ≤ c15‖̺σ0‖

2
0,ΩΦ1(t) + ε‖̺σ0‖

2
2,Ω + c16‖̺σ0‖

2
0,Ω.(3.44)

By using the same argument as in Lemma 3.7, inequality (3.44) and as-
sumptions (3.13) and (3.21) yield (3.33) for sufficiently small ε, δ and α.

Now, we prove the main result of the paper.

Theorem 3.9. Let ν > 1
3µ> 0, f =0, and p∈C3(R+) with p′> 0. Let

(v, ̺σ) ∈ N(0), S ∈ H5/2, u0t (0) ∈ H1(Ω), u0tt(0) ∈ L2(Ω) (u0 is a solution

of (3.2)) and let the following compatibility condition be satisfied :

[D(v0)− (p(̺0)− p0)]n0 = 0 on S.

Moreover , let the following assumptions be satisfied :

φ(0) ≤ α;(3.45)

‖v0‖
2
0,Ω + ‖̺σ0‖

2
0,Ω ≤ δ, where ̺σ0 = ̺0 − ̺e;(3.46)

l > 0 is a constant such that ̺e − l > 0 and ̺1 < ̺0 < ̺2,(3.47)

where ̺1 = ̺e − l, ̺2 = ̺e + l;\
Ω

̺0v0 · η dξ = 0,
\
Ω

̺0ξ dξ = 0,(3.48)

where η = a+ b× x and a, b are arbitrary constant vectors;\
Ω

̺0 dξ =M.(3.49)
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Then for sufficiently small constants α and δ there exists a global solution

of (1.1) such that (v, ̺σ) ∈ M(t) for t ∈ R1
+, St ∈ H5/2 for t ∈ R1

+ and

φ(t) ≤ α for t ∈ R
1
+.(3.50)

P r o o f. The theorem is proved step by step using the local existence in
a fixed interval. In order to extend the solution to the interval [T, 2T ] we
first prove that

̺1 < ̺(x, t) < ̺2 ∀x ∈ Ωt, t ∈ [0, T ].(3.51)

By (3.10) and assumption (3.45) we have

‖u(t)‖22,Ω + ‖ησ(t)‖
2
2,Ω ≤ ψ2(A, T )α.(3.52)

Hence

|u|2∞,ΩT + |ησ|
2
∞,ΩT ≤ αc(Ω)ψ2(A, T ),(3.53)

where c(Ω) > 0 is a constant from the imbedding lemma.

Assume now that α is so small that

[αc(Ω)ψ2(A, T )]
1/2 < l,(3.54)

where l is the constant from assumption (3.47). Then by (3.53) we obtain
(3.51) and this means that ̺∗ = ̺1 and ̺∗ = ̺2. Thus, the assumptions of
the theorem and Lemmas 3.4, 3.7 yield

φ(t) ≤ α for t ≤ T,(3.55)

whereα and δ are so small that (3.15) and (3.32) are satisfied (with constants

c1, c2, c8, c9, c10, c11, c12 and c′′ depending on Ω, ̺1, ̺2). Hence, in view of
Theorem 3.1, Lemma 3.8 and estimates (3.4)–(3.5) (with initial conditions
at T ) for A so large that

C1(T )(c̃ φ(0) + α) < A(3.56)

and for α sufficiently small (so that (3.56) and (3.5) hold with φ(0) replaced
by α) there exists a local solution of (1.1) in the interval [T, 2T ] and

‖u‖2AT,ΩT
+ ‖ησ‖

2
BT,ΩT

≤ ψ2(A, T )(‖̺σ(T )‖
2
2,ΩT

+ ‖u(T )‖22,ΩT
(3.57)

+‖ut(T )‖
2
1,ΩT

+ ‖utt(T )‖
2
0,ΩT

)

≤ ψ2(A, T )α

(where AT,ΩT
and BT,ΩT

are given by (1.6) and (1.5), respectively), which
yields (v, ̺σ) ∈ M(t) for t ≤ 2T .

To extend the solution to [2T, 3T ] we have to prove

φ(t) ≤ α for t ≤ 2T.(3.58)

First, we show the estimate

̺1 < ̺(x, t) < ̺2 ∀x ∈ Ωt, t ∈ [0, 2T ].(3.59)



306 E. ZADRZYŃSKA AND W. M. ZAJA̧CZKOWSKI

In view of (3.51) we prove

̺1 < η(ξ, t) < ̺2 ∀ξ ∈ ΩT , t ∈ [T, 2T ],

where by η we denote ̺ written in the Lagrangian coordinates ξ ∈ ΩT

connected with the Eulerian coordinates x by the relation

x = ξ +

t\
T

v(x, t′) dt′ = ξ +

t\
T

u(ξ, t′)dt′.

In view of (3.55) and (3.57) we get

‖u(t)‖22,ΩT
+ ‖ησ(t)‖

2
2,ΩT

≤ ψ2(A, T )α.

Hence

|u|2∞,ΩT×(T,2T ) + |ησ|
2
∞,ΩT×(T,2T ) ≤ αc(ΩT )ψ2(A, T ),(3.60)

where c(ΩT ) is a constant from the imbedding lemma and by Remark 3.5,

[αc(ΩT )ψ2(A, T )]
1/2 < l,

where l is the constant from assumption (3.47). Therefore, (3.60) implies
(3.59).

Now, we prove that the volume and shape ofΩt change in [0, 2T ] no more

than they do in [0, T ]. To do this we consider
Tt
0
v(x, t′) dt′ for 0≤ t≤2T . We

estimate
TT
0
v(x, t′) dt′ by applying Lemma 3.3, and to estimate

T2T
T
v(x, t′) dt′

we use inequality (3.57) for the local solution in [T, 2T ]. Thus we have

∣∣∣
t\
0

v(x, t′) dt′
∣∣∣ ≤

T\
0

|u(ξ, t′)| dt′ +

2T\
T

|u(ξ, t′)| dt′(3.61)

< c13T
1/2

[( T\
0

‖u‖22,Ω dt
′
)1/2

+
( 2T\

T

‖u‖22,ΩT
dt′

)1/2]

≤ T 1/2
[(
c17

T\
0

‖v‖22,Ωt′
dt′

)1/2

+ c14α
1/2

]

≤ T 1/2

[
c17

(c′)1/2

( T\
0

φ(t′) dt′
)1/2

+ c14α
1/2

]

≤ T 1/2α1/2

[
c17

(
µ1

c′

)1/2( T\
0

e−µ2t
′

dt′
)1/2

+ c14

]

≤ T 1/2α1/2

(
c17µ1

(c′µ2)1/2
+ c14

)
,

where c13 and c14 are the constants from Remark 3.5, c′ is the constant
from (3.11) and we have used the fact that µ1 > 1.
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If α is sufficiently small then estimates (3.61) and (3.59) imply that
the differential inequality (2.58) can be derived in [T, 2T ] with the same
constants c1 and c2 as in [0, T ]. Similarly, the other constants ci and c

′, c′′,
µ1, µ2 are the same in [T, 2T ] as in [0, T ].

Next, we prove that assumption (3.21) implies (3.22) for t ≤ 2T . To do
this integrate (2.8) with respect to t over (0, t) (t ≤ 2T ). Using Lemmas 3.2–
3.3 we get

‖v‖20,Ωt
+ ‖̺σ‖

2
0,Ωt

(3.62)

≤ c11c sup
0≤t′≤t

φ(t′)

t\
0

φ(t′) dt′ (1 + sup
0≤t′≤t

φ(t′)) + c10c11C0

≤
c11c

c′
c3µ1(1 + c3α)α

( T\
0

φ(0)e−µ2t
′

dt′ +

2T\
T

φ(T )e−µ2(t
′−T ) dt′

)
+ c10c11δ

≤
c11cc3µ1

c′
(1 + c3α)α

(
α

T\
0

e−µ2t
′

dt′ + µ1

2T\
T

φ(0)e−µ2T e−µ2(t
′−T ) dt′

)

+ c10c11δ

≤
c11cc3µ1

c′µ2
(1 + c3α)α

2[1− e−µ2T + µ1(e
µ2T − e−2µ2T )] + c10c11δ

≤
c11cc3µ

2
1

c′µ2
(1 + c3α)α

2 + c10c11δ,

where c10, c11 are the constants from Lemma 3.4 and c3 is the constant
from Lemma 3.2. Therefore (3.22) is satisfied for t ≤ 2T , so by (3.55) and
Lemma 3.7 we obtain (3.58) and the existence of a local solution (v, ̺) such
that (v, ̺) ∈ M(t) for t ≤ 3T .

Finally, assume that there exists a local solution in [0, kT ] (where k ≥ 3)
satisfying

‖u‖2AT,ΩiT
≤ A for i = 1, . . . , k − 1,(3.63)

‖η‖2BT,ΩiT
≤ ψ1(A) for i = 1, . . . , k − 1,(3.64)

φ(t) ≤ α for t ≤ (k − 1)T,(3.65)

‖u‖2AT,ΩiT
+ ‖ησ‖

2
BT,ΩiT

≤ ψ2(A, T )α for i = 1, . . . , k − 1.(3.66)

Moreover, assume that the volume and shape of Ωt change in [0, (k − 1)T ]
no more than they do in [0, T ] and estimate (3.51) holds for t ≤ (k−1)T (so
the constants ci, i=1,. . ., 17, c′, c′′, µ1, µ2 are the same in each [(i−1)T, iT ],
i = 1, . . . , k−1). Since the argument used to show estimate (3.51) for t ≤ kT
is the same as for t ≤ T and for t ≤ 2T , to prove the existence of a local
solution in [0, (k + 1)T ] it remains to show that the volume and shape of
Ωt change in [0, kT ] no more than they do in [0, T ] and that assumption
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(3.21) implies (3.22) for t ≤ kT . In fact, applying Lemma 3.3 and estimates
(3.63)–(3.66) we have, for t ∈ [0, kT ],

∣∣∣
t\
0

v(x, t′) dt′
∣∣∣(3.67)

≤
k−1∑

i=0

(i+1)T\
iT

|u(ξ, t′)| dt′ < c13T
1/2

k−1∑

i=0

( (i+1)T\
iT

‖u‖22,ΩiT
dt′

)1/2

≤ T 1/2
[
c17

k−2∑

i=0

( (i+1)T\
iT

‖v‖22,Ωt′
dt′

)1/2

+ c14α
1/2

]

≤ T 1/2

[
c17

(c′)1/2

k−2∑

i=0

( (i+1)T\
iT

φ(t′) dt′
)1/2

+ c14α
1/2

]

≤ T 1/2

[
c17

(
µ1

c′

)1/2 k−2∑

i=0

(
φ(iT )

(i+1)T\
iT

e−µ2(t
′−iT ) dt′

)1/2

+ c14α
1/2

]

≤ T 1/2

[
c17

(
µ1

c′µ2

)1/2

(1− e−µ2T )1/2
k−2∑

i=0

(φ(iT ))1/2 + c14α
1/2

]

≤ T 1/2

{
c17

(
µ1

c′µ2

)1/2

(1− e−µ2T )1/2[φ(0)(1 + µ1e
−µ2T

+ µ1e
−2µ2T + . . .)]1/2 + c14α

1/2

}

≤ T 1/2α1/2

[
c17µ1

(c′µ2)1/2
(1− e−µ2T )1/2

1

(1− e−µ2T )1/2
+ c14

]

= T 1/2α1/2

(
c17µ1

(c′µ2)1/2
+ c14

)
,

where c13, c14 are the constants from Remark 3.5, c17 is the same constant
as in inequality (3.61), c′ is the constant from (3.11) and we have used the
fact that µ1 > 1.

Thus, the right-hand side of (3.67) is the same as the right-hand side of
(3.61). Therefore, for α sufficiently small the shape of Ωt changes in [0, kT ]
no more than it does in [0, T ] and the constants ci (i = 1, . . . , 17), c′, c′′, µ1,
µ2 from Theorem 2.8, Lemmas 3.2–3.4, 3.7, 3.8, Remark 3.5 and inequality
(3.11) are the same in each [iT, (i+ 1)T ] for i = 0, . . . , k − 1.

In the same way we prove

‖v‖20,Ωt
+ ‖̺σ‖

2
0,Ωt

≤ c9α
2 + c10c11δ(3.68)

for t ≤ kT , where ci (i = 9, 10, 11) are the constants from Lemma 3.4.
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Estimates (3.67)–(3.68), (3.65) and Lemma 3.7 yield φ(t) ≤ α for t ≤ kT
and hence we obtain the existence of a local solution (v, ̺) of (1.1) such that
(v, ̺σ) ∈ M(t) for t ≤ (k + 1)T .
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