ON NONSTATIONARY MOTION OF A FIXED MASS OF A VISCOUS COMPRESSIBLE BAROTROPIC FLUID BOUNDED BY A FREE BOUNDARY

BY
EWA ZADRZYŃSKA and WOJCIECH M. ZAJA A̧ZKOWSKI (WARSZAWA)

1. Introduction. In this paper we consider the global motion of a drop of a viscous barotropic fluid in the general case, i.e. without assuming any conditions on the form of the pressure $p=p(\varrho)$. Here $\varrho=\varrho(x, t)$ (where $x \in \Omega_{t}, t \in[0, T], \Omega_{t} \subset \mathbb{R}^{3}$ is a bounded domain of the drop at time $\left.t\right)$ is the density of the drop.

Next, let $v=v(x, t) \quad\left(v=\left(v_{i}\right)_{i=1,2,3}\right)$ denote the velocity of the fluid, $f=f(x, t)$ the external force field per unit mass, μ and ν the constant viscosity coefficients, and p_{0} the external (constant) pressure. Then the motion of the drop is described by the following system of equations (see [2, Chs. 1, 2]):

$$
\begin{array}{ll}
\varrho\left[v_{t}+(v \cdot \nabla) v\right]-\operatorname{div} \mathbb{T}(v, p)=\varrho f & \text { in } \widetilde{\Omega}^{T}, \\
\varrho_{t}+\operatorname{div}(\varrho v)=0 & \text { in } \widetilde{\Omega}^{T}, \\
\mathbb{T} \bar{n}=-p_{0} \bar{n} & \text { on } \widetilde{S}^{T}, \tag{1.1}\\
v \cdot \bar{n}=-\frac{\phi_{t}}{|\nabla \phi|} & \text { on } \widetilde{S}^{T}, \\
\left.\varrho\right|_{t=0}=\varrho_{0},\left.\quad v\right|_{t=0}=v_{0} & \text { in } \Omega,
\end{array}
$$

where $\widetilde{\Omega}^{T}=\bigcup_{t \in(0, T)} \Omega_{t} \times\{t\}, \widetilde{S}^{T}=\bigcup_{t \in(0, T)} S_{t} \times\{t\}, S_{t}=\partial \Omega_{t}, \phi(x, t)=0$ describes S_{t} (at least locally), \bar{n} is the unit outward vector normal to the boundary, i.e. $\bar{n}=\nabla \phi /|\nabla \phi|$, and $\Omega=\left.\Omega_{t}\right|_{t=0}=\Omega_{0}$. In (1.1), $\mathbb{T}=\mathbb{T}(v, p)=$ $\left\{T_{i j}\right\}_{i, j=1,2,3}=\left\{-p \delta_{i j}+\mu\left(v_{i x_{j}}+v_{j x_{i}}\right)+(\nu-\mu) \delta_{i j} \operatorname{div} v\right\}_{i, j=1,2,3}$ is the stress tensor. Moreover, we assume $\nu>\frac{1}{3} \mu>0$.

Let the domain Ω be given. Then by (1.1),$\Omega_{t}=\left\{x \in \mathbb{R}^{3}: x=\right.$ $x(\xi, t), \xi \in \Omega\}$, where $x=x(\xi, t)$ is the solution of the Cauchy problem

[^0]\[

$$
\begin{equation*}
\frac{\partial x}{\partial t}=v(x, t),\left.\quad x\right|_{t=0}=\xi \in \Omega, \quad \xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) . \tag{1.2}
\end{equation*}
$$

\]

Hence, we obtain the following relation between the Eulerian x and the Lagrangian ξ coordinates of the same fluid particle:

$$
\begin{equation*}
x=\xi+\int_{0}^{t} u\left(\xi, t^{\prime}\right) d t^{\prime} \equiv X_{u}(\xi, t) \tag{1.3}
\end{equation*}
$$

where $u(\xi, t)=v\left(X_{u}(\xi, t), t\right)$. Moreover, by $(1.1)_{4}, S_{t}=\{x: x=x(\xi, t), \xi \in$ $S=\partial \Omega\}$.

By the continuity equation $(1.1)_{2}$ and the kinematic condition (1.1) $)_{4}$ the total mass is conserved, i.e.

$$
\begin{equation*}
\int_{\Omega_{t}} \varrho(x, t) d x=\int_{\Omega} \varrho_{0}(\xi) d \xi=M \tag{1.4}
\end{equation*}
$$

where M is a given constant.
In [15] the local existence of a unique solution is proved for a problem analogous to (1.1), but describing the motion of a drop of a viscous heatconducting fluid.

Let $u=u(\xi, t), \eta=\eta(\xi, t)$ denote v and ϱ written in Lagrangian coordinates. In the same way as in [15] (see Theorem 4.2 of [15]) one can prove the local existence of a unique solution (v, ϱ) of problem (1.1) such that $u \in \mathcal{A}_{T, \Omega}, \eta \in \mathcal{B}_{T, \Omega}$, where $\mathcal{A}_{T, \Omega} \equiv \mathcal{A}_{T, \Omega_{0 T}}, \mathcal{B}_{T, \Omega} \equiv \mathcal{B}_{T, \Omega_{0 T}}$ and

$$
\begin{align*}
\mathcal{B}_{T, \Omega_{i T}} & =\left\{f \in C\left(i T,(i+1) T ; H^{2}\left(\Omega_{i T}\right)\right):\right. \tag{1.5}\\
& f_{t} \in C\left(i T,(i+1) T ; H^{1}\left(\Omega_{i T}\right)\right) \cap L_{2}\left(i T,(i+1) T ; H^{2}\left(\Omega_{i T}\right)\right), \\
& \left.f_{t t} \in C\left(i T,(i+1) T ; L_{2}(\Omega)\right) \cap L_{2}\left(i T,(i+1) T ; H^{1}\left(\Omega_{i T}\right)\right)\right\} \tag{1.6}
\end{align*}
$$ $\rightarrow \mathbb{N} \cup\{0\}, T \leq T_{*}$, where $T_{*}>0$ is a cer ain contant.

The aim of this paper is to prove the existence of a global-in-time solution of problem (1.1) near a constant state. Consider the equation

$$
\begin{equation*}
p(\varrho)=p_{0}, \tag{1.7}
\end{equation*}
$$

where $\varrho \in \mathbb{R}_{+}, p \in C^{3}\left(\mathbb{R}_{+}\right)$, and $p^{\prime}>0$.
We introduce the following definition of a constant state.
Definition 1.1. Let $f=0$. Then by a constant (equilibrium) state we mean a solution (v, ϱ) of problem (1.1) such that $v=0, \varrho=\varrho_{e}$, and $\Omega_{t}=\Omega_{e}$ for $t \geq 0$, where ϱ_{e} is a solution of (1.7) and $\left|\Omega_{e}\right|=M / \varrho_{e}\left(\left|\Omega_{e}\right|=\operatorname{vol} \Omega_{e}\right)$.

First, in Section 2 we derive a differential inequality (2.58) which enables extending the local solution of (1.1) step by step from the interval $[0, T]$ to $[0, \infty)$. To prove the global existence we also use Lemma 2.1, which gives an energy estimate (2.8), and Lemmas 3.3-3.4. The above lemmas yield in particular global estimates for $\|v\|_{L_{2}\left(\Omega_{t}\right)}^{2}$ and $\left\|p_{\sigma}\right\|_{L_{2}\left(\Omega_{t}\right)}^{2}$ (where $\left.p_{\sigma}=p-p_{0}\right)$,
which are used in the proofs of Lemma 3.4 and Theorem 3.9, the main result of the paper.

The global motion of a fluid described by (1.1) has been considered earlier in papers [7] and [17].

In [17] the global existence for problem (1.1) is proved for a special form of $p=p(\varrho)$:

$$
\begin{equation*}
p=a_{0} \varrho^{\alpha}, \tag{1.8}
\end{equation*}
$$

where $a_{0}>0$ and $\alpha>0$ are constants. The global solution obtained in [17] is more regular than the one obtained in this paper.

A result analogous to that of [17] is proved (under assumption (1.8)) in [18] for the fluid bounded by a free boundary the shape of which is governed by surface tension.

Paper [7] of V. A. Solonnikov and A. Tani is concerned with problem (1.1) with the boundary condition $\mathbb{T} \bar{n}-\sigma H \bar{n}=0$ (where H is the double mean curvature of S_{t}, and $\sigma>0$ is the constant coefficient of surface tension). In [7] the existence of a solution is proved in some anisotropic SobolevSlobodetskiĭ spaces; it is a little less regular than ours. To prove the local existence the authors of [7] apply potential techniques.

Both in [17] and in [7] the energy conservation law is used in order to derive a global estimate for $\|v\|_{L_{2}\left(\Omega_{t}\right)}^{2}$.

Papers [8]-[10] are concerned with the free boundary problem for a viscous barotropic self-gravitating fluid with p of the form (1.8).

Next, papers [11]-[14] are devoted to the free boundary problem for a viscous heat-conducting fluid under the assumption that the internal energy ε has a special form:

$$
\varepsilon=a_{0} \varrho^{\alpha}+h(\varrho, \theta),
$$

where $a_{0}>0, \alpha>0, h(\varrho, \theta) \geq h_{*}>0 ; a_{0}, \alpha$ and h_{*} are constants.
The free boundary problem for a viscous incompressible fluid was examined by V. A. Solonnikov in [3]-[6].

Finally, we present the notation used in the paper. We denote by $\|\cdot\|_{l, Q}$ (where $l \geq 0, Q \subset \mathbb{R}^{3}$) the norms in the Sobolev spaces $H^{l}(Q)$, and by $\Gamma_{k}^{l}(Q)\left(l>0, k \geq 0, Q \subset \mathbb{R}^{3}\right)$ the space of functions $u=u(x, t)(x \in Q$, $t \in(0, T), T>0)$ with the norm

$$
\|u\|_{\Gamma_{l}^{k}(Q)}=\sum_{i \leq l-k}\left\|\partial_{t}^{i} u\right\|_{l-i, Q} \equiv|u|_{l, k, Q}
$$

2. Differential inequality. Assume that the existence of a sufficiently smooth local solution of problem (1.1) has been proved and let

$$
\begin{equation*}
f=0 \tag{2.1}
\end{equation*}
$$

In this section we obtain a special differential inequality which enables us to prove the global existence. To get the inequality we consider the motion near the constant state. Let

$$
\begin{equation*}
p_{\sigma}=p-p_{0}, \quad \varrho_{\sigma}=\varrho-\varrho_{e}, \tag{2.2}
\end{equation*}
$$

where ϱ_{e} is introduced in Definition 1.1. Then problem (1.1) takes the form

$$
\begin{array}{ll}
\varrho\left[v_{t}+(v \cdot \nabla) v\right]-\operatorname{div} \mathbb{T}\left(v, p_{\sigma}\right)=0 & \text { in } \Omega_{t}, t \in(0, T), \\
\varrho_{\sigma t}+\operatorname{div}(\varrho v)=0 & \text { in } \Omega_{t}, t \in(0, T), \\
\mathbb{T}\left(v, p_{\sigma}\right) \bar{n}=0 & \text { on } S_{t}, t \in(0, T), \tag{2.3}\\
\left.\varrho_{\sigma}\right|_{t=0}=\varrho_{\sigma 0}=\varrho_{0}-\varrho_{e},\left.v\right|_{t=0}=v_{0}, & \text { in } \Omega .
\end{array}
$$

In the sequel we use the following Taylor formula for p_{σ} :

$$
\begin{equation*}
p_{\sigma}=\left(\varrho-\varrho_{e}\right) \int_{0}^{1} p^{\prime}\left(\varrho_{e}+s\left(\varrho-\varrho_{e}\right)\right) d s=p_{1} \varrho_{\sigma}, \tag{2.4}
\end{equation*}
$$

where the function p_{1} is positive.
Now, let ϱ_{*} and ϱ^{*} be positive constants such that

$$
\begin{equation*}
\varrho_{*}<\varrho<\varrho^{*} \quad \text { for } x \in \bar{\Omega}_{t}, t \in[0, T] . \tag{2.5}
\end{equation*}
$$

In the lemmas below we denote by ε small constants, by $c_{0}<1$ a positive constant depending on μ, ν, and by c a positive constants depending on T (the time of local existence), $\varrho_{*}, \varrho^{*}, \int_{0}^{t}\|v\|_{3, \Omega_{t^{\prime}}}^{2} d t^{\prime},\|S\|_{5 / 2}$, on the parameters which guarantee the existence of the inverse transformation to $x=x(\xi, t)$ and on the constants of imbedding theorems and Korn inqualities. We do not distinguish different ε 's or c 's.

We underline that all the estimates below are obtained under the assumption that there exists a local-in-time solution of problem (1.1), so all the quantities $\varrho_{*}, \varrho^{*}, T, \int_{0}^{t}\|v\|_{3, \Omega_{t^{\prime}}}^{2} d t^{\prime},\|S\|_{5 / 2}$ are estimated by the data functions. Moreover, the existence of the inverse transformation to $x=x(\xi, t)$ is guaranteed by the estimates for the local solution (see [15]).

Now, assume the relations

$$
\begin{array}{r}
\int_{\Omega_{t}} \varrho v d x=0, \\
\int_{\Omega_{t}} \varrho v \cdot \eta d x=0, \tag{2.7}
\end{array}
$$

where $\eta=a+b \times x$ and a and b are arbitrary vectors.
LEmmA 2.1. Let $\left(v, \varrho_{\sigma}\right)$ be a sufficiently smooth solution of (2.3). Then

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}}\left(\varrho v^{2}+\frac{p_{1}}{\varrho} \varrho_{\sigma}^{2}\right) d x+c_{0}\|v\|_{1, \Omega_{t}}^{2} \leq c X_{1}^{2}\left(1+X_{1}\right) \tag{2.8}
\end{equation*}
$$

where $X_{1}=\|v\|_{2, \Omega_{t}}^{2}+\left\|\varrho_{\sigma}\right\|_{2, \Omega_{t}}^{2}$.

Proof. Multiplying $(2.3)_{1}$ by v, integrating over Ω_{t} and using the continuity equation $(2.3)_{2}$, boundary condition $(2.3)_{4}$ and (2.4) we obtain
(2.9) $\frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}} \varrho v^{2} d x+\frac{\mu}{2} E_{\Omega_{t}}(v)+(\nu-\mu)\|\operatorname{div} v\|_{0, \Omega_{t}}^{2}-\int_{\Omega_{t}} p_{1} \varrho_{\sigma} \operatorname{div} v d x=0$,
where $E_{\Omega_{t}}(v)=\int_{\Omega_{t}} \sum_{i, j=1}^{3}\left(v_{i x_{j}}+v_{j x_{i}}\right)^{2} d x$.
In [13] it is proved that

$$
\frac{\mu}{2} E_{\Omega_{t}}(v)+(\nu-\mu)\|\operatorname{div} v\|_{0, \Omega_{t}}^{2} \geq c E_{\Omega_{t}}(v)
$$

where $c>0$ is a constant.
Next, by the continuity equation $(2.3)_{2}$ we have

$$
\begin{equation*}
-\int_{\Omega_{t}} p_{1} \varrho_{\sigma} \operatorname{div} v d x=\frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}} \frac{p_{1} \varrho_{\sigma}^{2}}{\varrho} d x+J \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
|J| \leq \varepsilon\left(\left\|\varrho_{\sigma t}\right\|_{0, \Omega_{t}}^{2}+\|v\|_{1, \Omega_{t}}^{2}\right)+c X_{1}^{2}\left(1+X_{1}\right) . \tag{2.11}
\end{equation*}
$$

Moreover, in view of assumptions (2.6) and (2.7), Lemma 5.2 of [17] yields

$$
\begin{equation*}
\|v\|_{1, \Omega_{t}}^{2} \leq c\left(E_{\Omega_{t}}(v)+\left\|\varrho_{\sigma}\right\|_{0, \Omega_{t}}^{2}\|v\|_{0, \Omega_{t}}^{2}\right) \tag{2.12}
\end{equation*}
$$

and by the continuity equation $(2.3)_{2}$,

$$
\begin{equation*}
\left\|\varrho_{\sigma t}\right\|_{0, \Omega_{t}}^{2} \leq c\|v\|_{1, \Omega_{t}}^{2}+c\|v\|_{1, \Omega_{t}}^{2}\left\|\varrho_{\sigma}\right\|_{2, \Omega_{t}}^{2} \tag{2.13}
\end{equation*}
$$

Taking into account (2.9)-(2.13) we get estimate (2.8).
Lemma 2.2. Let $\left(v, \varrho_{\sigma}\right)$ be a sufficiently smooth solution of (2.3). Then

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}}\left(\varrho v_{t}^{2}+\frac{p_{\varrho \sigma}}{\varrho} \varrho_{\sigma t}^{2}\right) d x+c_{0}\left(\left\|v_{t}\right\|_{1, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t}\right\|_{0, \Omega_{t}}^{2}\right) \tag{2.14}\\
& \leq c\|v\|_{1, \Omega_{t}}^{2}+c Y_{1}^{2}\left(1+X_{2}\right)
\end{align*}
$$

where

$$
\begin{align*}
X_{2} & =|v|_{2,0, \Omega_{t}}^{2}+\left|\varrho_{\sigma}\right|_{2,0, \Omega_{t}}^{2}+\int_{0}^{t}\|v\|_{3, \Omega_{t^{\prime}}}^{2} d t^{\prime} \tag{2.15}\\
Y_{1} & =X_{2}-\int_{0}^{t}\|v\|_{3, \Omega_{t^{\prime}}}^{2} d t^{\prime} \tag{2.16}
\end{align*}
$$

Proof. Differentiating (2.3) ${ }_{1}$ with respect to t, multiplying by v_{t} and integrating over Ω_{t} yields

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}} \varrho v_{t}^{2} d x+\frac{\mu}{2} E_{\Omega_{t}}\left(v_{t}\right) & +(\nu-\mu)\left\|\operatorname{div} v_{t}\right\|_{0, \Omega_{t}}^{2} \tag{2.17}\\
& -\int_{\Omega_{t}} p_{\sigma \varrho} \varrho_{\sigma t} \operatorname{div} v_{t} d x \leq c Y_{1}^{2}\left(1+X_{2}\right)
\end{align*}
$$

where we have used the boundary condition $(2.3)_{4}$.
By Lemma 5.3 of [17] we have the following Korn type inequality:

$$
\begin{equation*}
\left\|v_{t}\right\|_{1, \Omega_{t}}^{2} \leq c\left[E_{\Omega_{t}}\left(v_{t}\right)+Y_{1}^{2}\left(1+Y_{1}\right)\right] . \tag{2.18}
\end{equation*}
$$

Finally, using the continuity equation $(2.3)_{3}$ we get

$$
\begin{equation*}
-\int_{\Omega_{t}} p_{\sigma \varrho} \varrho_{\sigma t} \operatorname{div} v_{t} d x=\frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}} \frac{p_{\sigma \varrho}}{\varrho} \varrho_{\sigma t}^{2} d x+J, \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
|J| \leq \varepsilon\left(\left\|v_{t}\right\|_{1, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t}\right\|_{0, \Omega_{t}}^{2}\right)+c Y_{1}^{2}\left(1+Y_{1}\right) . \tag{2.20}
\end{equation*}
$$

In view of inequalities (2.17)-(2.20) and (2.13) we obtain (2.14).
Lemmas 2.1 and 2.2 yield
LEmmA 2.3. Let $\left(v, \varrho_{\sigma}\right)$ be a sufficiently smooth solution of (2.3). Then

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}}\left[\varrho \left(v^{2}\right.\right. & \left.\left.+v_{t}^{2}\right)+\frac{p_{1}}{\varrho} \varrho_{\sigma}^{2}+\frac{p_{\sigma \varrho}}{\varrho} \varrho_{\sigma t}^{2}\right] d x \tag{2.21}\\
& +c_{0}\left(\|v\|_{1, \Omega_{t}}^{2}+\left\|v_{t}\right\|_{1, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t}\right\|_{0, \Omega_{t}}^{2}\right) \leq c Y_{1}^{2}\left(1+X_{2}\right)
\end{align*}
$$

where X_{2} and Y_{1} are given by (2.15) and (2.16), respectively.
Next, we obtain
Lemma 2.4. Let v, ϱ_{σ} be a sufficiently smooth solution of (2.3). Then

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}}\left(\varrho v_{t t}^{2}+\frac{p_{\sigma \varrho}}{\varrho} \varrho_{\sigma t t}^{2}\right) & d x+c_{0}\left(\left\|v_{t t}\right\|_{1, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t t}\right\|_{0, \Omega_{t}}^{2}\right) \\
& \leq c\left(\|v\|_{1, \Omega_{t}}^{2}+\left\|v_{t}\right\|_{1, \Omega_{t}}^{2}\right)+c X_{2} Y_{2}\left(1+X_{2}^{2}\right)
\end{aligned}
$$

where X_{2} is given by (2.15) and

$$
\begin{equation*}
Y_{2}=|v|_{3,1, \Omega_{t}}^{2}+\left\|\varrho_{\sigma}\right\|_{2, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t}\right\|_{2, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t t}\right\|_{1, \Omega_{t}}^{2} . \tag{2.22}
\end{equation*}
$$

The above lemma can be proved in the same way as Lemmas 2.1 and 2.2. To estimate $E_{\Omega_{t}}\left(v_{t t}\right)$ we use here Lemma 5.4 of [17].

In order to obtain estimates for derivatives with respect to x we rewrite problem (2.3) in Lagrangian coordinates. We have

$$
\begin{array}{ll}
\eta u_{i t}-\nabla_{u_{j}} T_{u i j}\left(u, p_{\sigma}\right)=0(i=1,2,3) & \text { in } \Omega^{T} \equiv \Omega \times(0, T), \\
\eta_{\sigma t}+\eta \nabla_{u} \cdot u=0 & \text { in } \Omega^{T}, \\
\mathbb{T}_{u}\left(u, p_{\sigma}\right) \bar{n}_{u}=0 & \text { on } S^{T} \equiv S \times(0, T), \tag{2.23}\\
\left.u\right|_{t=0}=v_{0},\left.\quad \eta_{\sigma}\right|_{t=0}=\varrho_{\sigma 0}, & \text { in } \Omega,
\end{array}
$$

where $\eta(\xi, t)=\varrho\left(X_{u}(\xi, t), t\right), u(\xi, t)=v\left(X_{u}(\xi, t), t\right)\left(X_{u}\right.$ is given by (1.3)), $\eta_{\sigma}=\eta-\varrho_{e}, \varrho_{\sigma 0}=\varrho_{0}-\varrho_{e}, \mathbb{T}_{u}\left(u, p_{\sigma}\right)=\left\{T_{u i j}\left(u, p_{\sigma}\right)\right\}_{i, j=1,2,3}=\left\{-p_{\sigma} \delta_{i j}+\right.$ $\left.\mu\left(\partial_{x_{i}} \xi_{k} \partial_{\xi_{k}} u_{j}+\partial_{x_{j}} \xi_{k} \partial_{\xi_{k}} u_{i}\right)+(\nu-\mu) \delta_{i j} \operatorname{div}_{u} u\right\}_{i, j=1,2,3}, \operatorname{div}_{u} u=\nabla_{u} \cdot u=$ $\partial_{x_{i}} \xi_{k} \partial_{\xi_{k}} u_{i}, \nabla_{u}=\left(\xi_{k x_{i}} \partial_{\xi_{k}}\right)_{i=1,2,3}, \nabla_{u_{j}}=\xi_{k x_{j}} \partial_{\xi_{k}}, \partial_{x_{i}} \xi_{k}$ are the elements of the matrix ξ_{x} which is inverse to $x_{\xi}=I+\int_{0}^{t} u_{\xi}\left(\xi, t^{\prime}\right) d t^{\prime}, I=\left\{\delta_{i j}\right\}_{i, j=1,2,3}$ is the unit matrix, $\bar{n}_{u}=\bar{n}\left(X_{u}(\xi, t), t\right)=\nabla_{x} \phi(x, t) /\left|\nabla_{x} \phi(x, t)\right|_{x=X_{u}(\xi, t)}\left(S_{t}\right.$ is determined at least locally by the equation $\phi(x, t)=0$) and summation over repeated indices is assumed.

By (2.4) we have $p_{\sigma}=p_{1} \eta_{\sigma}$, where $p_{1}=p_{1}(\eta)$.
Now, introduce a partition of unity $\left(\left\{\widetilde{\Omega}_{i}\right\},\left\{\zeta_{i}\right\}\right), \Omega=\bigcup_{i} \widetilde{\Omega}_{i}$. Let $\widetilde{\Omega}$ be one of the $\widetilde{\Omega}_{i}$'s and $\zeta(\xi)=\zeta_{i}(\xi)$ be the corresponding function. If $\widetilde{\Omega}$ is an interior subdomain then let $\widetilde{\omega}$ be a set such that $\widetilde{\omega} \subset \widetilde{\Omega}$ and $\zeta(\xi)=1$ for $\xi \in \widetilde{\omega}$. Otherwise, we assume that $\overline{\widetilde{\Omega}} \cap S \neq \emptyset, \overline{\widetilde{\omega}} \cap S \neq \emptyset, \overline{\widetilde{\omega}} \subset \overline{\widetilde{\Omega}}$. Take any $\beta \in \overline{\widetilde{\omega}} \cap S=\overline{\widetilde{S}}$ and introduce local coordinates $\{y\}$ associated with $\{\xi\}$ by

$$
\begin{equation*}
y_{k}=\alpha_{k l}\left(\xi_{l}-\beta_{l}\right), \quad \alpha_{3 k}=n_{k}(\beta), \quad k=1,2,3 \tag{2.24}
\end{equation*}
$$

where $\left\{\alpha_{k l}\right\}$ is a constant orthogonal matrix such that \widetilde{S} is determined by the equation $y_{3}=F\left(y_{1}, y_{2}\right), F \in H^{5 / 2}$ and

$$
\widetilde{\Omega}=\left\{y:\left|y_{i}\right|<d, i=1,2, F\left(y^{\prime}\right)<y_{3}<F\left(y^{\prime}\right)+d, y^{\prime}=\left(y_{1}, y_{2}\right)\right\}
$$

Next, we introduce $u^{\prime}, \eta^{\prime}, \eta_{\sigma}^{\prime}$ by

$$
\begin{aligned}
u_{i}^{\prime}(y) & =\left.\alpha_{i j} u_{j}(\xi)\right|_{\xi=\xi(y)} \quad(i=1,2,3), \quad \eta^{\prime}(y)=\left.\eta(\xi)\right|_{\xi=\xi(y)} \\
\eta_{\sigma}^{\prime}(y) & =\eta^{\prime}(y)-\varrho_{e}
\end{aligned}
$$

where $\xi=\xi(y)$ is the inverse transformation to (2.24).
Next, we introduce new variables by

$$
z_{i}=y_{i}(i=1,2), \quad z_{3}=y_{3}-\widetilde{F}(y), \quad y \in \widetilde{\Omega}
$$

which will be denoted by $z=\Phi(y)$ (where $\widetilde{F} \in H^{3}$ is an extension of F). Let

$$
\begin{equation*}
\widehat{\Omega}=\Phi(\widetilde{\Omega})=\left\{z:\left|z_{i}\right|<d, i=1,2,0<z_{3}<d\right\} \quad \text { and } \quad \widehat{S}=\Phi(\widetilde{S}) \tag{2.25}
\end{equation*}
$$

Define

$$
\widehat{u}(z)=\left.u^{\prime}(y)\right|_{y=\Phi^{-1}(z)}, \quad \widehat{\eta}(z)=\left.\eta^{\prime}(y)\right|_{y=\Phi^{-1}(z)}, \quad \widehat{\eta}_{\sigma}(z)=\widehat{\eta}(z)-\varrho_{e} .
$$

Set $\widehat{\nabla}_{k}=\left.\xi_{l x_{k}} z_{i \xi_{l}} \nabla_{z_{i}}\right|_{\xi=\chi^{-1}(z)}$, where $\chi(\xi)=\Phi(\psi(\xi))$ and $y=\psi(\xi)$ is described by (2.24). We also introduce the following notation:

$$
\widetilde{u}(\xi)=u(\xi) \zeta(\xi), \quad \widetilde{\eta}(\xi)=\eta(\xi) \zeta(\xi), \quad \widetilde{\eta}_{\sigma}(\xi)=\eta_{\sigma}(\xi) \zeta(\xi)
$$

for $\xi \in \widetilde{\Omega}, \widetilde{\Omega} \cap S=\emptyset$ and

$$
\widetilde{u}(z)=\widehat{u}(z) \widehat{\zeta}(z), \quad \widetilde{\eta}(z)=\widehat{\eta}(z) \widehat{\zeta}(z), \quad \widetilde{\eta}_{\sigma}(z)=\widehat{\eta}_{\sigma}(z) \widehat{\zeta}(z)
$$

for $z \in \widehat{\Omega}=\Phi(\widetilde{\Omega}), \overline{\widetilde{\Omega}} \cap S \neq \emptyset$, where $\widehat{\zeta}(z)=\left.\zeta(\xi)\right|_{\xi=\chi^{-1}(z)}$.
Using the above notation we rewrite problem (2.23) in the following form in an interior subdomain:

$$
\begin{aligned}
& \eta \widetilde{u}_{i t}-\nabla_{u_{j}} T_{u i j}\left(\widetilde{u}, \widetilde{p}_{\sigma}\right)=-\nabla_{u_{j}} B_{u i j}(u, \zeta)-T_{u i j}\left(u, p_{\sigma}\right) \nabla_{u_{j}} \zeta \equiv k_{1}, \quad i=1,2,3, \\
& \widetilde{\eta}_{\sigma t}+\eta \nabla_{u} \cdot \widetilde{u}=\eta u \cdot \nabla_{u} \zeta \equiv k_{2}
\end{aligned}
$$

where $\widetilde{p}_{\sigma}=p_{\sigma} \zeta$ and $\mathbb{B}_{u}(u, \zeta)=\left\{B_{u i j}(u, \zeta)\right\}_{i, j=1,2,3}=\left\{\mu\left(u_{i} \nabla_{u_{j}} \zeta+u_{j} \nabla_{u_{i}} \zeta\right)+\right.$ $\left.(\nu-\mu) \delta_{i j} u \cdot \nabla_{u} \zeta\right\}_{i, j=1,2,3}$.

In boundary subdomains we have

$$
\begin{align*}
& \widehat{\eta} \widetilde{u}_{i t}-\widehat{\nabla}_{j} \widehat{T}_{i j}=-\widehat{\nabla}_{j} \widehat{B}_{i j}(\widehat{u}, \widehat{\zeta})-\widehat{T}_{i j}\left(\widehat{u}, p_{\sigma}\right) \widehat{\nabla}_{j} \widehat{\zeta} \equiv k_{3 i}, \quad i=1,2,3, \\
& \widetilde{\eta}_{\sigma t}+\widehat{\eta} \widehat{\nabla} \cdot \widetilde{u}=\widehat{\eta} \widehat{u} \cdot \widehat{\nabla} \widehat{\zeta} \equiv k_{4} \tag{2.26}\\
& \widehat{\mathbb{T}}\left(\widetilde{u}, \widetilde{p}_{\sigma}\right) \widehat{n}=k_{5}
\end{align*}
$$

where $k_{5 i}=\widehat{B}_{i j}(\widehat{u}, \widehat{\zeta}) \widehat{n}_{j}, \widehat{\nabla}=\left(\widehat{\nabla}_{j}\right)_{j=1,2,3}$ and $\widehat{\mathbb{T}}$ and $\widehat{\mathbb{B}}$ indicate that the operator ∇_{u} is replaced by $\widehat{\nabla}$.

In Lemmas 2.5-2.7 below we denote z_{1}, z_{2}, by τ, i.e. $\tau=\left(z_{1}, z_{2}\right)$, and z_{3} by n.

Lemma 2.5. Let $\left(v, \varrho_{\sigma}\right)$ be a sufficiently smooth solution of (2.3). Then

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}}\left(\varrho v_{x}^{2}+\frac{p_{\sigma \varrho}}{\varrho} \varrho_{\sigma x}^{2}\right) d x+c_{0}\left(\|v\|_{2, \Omega_{t}}^{2}+\left\|\varrho_{\sigma x}\right\|_{0, \Omega_{t}}^{2}\right) \tag{2.27}\\
& \quad \leq c\left(\|v\|_{1, \Omega_{t}}^{2}+\left\|v_{t}\right\|_{1, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t}\right\|_{0, \Omega_{t}}^{2}+\left\|p_{\sigma}\right\|_{0, \Omega_{t}}\right)+c X_{2}^{2}\left(1+X_{2}\right)
\end{align*}
$$

where X_{2} is given by (2.15), $v_{x}^{2}=\sum_{i, j=1}^{3} v_{i x_{j}}^{2}$, and $\varrho_{\sigma x}^{2}=\sum_{i=1}^{3} \varrho_{\sigma x_{i}}^{2}$.
Proof. First, we consider the following elliptic problem:

$$
\begin{array}{ll}
\mu \nabla_{u}^{2} u+\nu \nabla_{u} \nabla_{u} \cdot u-p_{\sigma \eta} \nabla_{u} \eta=\eta u_{t} & \text { in } \Omega, \\
\operatorname{div}_{u} u=\operatorname{div}_{u} u & \text { in } \Omega, \tag{2.28}\\
\mathbb{T}_{u}\left(u, p_{\sigma}\right) \bar{n}_{u}=0 & \text { on } S .
\end{array}
$$

Since the complementarity condition for (2.28) is satisfied we can apply to problem (2.28) the Agmon-Douglis-Nirenberg theory (see [1]). Thus, we get

$$
\begin{align*}
\|u\|_{2, \Omega}^{2}+\left\|\eta_{\sigma}\right\|_{1, \Omega}^{2} & \leq c\left(\left\|\eta u_{t}\right\|_{0, \Omega}^{2}+\left\|\operatorname{div}_{u} u\right\|_{1, \Omega}^{2}\right) \tag{2.29}\\
& \leq c\left(\left\|u_{t}\right\|_{0, \Omega}^{2}+\|\operatorname{div} u\|_{1, \Omega}^{2}+c X_{2}^{2}(\Omega)\left(1+X_{2}(\Omega)\right)\right)
\end{align*}
$$

where we have used the fact that $\left\|\operatorname{div}_{u} u-\operatorname{div} u\right\|_{1, \Omega}^{2} \leq \varepsilon\|u\|_{2, \Omega}^{2}(\varepsilon>0$ is sufficiently small), and

$$
\begin{equation*}
X_{2}(\Omega)=|u|_{2,0, \Omega}^{2}+\left|\eta_{\sigma}\right|_{2,0, \Omega}^{2}+\int_{0}^{t}\|u\|_{3, \Omega}^{2} d t^{\prime} \tag{2.30}
\end{equation*}
$$

In view of (2.29) we see that in order to obtain inequality (2.27) it remains to get appropriate estimates for $\|\operatorname{div} u\|_{1, \Omega}^{2}$ and for $\frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}}\left(\varrho v_{x}^{2}+\right.$ $\left.\left(p_{\sigma \varrho} / \varrho\right) \varrho_{\sigma x}^{2}\right) d x$. To do this, consider first boundary subdomains. Differentiate $(2.26)_{1}$ with respect to τ, multiply the result by $\widetilde{u}_{\tau} J$ (J is the Jacobian of the transformation $x=x(z)$) and integrate over $\widehat{\Omega}$. Hence using the Korn inequality and equation $(2.26)_{2}$ we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\widehat{\Omega}} \widehat{\eta} \widetilde{u}_{\tau}^{2} J d z+c_{0}\left\|\widetilde{u}_{\tau}\right\|_{1, \widehat{\Omega}}^{2} \tag{2.31}\\
- & \int_{\widehat{S}}\left(\widehat{\mathbb{T}}\left(\widetilde{u}, \widetilde{p}_{\sigma}\right) \widehat{n}\right)_{, \tau} \widetilde{u}_{\tau} J d z-\int_{\widehat{\Omega}} \widetilde{p}_{\sigma \tau} \nabla \cdot \widetilde{u}_{\tau} J d z \\
\leq & \varepsilon\left(\left\|\widehat{\eta}_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}+\left\|\widetilde{u}_{\tau}\right\|_{1, \widehat{\Omega}}^{2}\right)+c\left(\|\widehat{u}\|_{1, \widehat{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}\right)+c X_{2}^{2}(\widehat{\Omega})\left(1+X_{2}(\widehat{\Omega})\right),
\end{align*}
$$

where

$$
\begin{equation*}
X_{2}(\widehat{\Omega})=|\widehat{u}|_{2,0, \widehat{\Omega}}^{2}+\left|\widehat{\eta}_{\sigma}\right|_{2,0, \widehat{\Omega}}^{2}+\int_{0}^{t}\|\widehat{u}\|_{3, \widehat{\Omega}}^{2} d t^{\prime}, \quad \widetilde{u}_{\tau}^{2}=\sum_{i=1}^{3} \sum_{j=1}^{2} \widetilde{u}_{i z_{j}} \tag{2.32}
\end{equation*}
$$

Using the boundary condition $(2.26)_{3}$ we have

$$
\begin{align*}
& -\int_{\widehat{S}}\left(\widehat{\mathbb{T}}\left(\widetilde{u}, \widetilde{p}_{\sigma}\right) \widehat{n}\right)_{, \tau} \widetilde{u}_{\tau} J d \tau=-\int_{\widehat{S}}\left(\widehat{B}_{i j}(\widehat{u}, \widehat{\zeta}) \widehat{n}_{j}\right)_{, \tau} \widetilde{u}_{i \tau} J d \tau \tag{2.33}\\
= & \int_{\widehat{S}} \partial_{\tau}^{1 / 2}\left(\widehat{B}_{i j}(\widehat{u}, \widehat{\zeta}) \widehat{n}_{j}\right) \partial_{\tau}^{1 / 2}\left(\widetilde{u}_{i \tau} J\right) d \tau \leq \varepsilon\left\|\widetilde{u}_{\tau}\right\|_{1, \widehat{\Omega}}^{2}+\|\widehat{u}\|_{1, \widehat{\Omega}}^{2}+c X_{2}^{2}(\widehat{\Omega}),
\end{align*}
$$

where to use the derivative $\partial_{\tau}^{1 / 2}$ we have to apply the Fourier transformation.
Next,

$$
\begin{equation*}
-\int_{\widehat{\Omega}} \widetilde{p}_{\sigma \tau} \nabla_{u} \cdot \widetilde{u}_{\tau} J d z=-\int_{\widehat{\Omega}} p_{\sigma \widehat{\eta}} \widetilde{\eta}_{\sigma \tau} \widehat{\nabla} \cdot \widetilde{u}_{\tau} J d z+J_{1} \tag{2.34}
\end{equation*}
$$

where $\left|J_{1}\right| \leq \varepsilon\left\|\widetilde{u}_{\tau}\right\|_{1, \widehat{\Omega}}^{2}+c\left\|p_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}$ and

$$
\begin{equation*}
-\int_{\widehat{\Omega}} p_{\sigma \widehat{\eta}} \widetilde{\eta}_{\sigma \tau} \widehat{\nabla} \cdot \widetilde{u}_{\tau} J d z=\frac{1}{2} \frac{d}{d t} \int_{\widehat{\Omega}}^{p_{\sigma}} \frac{\widehat{\eta}^{\prime}}{\widehat{\eta}} \widetilde{\sigma}_{\sigma \tau}^{2} J d z+J_{2} \tag{2.35}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|J_{2}\right| \leq \varepsilon\left\|\widetilde{\eta}_{\sigma \tau}\right\|_{0, \widehat{\Omega}}^{2}+c\|\widehat{u}\|_{1, \widehat{\Omega}}^{2}+c X_{2}^{2}(\widehat{\Omega}) \tag{2.36}
\end{equation*}
$$

Taking into account (2.31), (2.33)-(2.36) and assuming that ε is sufficiently small we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\widehat{\Omega}}\left(\widehat{\eta} \widetilde{u}_{\tau}^{2}+\frac{p_{\sigma \widehat{\eta}}}{\widehat{\eta}} \widetilde{\eta}_{\sigma \tau}^{2}\right) J d z+c_{0}\left\|\widetilde{u}_{\tau}\right\|_{1, \widehat{\Omega}}^{2} \tag{2.37}\\
& \quad \leq \varepsilon\left\|\widehat{\eta}_{\sigma \tau}\right\|_{0, \widehat{\Omega}}^{2}+c\left(\|\widehat{u}\|_{1, \widehat{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}\right)+c X_{2}^{2}(\widehat{\Omega})\left(1+X_{2}(\widehat{\Omega})\right)
\end{align*}
$$

Now, applying the operator $(\mu+\nu) \nabla_{z_{i}}$ to $(2.26)_{2}$, dividing the result by $\hat{\eta}$, adding to $(2.26)_{1}$ and multiplying both sides of the result by $p_{\sigma \hat{\eta}}$ gives

$$
\begin{align*}
& \frac{\mu+\nu}{\widehat{\eta}} p_{\sigma \widehat{\eta}} \nabla_{z_{i}} \widetilde{\eta}_{\sigma t}+p_{\sigma \widehat{\eta}}^{2} \nabla_{z_{i}} \widetilde{\eta}_{\sigma} \tag{2.38}\\
& =p_{\sigma}^{2} \widehat{\eta}_{\sigma} \nabla_{z_{i}} \widehat{\zeta}-p_{1} p_{\sigma \widehat{\eta}} \widehat{\eta}_{\sigma} \nabla_{z_{i}} \widehat{\zeta}+p_{\sigma \widehat{\eta}} k_{3 i}+\mu p_{\sigma \widehat{\eta}}\left(\widehat{\nabla}^{2} \widetilde{u}_{i}-\widehat{\nabla}_{i} \widehat{\nabla} \cdot \widetilde{u}\right) \\
& \quad+(\mu+\nu) p_{\sigma \widehat{\eta}}\left(\widehat{\nabla}_{i}-\nabla_{z_{i}}\right) \widehat{\nabla} \cdot \widetilde{u}+\frac{\mu+\nu}{\widehat{\eta}} p_{\sigma \widehat{\eta}} \nabla_{z_{i}}(\widehat{\eta} \widehat{u} \cdot \widehat{\nabla} \widehat{\zeta}) \\
& \quad-p_{\sigma \widehat{\eta}} \widehat{\eta} \widetilde{u}_{i t}-\frac{\mu+\nu}{\widehat{\eta}} p_{\sigma \widehat{\eta}} \nabla_{z_{i}} \widehat{\eta} \widehat{\nabla} \cdot \widetilde{u}, \quad i=1,2,3 .
\end{align*}
$$

Multiplying the normal component of (2.38) by $\eta_{\sigma n} J$ and integrating over $\widehat{\Omega}$ we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\widehat{\Omega}} \frac{p_{\sigma \widehat{\eta}}}{\widehat{\eta}} \widetilde{\eta}_{\sigma n}^{2} J d z+c_{0}\left\|\widetilde{\eta}_{\sigma n}\right\|_{0, \widehat{\Omega}}^{2} \tag{2.39}\\
\leq & (\varepsilon+c d)\left\|\widetilde{u}_{n n}\right\|_{0, \widehat{\Omega}}^{2}+\varepsilon\left\|\widetilde{\eta}_{\sigma n}\right\|_{0, \widehat{\Omega}}^{2} \\
& +c\left(\left\|\widetilde{u}_{z \tau}\right\|_{0, \widehat{\Omega}}^{2}+\|\widehat{u}\|_{1, \widehat{\Omega}}^{2}+\left\|\widetilde{u}_{t}\right\|_{0, \widehat{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}\right)+c X_{2}^{2}(\widehat{\Omega})\left(1+X_{2}(\widehat{\Omega})\right)
\end{align*}
$$

where d is from formula (2.25).
Now, we write $(2.26)_{1}$ in the form

$$
\begin{equation*}
\widehat{\eta} \widetilde{u}_{i t}-\mu \Delta \widetilde{u}_{i}-\nu \nabla_{z_{i}} \nabla \cdot \widetilde{u}=\widehat{\nabla}_{i} \widetilde{p}_{\sigma}+k_{3 i}-k_{6 i}, \tag{2.40}
\end{equation*}
$$

where $k_{6 i}=\left(\mu \Delta \widetilde{u}_{i}+\nu \nabla_{z_{i}} \nabla \cdot \widetilde{u}\right)-\left(\mu \widehat{\nabla}^{2} \widetilde{u}_{i}+\nu \widehat{\nabla}_{i} \widehat{\nabla} \cdot \widetilde{u}\right)$.
Multiplying the third component of (2.40) by $\widetilde{u}_{3 n n} J$ and integrating over $\widehat{\Omega}$ yields

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\widehat{\Omega}} \widehat{\eta} \widetilde{u}_{3 n}^{2} J d z+c_{0}\left\|\widetilde{u}_{3 n n}\right\|_{0, \widehat{\Omega}}^{2} \tag{2.41}\\
& \quad \leq(\varepsilon+c d)\left\|\widetilde{u}_{n n}\right\|_{0, \widehat{\Omega}}^{2}+c\left(\left\|\widetilde{u}_{z \tau}\right\|_{0, \widehat{\Omega}}^{2}+\|\widehat{u}\|_{1, \widehat{\Omega}}^{2}\right. \\
& \left.\quad+\left\|\widetilde{u}_{t}\right\|_{1, \widehat{\Omega}}^{2}+\left\|\widetilde{\eta}_{\sigma n}\right\|_{0, \widehat{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}\right)+c X_{2}^{2}(\widehat{\Omega})\left(1+X_{2}(\widehat{\Omega})\right)
\end{align*}
$$

For an interior subdomain the following estimate is obtained in the same way as (2.37):

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\widetilde{\Omega}}\left(\eta \widetilde{u}_{\xi}^{2}+\frac{p_{\sigma \eta}}{\eta} \widetilde{\eta}_{\sigma \xi}^{2}\right) A d \xi+c_{0}\|\widetilde{u}\|_{2, \widetilde{\Omega}}^{2} \tag{2.42}\\
& \leq \varepsilon\left(\left\|\widetilde{\eta}_{\sigma \xi}\right\|_{0, \widetilde{\Omega}}^{2}+\left\|\widetilde{u}_{\xi \xi}\right\|_{0, \widetilde{\Omega}}^{2}\right) \\
&+c\left(\|u\|_{1, \widetilde{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \Omega_{t}}^{2}\right)+c X_{2}^{2}(\widetilde{\Omega})\left(1+X_{2}(\widetilde{\Omega})\right)
\end{align*}
$$

where

$$
\begin{equation*}
X_{2}(\widetilde{\Omega})=|u|_{2,0, \widetilde{\Omega}}^{2}+\left|\eta_{\sigma}\right|_{2,0, \widetilde{\Omega}}^{2}+\int_{0}^{t}\|u\|_{3, \widetilde{\Omega}}^{2} d t^{\prime} \tag{2.43}
\end{equation*}
$$

and A is the Jacobian of the transformation $x=x(\xi)$.
Finally, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \eta u_{\xi}^{2} A d \xi \leq c\left(\|u\|_{1, \widetilde{\Omega}}^{2}+\left\|u_{t}\right\|_{1, \widetilde{\Omega}}^{2}\right) \tag{2.44}
\end{equation*}
$$

where we have used $(2.23)_{1}$.
Going back to the old variables ξ in estimates (2.37), (2.39), (2.41) and summing them and (2.42) over all neighbourhoods of the partition of unity, using (2.29) and (2.44), assuming that ε and d are sufficiently small and passing to the variables x we obtain (2.27).

Lemma 2.6. Let $\left(v, \varrho_{\sigma}\right)$ be a sufficiently smooth solution of (2.3). Then

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}}\left(\varrho v_{x t}^{2}+\frac{p_{\sigma \varrho}}{\varrho} \varrho_{x t}^{2}\right) d x+c_{0}\left(\left\|v_{t}\right\|_{2, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t}\right\|_{1, \Omega_{t}}^{2}\right) \\
& \quad \leq c\left(\|v\|_{1, \Omega_{t}}^{2}+\left\|v_{t}\right\|_{1, \Omega_{t}}^{2}+\left\|v_{t t}\right\|_{1, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t}\right\|_{0, \Omega_{t}}^{2}+\left\|p_{\sigma}\right\|_{0, \Omega_{t}}^{2}\right) \\
& \quad+c X_{2} Y_{2}\left(1+X_{2}^{2}\right)
\end{aligned}
$$

where X_{2} is given by (2.15) and Y_{2} is given by (2.22).
Proof. Differentiating problem (2.28) with respect to t we get the following elliptic problem:

$$
\begin{array}{ll}
\mu \nabla_{u}^{2} u_{t}+\nu \nabla_{u} \nabla_{u} \cdot u_{t}-p_{\sigma \eta} \nabla_{u} \eta_{\sigma t}=\eta_{\sigma t} u_{t}+\eta u_{t t}-\nu\left(\nabla_{u} \nabla_{u}\right)_{, t} \cdot u & \\
\quad-\mu\left(\nabla_{u}^{2}\right)_{, t} u+p_{\sigma \eta \eta} \eta_{\sigma t} \nabla_{u} \eta_{\sigma}+p_{\sigma \eta}\left(\nabla_{u}\right)_{, t} \eta_{\sigma} \equiv K_{1} & \text { in } \Omega, \\
\operatorname{div}_{u} u_{t}=\operatorname{div}_{u} u_{t} & \text { in } \Omega, \\
\mathbb{T}_{u}\left(u_{t}, p_{\sigma t}\right) \bar{n}_{u}=-\left(\mathbb{T}_{u}\right)_{, t}\left(u, p_{\sigma}\right) \bar{n}_{u}-\mathbb{T}_{u}\left(u, p_{\sigma}\right)\left(\bar{n}_{u}\right)_{, t} \equiv K_{2} & \text { on } S .
\end{array}
$$

By the Agmon-Douglis-Nirenberg theory (see [1]) we have the estimate

$$
\left\|u_{t}\right\|_{2, \Omega}^{2}+\left\|\eta_{\sigma t}\right\|_{1, \Omega}^{2} \leq c\left(\left\|K_{1}\right\|_{0, \Omega}^{2}+\left\|K_{2}\right\|_{1 / 2, S}^{2}+\left\|\operatorname{div}_{u} u_{t}\right\|_{1, \Omega}^{2}\right)
$$

where

$$
\begin{aligned}
\left\|K_{1}\right\|_{0, \Omega}^{2}+\left\|K_{2}\right\|_{1 / 2, S}^{2} \leq & c\left(\left\|\eta_{\sigma \zeta}\right\|_{0, \Omega}^{2}+\left\|u_{t t}\right\|_{0, \Omega}^{2}+\left\|p_{\sigma}\right\|_{0, \Omega}^{2}\right) \\
& +X_{2}(\Omega) Y_{2}(\Omega)\left(1+X_{2}^{2}(\Omega)\right)
\end{aligned}
$$

with $X_{2}(\Omega)$ given by (2.30) and

$$
\begin{equation*}
Y_{2}(\Omega)=|u|_{3,1, \Omega}^{2}+\left\|\eta_{\sigma}\right\|_{2, \Omega}^{2}+\left\|\eta_{\sigma t}\right\|_{2, \Omega}^{2}+\left\|\eta_{\sigma t t}\right\|_{1, \Omega}^{2} \tag{2.45}
\end{equation*}
$$

The remaining part of the proof is analogous to that in Lemma 2.5.
LEMMA 2.7. Let $\left(v, \varrho_{\sigma}\right)$ be a sufficiently smooth solution of (2.3). Then

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}}\left(\varrho v_{x x}^{2}+\right. & \left.\frac{p_{\sigma \varrho}}{\varrho} \varrho_{\sigma x x}^{2}\right) d x+c_{0}\left(\|v\|_{3, \Omega_{t}}^{2}+\left\|\varrho_{\sigma x}\right\|_{1, \Omega_{t}}^{2}\right) \tag{2.46}\\
\leq & c\left(\|v\|_{2, \Omega_{t}}^{2}+\left\|v_{t}\right\|_{1, \Omega_{t}}^{2}+\left\|\varrho_{\sigma x}\right\|_{0, \Omega_{t}}^{2}+\left\|p_{\sigma}\right\|_{0, \Omega_{t}}^{2}\right) \\
& +\varepsilon\left\|v_{t}\right\|_{2, \Omega_{t}}^{2}+c X_{2} Y_{2}\left(1+X_{2}^{2}\right)
\end{align*}
$$

where X_{2} and Y_{2} are given by (2.15) and (2.22), respectively, and

$$
v_{x x}^{2}=\sum_{i, j, k=1}^{3} v_{i x_{j} x_{k}}^{2}, \quad \varrho_{\sigma x x}^{2}=\sum_{j, k=1}^{3} \varrho_{\sigma x_{j} x_{k}}^{2}
$$

Proof. First, we consider problem (2.28). By the Agmon-DouglisNirenberg theory (see [1]) we have

$$
\begin{align*}
\|u\|_{3, \Omega}^{2}+\left\|\eta_{\sigma}\right\|_{2, \Omega}^{2} \leq & c\left(\left\|u_{t}\right\|_{1, \Omega}^{2}+\|\operatorname{div} u\|_{2, \Omega}^{2}\right) \tag{2.47}\\
& +c X_{2}(\Omega) Y_{2}(\Omega)\left(1+X_{2}^{2}(\Omega)\right)
\end{align*}
$$

where $X_{2}(\Omega)$ and $Y_{2}(\Omega)$ are given by (2.30) and (2.45), respectively. Thus, to obtain (2.46) we have to estimate $\|\operatorname{div} u\|_{2, \Omega}^{2}$ and $\frac{1}{2} \frac{d}{d t} \int_{\Omega_{t}}\left(\varrho v_{x x}^{2}+\frac{p_{\sigma \varrho}}{\varrho} \varrho_{\sigma x x}^{2}\right) d x$. To do this, consider first boundary subdomains. Differentiate $(2.26)_{1}$ twice with respect to τ, multiply the result by $\widetilde{u}_{\tau \tau} J$ and integrate over $\widehat{\Omega}$. Using the Korn inequality, the continuity equation $(2.26)_{2}$, and the boundary condition $(2.26)_{3}$ we get

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\widehat{\Omega}}\left(\widehat{\eta} \widetilde{u}_{\tau \tau}^{2}+\frac{p_{\sigma \widehat{\eta}}^{\widehat{\eta}}}{\widehat{\eta}} \widetilde{\sigma}_{\sigma \tau \tau}^{2}\right) J d z+c_{0}\left\|\widetilde{u}_{\tau \tau}\right\|_{1, \widehat{\Omega}}^{2} \tag{2.48}\\
& \leq \varepsilon\left(\left\|\widehat{\eta}_{\sigma \tau \tau}\right\|_{0, \widehat{\Omega}}^{2}+\left\|\widetilde{u}_{\tau \tau}\right\|_{1, \widehat{\Omega}}^{2}\right)+c\left(\|\widehat{u}\|_{2, \widehat{\Omega}}^{2}+\left\|\widehat{\eta}_{\sigma z}\right\|_{0, \widehat{\Omega}}^{2}\right) \\
&+c X_{2}(\widehat{\Omega}) Y_{2}(\widehat{\Omega})\left(1+X_{2}^{2}(\widehat{\Omega})\right)
\end{align*}
$$

where $X_{2}(\widehat{\Omega})$ is given by (2.32) and

$$
Y_{2}(\widehat{\Omega})=|\widehat{u}|_{3,1, \widehat{\Omega}}^{2}+\left\|\widehat{\eta}_{\sigma}\right\|_{2, \widehat{\Omega}}^{2}+\left\|\widehat{\eta}_{\sigma t}\right\|_{2, \widehat{\Omega}}^{2}+\left\|\widehat{\eta}_{\sigma t t}\right\|_{1, \widehat{\Omega}}^{2}
$$

In the same way we obtain the following estimate in an interior subdomain:

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\widetilde{\Omega}}\left(\eta \widetilde{u}_{\xi \xi}^{2}+\frac{p_{\sigma \eta}}{\eta} \widetilde{\eta}_{\sigma \xi \xi}^{2}\right) A d \xi+c_{0}\|\widetilde{u}\|_{3, \widetilde{\Omega}}^{2} \tag{2.49}\\
& \leq \varepsilon\left(\left\|\widetilde{\eta}_{\sigma \xi \xi}\right\|_{0, \widetilde{\Omega}}^{2}+\left\|\widetilde{u}_{\xi \xi \xi}\right\|_{0, \widetilde{\Omega}}^{2}\right) \\
& \quad+c\left(\|u\|_{2, \widetilde{\Omega}}^{2}+\left\|\eta_{\sigma \xi}\right\|_{0, \widehat{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \widetilde{\Omega}}^{2}\right)+c X_{2}(\widetilde{\Omega}) Y_{2}(\widetilde{\Omega})\left(1+X_{2}^{2}(\widetilde{\Omega})\right)
\end{align*}
$$

where $X_{2}(\widetilde{\Omega})$ is given by (2.43) and

$$
Y_{2}(\widetilde{\Omega})=|u|_{3,1, \widetilde{\Omega}}^{2}+\left\|\eta_{\sigma}\right\|_{2, \widetilde{\Omega}}^{2}+\left\|\eta_{\sigma t}\right\|_{2, \widetilde{\Omega}}^{2}+\left\|\eta_{\sigma t t}\right\|_{1, \widetilde{\Omega}}^{2}
$$

Now, differentiate the third component of (2.38) in τ, multiply the result by $\widetilde{\eta}_{\sigma n \tau} J$ and integrate over $\widehat{\Omega}$ to get

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\widehat{\Omega}} \frac{p_{\sigma \widehat{\eta}}}{\widehat{\eta}} \widetilde{\eta}_{\sigma n \tau}^{2} J d z+\int_{\widehat{\Omega}} p_{\sigma \widehat{\eta}}^{2} \widetilde{\eta}_{\sigma n \tau}^{2} J d z \tag{2.50}\\
& \quad \leq \varepsilon\left\|\widetilde{\eta}_{\sigma n \tau}\right\|_{0, \widehat{\Omega}}^{2}+c\left(\|\widehat{u}\|_{2, \widehat{\Omega}}^{2}+\left\|\widehat{u}_{t}\right\|_{1, \widehat{\Omega}}^{2}+\left\|\widehat{\eta}_{\sigma z}\right\|_{0, \widehat{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}\right) \\
& \quad+c d\|\widetilde{u}\|_{3, \widehat{\Omega}}^{2}+c\left\|\widetilde{u}_{z \tau \tau}\right\|_{0, \widehat{\Omega}}^{2}+c X_{2}(\widehat{\Omega}) Y_{2}(\widehat{\Omega})\left(1+X_{2}^{2}(\widehat{\Omega})\right)
\end{align*}
$$

where d is from formula (2.25).
In the same way we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\widehat{\Omega}} \frac{p_{\sigma \widehat{\eta}}}{\widehat{\eta}} \widetilde{\eta}_{\sigma n n}^{2} J d z+\int_{\widehat{\Omega}} p_{\sigma \eta}^{2} \widetilde{\eta}_{\sigma n n}^{2} J d z \tag{2.51}\\
& \quad \leq \varepsilon\left\|\widetilde{\eta}_{\sigma n n}\right\|_{0, \widehat{\Omega}}^{2}+c\left(\|\widehat{u}\|_{2, \widehat{\Omega}}^{2}+\left\|\widehat{u}_{t}\right\|_{1, \widehat{\Omega}}^{2}+\left\|\widehat{\eta}_{\sigma z}\right\|_{0, \widehat{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}\right) \\
& \quad+c d\|\widetilde{u}\|_{3, \widehat{\Omega}}^{2}+c\left\|\widetilde{u}_{z n \tau}\right\|_{0, \widehat{\Omega}}^{2}+c X_{2}(\widehat{\Omega}) Y_{2}(\widehat{\Omega})\left(1+X_{2}^{2}(\widehat{\Omega})\right)
\end{align*}
$$

Next, differentiating the third component of (2.40) in τ, multiplying by $\widetilde{u}_{3 n n \tau} J$ and integrating over $\widehat{\Omega}$ we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\widehat{\Omega}} \widehat{\eta} \widetilde{u}_{3 n \tau}^{2} J d z+c_{0}\left\|\widetilde{u}_{3 n n \tau}\right\|_{0, \widehat{\Omega}}^{2} \tag{2.52}\\
& \quad \leq \varepsilon\left\|\widetilde{u}_{3 n n \tau}\right\|_{0, \widehat{\Omega}}^{2}+\varepsilon\left\|\widetilde{u}_{t}\right\|_{2, \widehat{\Omega}}^{2}+c\left(\|\widetilde{u}\|_{2, \widehat{\Omega}}^{2}+\left\|\widetilde{u}_{t}\right\|_{1, \widetilde{\Omega}}^{2}+\left\|\widetilde{u}_{z \tau \tau}\right\|_{0, \widehat{\Omega}}^{2}\right. \\
& \left.\quad+\left\|\widehat{\eta}_{\sigma n \tau}\right\|_{0, \widehat{\Omega}}^{2}+\left\|\widehat{\eta}_{\sigma z}\right\|_{0, \widehat{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}\right)+c d\|\widehat{u}\|_{3, \widehat{\Omega}}^{2} \\
& \quad+c X_{2}(\widehat{\Omega}) Y_{2}(\widehat{\Omega})\left(1+X_{2}^{2}(\widehat{\Omega})\right) .
\end{align*}
$$

In order to estimate $\left\|(\operatorname{div} \widetilde{u})_{, n n}\right\|_{0, \widehat{\Omega}}^{2}$ rewrite equation $(2.26)_{1}$ in the form

$$
\begin{align*}
(\nu+\mu) \nabla_{z_{i}} \operatorname{div} \widetilde{u}= & -\mu\left(\Delta \widetilde{u}_{i}-\nabla_{z_{i}} \operatorname{div} \widetilde{u}\right)+\widehat{\eta} \widetilde{u}_{i t}-k_{3 i} \tag{2.53}\\
& +\left(\mu \Delta \widetilde{u}_{i}+\nu \nabla_{z_{i}} \operatorname{div} \widetilde{u}-\mu \widehat{\nabla}^{2} \widetilde{u}_{i}-\nu \widehat{\nabla}_{i} \widehat{\nabla} \cdot \widetilde{u}\right) \\
& +p_{1} \widehat{\eta}_{\sigma} \widehat{\nabla}_{i} \widehat{\zeta}+\widehat{\zeta} p_{\sigma \widehat{\eta}} \widehat{\nabla}_{i} \widehat{\eta}_{\sigma}, \quad i=1,2,3 .
\end{align*}
$$

Differentiating the third component of (2.53) with respect to n gives
$(2.54)\left\|(\operatorname{div} \widetilde{u})_{, n n}\right\|_{0, \widehat{\Omega}}^{2} \leq c d\left\|\widetilde{u}_{n n n}\right\|_{0, \widehat{\Omega}}^{2}+c\left(\left\|\widetilde{u}_{\tau}\right\|_{2, \widehat{\Omega}}^{2}+\|\widehat{u}\|_{2, \widehat{\Omega}}^{2}+\left\|\widetilde{u}_{t}\right\|_{1, \widehat{\Omega}}^{2}\right.$

$$
\left.+\left\|\widehat{\eta}_{\sigma n}\right\|_{1, \widehat{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}\right)+c X_{2}(\widehat{\Omega}) Y_{2}(\widehat{\Omega})
$$

To obtain an estimate for $\left\|\widetilde{u}_{\tau}\right\|_{2, \widehat{\Omega}}^{2}$ consider the following elliptic problem:

$$
\begin{align*}
& \mu \widehat{\nabla}^{2} \widetilde{u}+\nu \widehat{\nabla} \widehat{\nabla} \cdot \widetilde{u}-p_{\sigma \eta} \widehat{\eta} \widehat{\eta}_{\sigma}= \widehat{\eta} \widetilde{u}_{t}+\left(p_{1}-p_{\sigma \hat{\eta}}\right) \widehat{\eta_{\sigma}} \widehat{\nabla} \widehat{\zeta} \tag{2.55}\\
&+\widehat{\nabla} \cdot \widehat{\mathbb{B}}(\widehat{u}, \widehat{\zeta})+\widehat{\mathbb{T}}\left(\widehat{u}, p_{\sigma}\right) \cdot \widehat{\nabla} \widehat{\zeta} \\
& \widehat{\nabla} \cdot \widetilde{u}=\widehat{\nabla} \cdot \widetilde{u}, \\
& \widehat{\mathbb{T}}\left(\widetilde{u}, p_{\sigma}\right) \widehat{n}=k_{5},
\end{align*}
$$

where $\widehat{\nabla} \cdot \widehat{\mathbb{B}}(\widehat{u}, \widehat{\zeta})=\left\{\widehat{\nabla}_{j} \widehat{\mathbb{B}}_{i j}(\widehat{u}, \widehat{\zeta})\right\}_{i=1,2,3}, \widehat{\mathbb{T}}\left(\widehat{u}, p_{\sigma}\right) \cdot \widehat{\nabla} \widehat{\zeta}=\left\{\widehat{T}_{i j}\left(\widehat{u}, p_{\sigma}\right) \widehat{\nabla}_{j} \widehat{\zeta}\right\}_{i=1,2,3}$.
Differentiating (2.55) with respect to τ and next using the Agmon-Douglis-Nirenberg theory we get

$$
\begin{align*}
\left\|\widetilde{u}_{\tau}\right\|_{2, \widehat{\Omega}}^{2}+ & \left\|\widetilde{\eta}_{\sigma \tau}\right\|_{1, \widehat{\Omega}}^{2} \tag{2.56}\\
\leq & c\left(\left\|\widetilde{u}_{\tau \tau}\right\|_{1, \widehat{\Omega}}^{2}+\left\|\widetilde{u}_{3 n n \tau}\right\|_{0, \widehat{\Omega}}^{2}+\|\widehat{u}\|_{2, \widehat{\Omega}}^{2}+\left\|\widetilde{u}_{t}\right\|_{1, \widehat{\Omega}}^{2}\right. \\
& \left.+\left\|\widehat{\eta}_{\sigma z}\right\|_{0, \widehat{\Omega}}^{2}+\left\|p_{\sigma}\right\|_{0, \widehat{\Omega}}^{2}\right)+c X_{2}(\widehat{\Omega}) Y_{2}(\widehat{\Omega})\left(1+X_{2}(\widehat{\Omega})\right)
\end{align*}
$$

Finally, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \eta u_{\xi \xi}^{2} A d \xi \leq c\|u\|_{2, \Omega}^{2}+\varepsilon\left\|u_{t}\right\|_{2, \Omega}^{2} \tag{2.57}
\end{equation*}
$$

Going back to the old variables ξ in estimates (2.48), (2.50)-(2.52), (2.54), (2.56) and summing them and (2.49) over all neighbourhoods of the partition of unity, using (2.47) and (2.57), assuming that ε and d are sufficiently small and passing to the variables x we obtain (2.46).

Lemmas 2.1-2.7 and the estimates

$$
\left\|\varrho_{\sigma t t}\right\|_{1, \Omega_{t}}^{2} \leq c\left\|v_{t}\right\|_{2, \Omega_{t}}^{2}+c\left(\left\|\varrho_{\sigma t}\right\|_{2, \Omega_{t}}^{2}\|v\|_{2, \Omega_{t}}^{2}+\left\|\varrho_{\sigma}\right\|_{2, \Omega_{t}}^{2}\left\|v_{t}\right\|_{2, \Omega_{t}}^{2}\right)
$$

and

$$
\left\|\varrho_{\sigma t}\right\|_{2, \Omega_{t}}^{2} \leq c\|v\|_{3, \Omega_{t}}^{2}+c X_{2} Y_{2}\left(1+X_{2}\right)
$$

(which follow from equations $(2.3)_{2}$ and $(2.23)_{2}$, respectively) imply the following theorem.

THEOREM 2.8. Let $\nu>\frac{1}{3} \mu>0$ and let relations (2.6) and (2.7) be satisfied. Then for a sufficiently smooth solution (v, ϱ_{σ}) of problem (2.3) we have
(2.58) $\frac{d \bar{\phi}}{d t}+c_{0} \Phi \leq c_{1}\left(\phi+\int_{0}^{t}\|v\|_{3, \Omega_{t^{\prime}}}^{2} d t^{\prime}\right)$

$$
\cdot\left[1+\left(\phi+\int_{0}^{t}\|v\|_{3, \Omega_{t^{\prime}}}^{2} d t^{\prime}\right)^{2}\right] \Phi+c_{2} \Psi \quad \text { for } t \leq T
$$

where

$$
\begin{align*}
\bar{\phi}(t)= & \int_{\Omega_{t}} \varrho \sum_{0 \leq|\alpha|+i \leq 2}\left|D_{x}^{\alpha} \partial_{t}^{i} v\right|^{2} d x+\int_{\Omega_{t}} \frac{p_{1}}{\varrho} \varrho_{\sigma}^{2} d x \\
& +\int_{\Omega_{t}} \frac{p_{\sigma \varrho}}{\varrho} \sum_{1 \leq|\alpha|+i \leq 2}\left|D_{x}^{\alpha} \partial_{t}^{i} \varrho_{\sigma}\right|^{2} d x \tag{2.59}\\
\phi(t)= & |v|_{2,0, \Omega_{t}}^{2}+\left|\varrho_{\sigma}\right|_{2,0, \Omega_{t}}^{2}, \\
\Phi(t)= & |v|_{3,1, \Omega_{t}}^{2}+\left\|\varrho_{\sigma}\right\|_{2, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t}\right\|_{2, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t t}\right\|_{1, \Omega_{t}}^{2}, \\
\Psi(t)= & \left\|p_{\sigma}\right\|_{0, \Omega_{t}}^{2},
\end{align*}
$$

$c_{i}(i=1,2)$ are positive constants depending on $\varrho_{*}, \varrho^{*}, \mu, \nu, \int_{0}^{t}\|v\|_{3, \Omega_{t^{\prime}}}^{2} d t^{\prime}$, $\|S\|_{5 / 2}, T$ and on the constants of imbedding theorems and Korn inequalities; $c_{0}<1$ is a positive constant depending on μ and ν; and ϱ_{σ} and p_{σ} are given by (2.2).
3. Global existence. Assume (2.1) and rewrite problem (1.1) in Lagrangian coordinates as follows (see problem (2.23)):

$$
\begin{array}{ll}
\eta u_{t}-\mu \nabla_{u}^{2} u-\nu \nabla_{u} \nabla_{u} \cdot u+\nabla p=0 & \text { in } \Omega^{T} \\
\eta_{t}+\eta \nabla_{u} \cdot u=0 & \text { in } \Omega^{T} \\
\mathbb{T}_{u}(u, p) \bar{n}_{u}=-p_{0} \bar{n}_{u} & \text { on } S^{T}, \tag{3.1}\\
\left.u\right|_{t=0}=v_{0},\left.\quad \eta\right|_{t=0}=\varrho_{0}, & \text { in } \Omega .
\end{array}
$$

The local existence of a solution of problem (3.1) can be proved by the method of successive approximations (see [15]), taking as a zero step function the solution $u^{0} \in \mathcal{A}_{T, \Omega}\left(\mathcal{A}_{T, \Omega}\right.$ is given by (1.6)) of the following parabolic problem:

$$
\begin{array}{ll}
u_{t}^{0}-\operatorname{div} \mathbb{D}\left(u^{0}\right)=0 & \text { in } \Omega^{T} \\
\mathbb{D}\left(u^{0}\right) \bar{n}_{0}=\left(p\left(\varrho_{0}\right)-p_{0}\right) \bar{n}_{0} & \text { on } S^{T} \tag{3.2}\\
\left.u^{0}\right|_{t=0}=v_{0} & \text { in } \Omega,
\end{array}
$$

where $\mathbb{D}\left(u^{0}\right)=\left\{\mu\left(u_{i \xi_{j}}^{0}+u_{j \xi_{i}}^{0}\right)+(\nu-\mu) \delta_{i j} \operatorname{div} u^{0}\right\}_{i, j=1,2,3}$ and \bar{n}_{0} is the unit outward vector normal to S.

Assume that

$$
\begin{equation*}
l>0 \text { is a constant such that } \varrho_{e}-l>0 \text { and } \varrho_{1}<\varrho_{0}<\varrho_{2}, \tag{3.3}
\end{equation*}
$$

where $\varrho_{1}=\varrho_{e}-l, \varrho_{2}=\varrho_{e}+l$, and ϱ_{e} is given in Definition 1.1.
The function u^{0} satisfies the estimate (see [15], estimate (4.3))
(3.4) $\left\|u^{0}\right\|_{\mathcal{A}_{T, \Omega}}^{2}$

$$
\begin{aligned}
& \leq C_{1}(T)\left(\left\|\left(p\left(\varrho_{0}\right)-p_{0}\right) \bar{n}_{0}\right\|_{3 / 2, S}^{2}+\left\|v_{0}\right\|_{2, \Omega}^{2}+\left\|u_{t}^{0}(0)\right\|_{1, \Omega}^{2}+\left\|u_{t t}^{0}(0)\right\|_{0, \Omega}^{2}\right) \\
& <C_{1}(T)\left(\widetilde{c} \bar{\phi}(0)+\left\|v_{0}\right\|_{2, \Omega}^{2}+\left\|u_{t}^{0}(0)\right\|_{1, \Omega}^{2}+\left\|u_{t t}^{0}(0)\right\|_{0, \Omega}^{2}\right) \equiv A_{0}
\end{aligned}
$$

where $C_{1}(T)$ is a positive constant; $\widetilde{c}>0$ is a constant depending on ϱ_{1}, ϱ_{2} and on the volume and shape of $\Omega ; \bar{\phi}$ is defined in (2.59); $u_{t}^{0}(0), u_{t t}^{0}(0)$ are calculated from (3.2); and to obtain A_{0} in (3.4) we have used (2.4).

Next, define

$$
\begin{align*}
H_{0} & =\frac{1}{\varrho_{1}}+\left\|\varrho_{0}\right\|_{2, \Omega}^{2}+\left\|v_{0}\right\|_{2, \Omega}^{2}+\left\|u_{t}(0)\right\|_{1, \Omega}^{2}+\left\|u_{t t}(0)\right\|_{0, \Omega}^{2} \tag{3.5}\\
& \leq \frac{1}{\varrho_{1}}+\bar{c} \bar{\phi}(0)+|\Omega| \varrho_{e}^{2}<\widetilde{H}_{0},
\end{align*}
$$

where $u_{t}(0), u_{t t}(0)$ are calculated from $(3.1)_{1} ; \bar{c}>0$ is a constant depending on ϱ_{1}, ϱ_{2}; and $\widetilde{H}_{0}>0$ is a constant. Then the following theorem holds.

Theorem 3.1. (see [15, Theorem 4.2]). Assume that $\varrho_{0}, v_{0} \in H^{2}(\Omega)$, $\varrho_{0}>0, u_{t}(0), u_{t}^{0}(0) \in H^{1}(\Omega), u_{t t}(0), u_{t t}^{0}(0) \in L_{2}(\Omega)\left(\right.$ where $u_{t}(0), u_{t t}(0)$ are calculated from (3.1)), $S \in H^{5 / 2}$, and $p \in C^{3}\left(\mathbb{R}_{+}^{2}\right)$. Let assumption (3.3) and the following compatibility conditions be satisfied:

$$
\begin{equation*}
\mathbb{D}\left(v_{0}\right) \bar{n}_{0}=\left(p\left(\varrho_{0}\right)-p_{0}\right) \bar{n}_{0} \quad \text { on } S . \tag{3.6}
\end{equation*}
$$

Assume that $A_{0}<A$, where $A>0$ is a constant depending also on \widetilde{H}_{0} (i.e. there exists a positive continuous increasing function $F=F\left(\widetilde{H}_{0}\right)$ satisfying $\left.F\left(\widetilde{H}_{0}\right)<A\right)$. Then there exists $T_{*}>0$ (depending on A) such that for $T \leq T_{*}$ there exists a unique solution of (1.1) such that $u \in \mathcal{A}_{T, \Omega}, \eta \in \mathcal{B}_{T, \Omega}$ and

$$
\begin{align*}
\|u\|_{\mathcal{A}_{T, \Omega}}^{2} & \leq A \tag{3.7}\\
\|\eta\|_{\mathcal{B}_{T, \Omega}}^{2} & \leq \psi_{1}(A) \tag{3.8}
\end{align*}
$$

where ψ_{1} is a positive continuous increasing function of $A\left(\mathcal{A}_{T, \Omega}\right.$ and $\mathcal{B}_{T, \Omega}$ are given by (1.6) and (1.5), respectively).

Now, we shall derive an estimate for the local solution $\left(u, \eta_{\sigma}\right)$ of problem (2.23). Using (3.7) and (3.8) and the interpolation inequality we have

$$
\begin{align*}
&\left\|\nabla p_{\sigma}\right\|_{1,2,2, \Omega_{T}}^{2}+\left\|\nabla p_{\sigma t}\right\|_{0, \Omega_{T}}^{2}+\varepsilon_{*}\left\|\nabla p_{\sigma t t}\right\|_{0, \Omega_{T}}^{2} \tag{3.9}\\
& \quad+\sup _{t}\left\|\nabla p_{\sigma}\right\|_{0, \Omega}^{2}+\left\|p_{\sigma} \bar{n}_{u}\right\|_{3 / 2,2,2, S^{T}}^{2}+\left\|\left(p_{\sigma} \bar{n}_{u}\right)_{, t}\right\|_{1 / 2,2,2, S^{T}}^{2} \\
&+\varepsilon_{*}\left\|\left(p_{\sigma} \bar{n}_{u}\right)_{, t t}\right\|_{0, S^{T}}^{2}+\sup _{t}\left\|p_{\sigma} \bar{n}_{u}\right\|_{0, S}^{2} \\
& \leq \psi^{\prime}(A, T)\left(\left\|\varrho_{\sigma 0}\right\|_{2, \Omega}^{2}+\left\|v_{0}\right\|_{2, \Omega}^{2}+\left\|u_{t}(0)\right\|_{1, \Omega}^{2}\right) \\
&+(\varepsilon+T) \psi^{\prime \prime}(A, T)\|u\|_{\mathcal{A}_{T, \Omega}}^{2}
\end{align*}
$$

where ψ^{\prime} and $\psi^{\prime \prime}$ are positive continuous increasing functions of their arguments, and $\varepsilon_{*}, \varepsilon \in(0,1)$ are sufficiently small constants.

By estimate (3.9), Lemmas 3.5 and 2.3 of [15] and by Theorem 3.1 the local solution $\left(u, \eta_{\sigma}\right)$ of problem (2.23) satisfies, for sufficiently small ε and T,

$$
\begin{align*}
& \|u\|_{\mathcal{A}_{T, \Omega}}^{2}+\left\|\eta_{\sigma}\right\|_{\mathcal{B}_{T, \Omega}}^{2} \tag{3.10}\\
& \quad \leq \psi_{2}(A, T)\left(\left\|\varrho_{\sigma 0}\right\|_{2, \Omega}^{2}+\left\|v_{0}\right\|_{2, \Omega}^{2}+\left\|u_{t}(0)\right\|_{1, \Omega}^{2}+\left\|u_{t t}(0)\right\|_{0, \Omega}^{2}\right)
\end{align*}
$$

where ψ_{2} is a positive continuous function.
Now, let $\bar{\phi}(t), \phi(t)$ and $\Phi(t)$ be defined by (2.59). Introduce the spaces

$$
\begin{aligned}
\mathfrak{N}(t) & =\left\{\left(v, \varrho_{\sigma}\right): \phi(t)<\infty\right\} \\
\mathfrak{M}(t) & =\left\{\left(v, \varrho_{\sigma}\right): \phi(t)+\int_{0}^{t} \Phi\left(t^{\prime}\right) d t^{\prime}<\infty\right\}
\end{aligned}
$$

Notice that $\left(v, \varrho_{\sigma}\right) \in \mathfrak{N}(t)$ iff $\bar{\phi}(t)<\infty$, and $\left(v, \varrho_{\sigma}\right) \in \mathfrak{M}(t)$ iff $\bar{\phi}(t)+$ $\int_{0}^{t} \Phi\left(t^{\prime}\right) d t^{\prime} \leq \infty$. Moreover,

$$
\begin{equation*}
c^{\prime} \phi(t) \leq \bar{\phi}(t) \leq c^{\prime \prime} \phi(t) \tag{3.11}
\end{equation*}
$$

where $c^{\prime}, c^{\prime \prime}>0$ are constants depending on ϱ_{*}, ϱ^{*} given by (2.5).
From inequality (3.10) and from the definitions of $\mathfrak{N}(t)$ and $\mathfrak{M}(t)$ it follows that the local solution satisfies the estimate

$$
\begin{equation*}
\phi(t)+\int_{0}^{t} \Phi\left(t^{\prime}\right) d t^{\prime} \leq c_{3} \bar{\phi}(0) \tag{3.12}
\end{equation*}
$$

where $c_{3}>0$ is a constant depending on the same quantities as c_{1} and c_{2} from Theorem 2.8.

Hence we obtain the following lemma.
Lemma 3.2. Let $\left(v, \varrho_{\sigma}\right) \in \mathfrak{N}(0), S \in H^{5 / 2}, u_{t}^{0}(0) \in H^{1}(\Omega), u_{t t}^{0}(0) \in$ $L_{2}(\Omega)\left(u^{0}\right.$ is the solution of problem (3.2)), and $p \in C^{3}\left(\mathbb{R}_{+}^{2}\right)$. Let assumption (3.3) and the compatibility condition (3.6) be satisfied. Moreover, assume

$$
\begin{equation*}
\bar{\phi}(0) \leq \alpha \tag{3.13}
\end{equation*}
$$

where $\alpha>0$ is sufficiently small. Then the local solution (v, ϱ) of problem (1.1) is such that $\left(v, \varrho_{\sigma}\right) \in \mathfrak{M}(t)$ for $t \leq T$, where $T>0$ is the time of local existence, and the following estimate holds:

$$
\phi(t)+\int_{0}^{t} \Phi\left(t^{\prime}\right) d t^{\prime} \leq c_{3} \alpha
$$

where $c_{3}>0$ is a constant depending on the same quantities as c_{1} and c_{2} from Theorem 2.8.

Next, we prove
Lemma 3.3. Let the assumptions of Lemma 3.2 be satisfied. Then there exist constants $\mu_{1}>1$ and $\mu_{2}>0$ (depending on the same quantities as c_{1}
and c_{2} from (2.58)) such that

$$
\begin{equation*}
\bar{\phi}(t) \leq \mu_{1} \bar{\phi}(0) e^{-\mu_{2} t} \quad \text { for } t \leq T \tag{3.14}
\end{equation*}
$$

where $T>0$ is the time of local existence.
Proof. Consider inequality (2.58) and assume that α from (3.13) is so small that

$$
\begin{equation*}
c_{1}\left(\phi+\int_{0}^{t}\|v\|_{3, \Omega_{t^{\prime}}}^{2} d t^{\prime}\right)\left[1+\left(\phi+\int_{0}^{t}\|v\|_{3, \Omega_{t^{\prime}}}^{2} d t^{\prime}\right)^{2}\right]<\frac{c_{0}}{4} . \tag{3.15}
\end{equation*}
$$

Then inequality (2.58) implies

$$
\begin{equation*}
\frac{d \bar{\phi}}{d t}+\frac{3}{4} c_{0} \Phi<c_{2}\left\|p_{\sigma}\right\|_{0, \Omega_{t}}^{2} \tag{3.16}
\end{equation*}
$$

Applying the same argument as in the proof of Lemma 6.2 of [17] yields
(3.17) $\left\|p_{\sigma}\right\|_{0, \Omega_{t}}^{2} \leq \varepsilon\left(\left\|p_{\sigma x}\right\|_{0, \Omega_{t}}^{2}+\left\|v_{x x}\right\|_{0, \Omega_{t}}^{2}\right)+c(\varepsilon)\left(\|v\|_{0, \Omega_{t}}^{2}+\left\|v_{t}\right\|_{0, \Omega_{t}}^{2}\right)$.

Since $\left\|p_{\sigma x}\right\|_{0, \Omega_{t}}^{2} \leq c_{4}\left\|\varrho_{\sigma x}\right\|_{0, \Omega_{t}}^{2}$, inequalities (3.16) and (3.17) imply, for sufficiently small ε,

$$
\begin{equation*}
\frac{d \bar{\phi}}{d t}+\frac{3}{4} c_{0} \Phi<c_{5}\left(\|v\|_{0, \Omega_{t}}^{2}+\left\|v_{t}\right\|_{0, \Omega_{t}}^{2}\right) \tag{3.18}
\end{equation*}
$$

Now, multiplying (2.21) by a constant c_{6} so large that $c_{0} c_{6}-c_{5}>0$ and $c_{6}>1$, adding to (3.18) and using Lemma 3.2 we obtain

$$
\begin{align*}
& \frac{d}{d t}\left(\bar{\phi}+c_{6} J\right)+\frac{3}{4} c_{0} \Phi \tag{3.19}\\
& \quad+\left(c_{0} c_{6}-c_{5}\right)\left(\|v\|_{1, \Omega_{t}}^{2}+\left\|v_{t}\right\|_{1, \Omega_{t}}^{2}+\left\|\varrho_{\sigma t}\right\|_{0, \Omega_{t}}^{2}\right)<c_{7} \alpha \phi
\end{align*}
$$

where

$$
J=\frac{1}{2} \int_{\Omega_{t}}\left[\varrho\left(v^{2}+v_{t}^{2}\right)+\frac{p_{1}}{\varrho} \varrho_{\sigma}^{2}+\frac{p_{\sigma \varrho}}{\varrho} \varrho_{\sigma t}^{2}\right] d x .
$$

Since $\bar{\phi} / c^{\prime \prime} \leq \phi \leq \Phi$ and $\bar{\phi} \geq J$ for sufficiently small α (so small that $c_{7} \alpha<\frac{1}{4} c_{0}$), inequality (3.19) implies

$$
\begin{equation*}
\frac{d}{d t}\left(\bar{\phi}+c_{6} J\right)+c_{8}\left(\bar{\phi}+c_{6} J\right)<0 \tag{3.20}
\end{equation*}
$$

where $c_{8}=c_{0} /\left(4 c^{\prime \prime} c_{6}\right)\left(c^{\prime \prime}>0\right.$ is the constant from (3.11)) .
Inequality (3.20) yields (3.14) with $\mu_{1}=c_{6}+1$ and $\mu_{2}=c_{8}$.
By using Lemma 3.3 we prove
Lemma 3.4. Let the assumptions of Lemma 3.2 be satisfied. Moreover, assume

$$
\begin{equation*}
C_{0} \equiv\left\|v_{0}\right\|_{0, \Omega}^{2}+\left\|\varrho_{\sigma 0}\right\|_{0, \Omega}^{2} \leq \delta \tag{3.21}
\end{equation*}
$$

where $\varrho_{\sigma 0}=\varrho_{0}-\varrho_{e}$. Then

$$
\begin{equation*}
\|v\|_{0, \Omega_{t}}^{2}+\left\|\varrho_{\sigma}\right\|_{0, \Omega_{t}}^{2} \leq c_{9} \alpha^{2}+c_{10} c_{11} \delta \quad \text { for } t \leq T \tag{3.22}
\end{equation*}
$$

where $c_{9}=\frac{c_{11} \mu_{1}^{2}}{c^{\prime} \mu_{2}} c_{3} c\left(1+c_{3} \alpha\right) ; c^{\prime}$ is the constant from inequality (3.11); α and c_{3} are the constants from Lemma 3.2; μ_{1}, μ_{2} are the constants from Lemma 3.3; c is the constant from Lemma 2.1 and $c_{10}, c_{11}>0$ are constants depending on ϱ_{*}, ϱ^{*} such that

$$
\begin{aligned}
\frac{1}{c_{11}}\left(\|v\|_{0, \Omega_{t}}^{2}+\left\|\varrho_{\sigma}\right\|_{0, \Omega_{t}}^{2}\right) & \leq \frac{1}{2} \int_{\Omega_{t}}\left(\varrho v^{2}+\frac{p_{1}}{\varrho} \varrho_{\sigma}^{2}\right) d x \\
& \leq c_{10}\left(\|v\|_{0, \Omega_{t}}^{2}+\left\|\varrho_{\sigma}\right\|_{0, \Omega_{t}}^{2}\right) \quad \text { for } t \leq T
\end{aligned}
$$

and $T>0$ is the time of local existence. Moreover,

$$
\begin{equation*}
\left\|p_{\sigma}\right\|_{0, \Omega_{t}}^{2} \leq c_{12}\left(c_{9} \alpha^{2}+c_{10} c_{11} \delta\right) \tag{3.23}
\end{equation*}
$$

where $c_{12}>0$ is a constant depending on $p, \varrho_{*}, \varrho^{*}$.
Proof. Integrating (2.8) with respect to t over $(0, t)(t \leq T)$ we get

$$
\begin{align*}
\|v\|_{0, \Omega_{t}}^{2}+ & \left\|\varrho_{\sigma}\right\|_{0, \Omega_{t}}^{2} \tag{3.24}\\
& \leq c_{11} c \sup _{0 \leq t^{\prime} \leq t} \phi\left(t^{\prime}\right) \int_{0}^{t} \phi\left(t^{\prime}\right) d t^{\prime}\left(1+\sup _{0 \leq t^{\prime} \leq t} \phi\left(t^{\prime}\right)\right)+c_{10} c_{11} C_{0}
\end{align*}
$$

Using Lemmas 3.2-3.3 and assumption (3.21) we obtain

$$
\begin{array}{r}
\|v\|_{0, \Omega_{t}}^{2}+\left\|\varrho_{\sigma}\right\|_{0, \Omega_{t}}^{2} \leq \frac{c_{11} c \mu_{1}}{c^{\prime}} c_{3} \alpha^{2}\left(1+c_{3} \alpha\right) \int_{0}^{t} e^{-\mu_{2} t^{\prime}} d t^{\prime}+c_{10} c_{11} C_{0} \tag{3.25}\\
\leq c_{9} \alpha^{2}+c_{10} c_{11} \delta
\end{array}
$$

Estimate (3.23) follows from (3.22) and (2.4).
REmARK 3.5. Estimate (3.12) and assumption (3.13) yield

$$
\begin{align*}
\left|\int_{0}^{t} u\left(\xi, t^{\prime}\right) d t^{\prime}\right| & <c_{13} T^{1 / 2}\left(\int_{0}^{T}\|u\|_{2, \Omega}^{2} d t^{\prime}\right)^{1 / 2} \tag{3.26}\\
& \leq c_{13} \psi_{3}(A, T) T^{1 / 2} \alpha^{1 / 2} \equiv c_{14} T^{1 / 2} \alpha^{1 / 2}
\end{align*}
$$

where ψ_{3} is a positive continuous function; $c_{13}>0$ is a constant from the imbedding theorem depending on Ω. Hence, relation (1.3) implies that both the shape and the volume of Ω_{t} do not change much for $t \leq T$ and the constants $c_{i}(i=1, \ldots, 12), \mu_{i}(i=1,2)$ (from Lemma 3.3) and c (from Lemma 3.4) can be chosen independent of time for $t \leq T$.

REMARK 3.6. Under assumption (2.1) one can prove the following momentum conservation law (see [18]):

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega_{t}} \varrho v \cdot \eta d x=0 \tag{3.27}
\end{equation*}
$$

where $\eta=a+b \times x$ and a, b are arbitrary constant vectors. Moreover,

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega_{t}} \varrho x d x=\int_{\Omega_{t}} \varrho v d x \tag{3.28}
\end{equation*}
$$

Assuming

$$
\begin{equation*}
\int_{\Omega} \varrho_{0} v_{0} \cdot \eta d \xi=0, \quad \int_{\Omega} \varrho_{0} \xi d \xi=0 \tag{3.29}
\end{equation*}
$$

in view of (3.27) and (3.28) we get (2.6) and (2.7), respectively. Condition (2.6) guarantees that the barycentre of Ω_{t} coincides with the origin of coordinates.

Now, we can prove
LEMMA 3.7. Let the assumptions of Lemma 3.2 and estimate (3.22) be satisfied. Then

$$
\begin{equation*}
\bar{\phi}(t) \leq \alpha \quad \text { for } t \leq T \tag{3.30}
\end{equation*}
$$

where α is sufficiently small (so that (3.15) and (3.32) are satisfied), and $T>0$ is the time of local existence.

Proof. For α so small that (3.15) is satisfied, the differential inequality (2.58) implies (3.16). Hence by estimate (3.23) of Lemma 3.4 we have

$$
\frac{d \bar{\phi}}{d t}+\frac{3}{4} c_{0} \Phi<c_{2} c_{12}\left(c_{9} \alpha^{2}+c_{10} c_{11} \delta\right)
$$

Therefore, since $\bar{\phi} / c^{\prime \prime} \leq \Phi$ (where $c^{\prime \prime}$ is the constant from inequality (3.11)) we obtain

$$
\begin{equation*}
\frac{d \bar{\phi}}{d t}+\frac{3}{4} \frac{c_{0}}{c^{\prime \prime}} \bar{\phi}<c_{2} c_{12}\left(c_{9} \alpha^{2}+c_{10} c_{11} \delta\right) \tag{3.31}
\end{equation*}
$$

Now, assume that $t_{*}=\inf \{t \in[0, T]: \bar{\phi}(t)>\alpha\}$ and consider (3.31) in the interval $\left(0, t_{*}\right]$. From the definition of t_{*} we have $\bar{\phi}\left(t_{*}\right)=\alpha$. Therefore (3.31) yields

$$
\frac{d \bar{\phi}}{d t}\left(t_{*}\right)<-\frac{3}{4} \frac{c_{0}}{c^{\prime \prime}} \alpha+c_{2} c_{12}\left(c_{9} \alpha^{2}+c_{10} c_{11} \delta\right)
$$

Let α and δ be so small that

$$
\begin{equation*}
c_{2} c_{12}\left(c_{9} \alpha^{2}+c_{10} c_{11} \delta\right)<\frac{3}{4} \frac{c_{0}}{c^{\prime \prime}} \alpha . \tag{3.32}
\end{equation*}
$$

Then $(d \bar{\phi} / d t)\left(t_{*}\right)<0$, a contradiction. Therefore, (3.30) holds.

Lemma 3.7 suggests that the solution can be continued to the interval $[T, 2 T]$. However, to do this we also need the analogous lemma for the solution of (3.2), to have the sum on the right-hand side of (3.4) with initial condition at T estimated by A.

Set

$$
\phi_{1}(t)=\left|u^{0}(t)\right|_{2,0, \Omega}^{2}, \quad \Phi_{1}(t)=\left|u^{0}(t)\right|_{3,1, \Omega}^{2}-\left\|u^{0}(t)\right\|_{3, \Omega}^{2},
$$

where u^{0} is the solution of (3.2).
LEMMA 3.8. Let the assumptions of Lemma 3.7 and (3.21) be satisfied. Moreover, assume that $\phi_{1}(0) \leq \alpha_{1}$, where $\alpha_{1}>0$ is a constant. Then if the constants δ from Lemma 3.4 and α are sufficiently small we have

$$
\begin{equation*}
\phi_{1}(t) \leq \alpha_{1} \quad \text { for } t \leq T \tag{3.33}
\end{equation*}
$$

Proof. First, we shall obtain a differential inequality similar to (2.58). Multiplying (3.2) ${ }_{1}$ by u^{0}, integrating over Ω and using the boundary condition (3.2) $)_{2}$ and (2.4) (where $\left.p_{1}=p_{1}\left(\varrho_{0}\right)\right)$ we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u^{0}\right)^{2} d \xi+\frac{\mu}{2} E_{\Omega}\left(u^{0}\right)+\int_{S} p_{1} \varrho_{\sigma 0} \bar{n}_{0} u^{0} d \xi_{s}=0 \tag{3.34}
\end{equation*}
$$

where $E_{\Omega}\left(u^{0}\right)=\int_{\Omega} \sum_{i, j=1}^{3}\left(u_{i x_{j}}^{0}+u_{j x_{i}}^{0}\right)^{2} d \xi$.
In view of assumptions (3.29), Lemma 5.2 of [14] and the interpolation inequality, equality (3.34) yields

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u^{0}\right)^{2} d \xi+c_{0}\left\|u^{0}\right\|_{1, \Omega}^{2} \tag{3.35}\\
\leq & c\left\|\varrho_{\sigma 0}\right\|_{0, \Omega}^{2}\left\|u^{0}\right\|_{0, \Omega}^{2}+\varepsilon\left\|\varrho_{\sigma 0}\right\|_{1, \Omega}^{2}+c(\varepsilon)\left\|\varrho_{\sigma 0}\right\|_{0, \Omega}^{2}, \quad \text { where } \varepsilon \in(0,1)
\end{align*}
$$

Next, differentiating (3.2) ${ }_{1}$ with respect to t, multiplying by u_{t}^{0}, integrating over Ω and using the Korn inequality we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u_{t}^{0}\right)^{2} d \xi+c_{0}\left\|u_{t}^{0}\right\|_{1, \Omega}^{2} \leq c\left\|u_{t}^{0}\right\|_{0, \Omega}^{2} \tag{3.36}
\end{equation*}
$$

and from $(3.2)_{1}$ we obtain

$$
\begin{equation*}
\left\|u_{t}^{0}\right\|_{0, \Omega}^{2} \leq \varepsilon\left\|u_{t}^{0}\right\|_{1, \Omega}^{2}+\varepsilon\left\|\varrho_{\sigma 0}\right\|_{1, \Omega}^{2}+c(\varepsilon)\left\|\varrho_{\sigma 0}\right\|_{0, \Omega}^{2}+c\left\|u^{0}\right\|_{1, \Omega}^{2} . \tag{3.37}
\end{equation*}
$$

By (3.36) and (3.37) we have
(3.38) $\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u_{t}^{0}\right)^{2} d \xi+c_{0}\left\|u_{t}^{0}\right\|_{1, \Omega}^{2} \leq \varepsilon\left\|\varrho_{\sigma 0}\right\|_{1, \Omega}^{2}+c(\varepsilon)\left\|\varrho_{\sigma 0}\right\|_{0, \Omega}^{2}+c\left\|u^{0}\right\|_{1, \Omega}^{2}$.

In the same way we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u_{t t}^{0}\right)^{2} d \xi+c_{0}\left\|u_{t t}\right\|_{1, \Omega}^{2} \leq c\left\|u_{t}^{0}\right\|_{1, \Omega}^{2} \tag{3.39}
\end{equation*}
$$

Now, consider the elliptic problem

$$
\begin{aligned}
& -\operatorname{div} \mathbb{D}\left(u^{0}\right)=-u_{t}^{0} \\
& \mathbb{D}\left(u^{0}\right) \bar{n}_{0}=\left(p\left(\varrho_{0}\right)-p_{0}\right) \bar{n}_{0}
\end{aligned}
$$

By the Agmon-Douglis-Nirenberg theory (see [1])

$$
\begin{equation*}
\left\|u^{0}\right\|_{2, \Omega}^{2} \leq c\left(\left\|u_{t}^{0}\right\|_{0, \Omega}^{2}+\left\|u^{0}\right\|_{0, \Omega}^{2}\right)+\varepsilon\left\|\varrho_{\sigma 0}\right\|_{2, \Omega}^{2}+c(\varepsilon)\left\|\varrho_{\sigma 0}\right\|_{0, \Omega}^{2} . \tag{3.40}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u_{\xi}^{0}\right)^{2} d \xi \leq c\left(\left\|u^{0}\right\|_{1, \Omega}^{2}+\left\|u_{t}^{0}\right\|_{1, \Omega}^{2}\right) \tag{3.41}
\end{equation*}
$$

Using the same argument we get the estimates

$$
\begin{array}{r}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u_{t \xi}^{0}\right)^{2} d \xi+c_{0}\left\|u_{t}^{0}\right\|_{2, \Omega}^{2} \leq c\left(\left\|u_{t}^{0}\right\|_{1, \Omega}^{2}+\left\|u_{t t}^{0}\right\|_{1, \Omega}^{2}\right) \\
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u_{\xi \xi}^{0}\right)^{2} d \xi \leq c\left(\left\|u^{0}\right\|_{2, \Omega}^{2}+\left\|u_{t}^{0}\right\|_{2, \Omega}^{2}\right) \tag{3.43}
\end{array}
$$

Now, estimates (3.35) and (3.38)-(3.43) yield the following differential inequality:
(3.44) $\quad \frac{d}{d t} \phi_{1}(t)+c_{0} \Phi_{1}(t) \leq c_{15}\left\|\varrho_{\sigma 0}\right\|_{0, \Omega}^{2} \Phi_{1}(t)+\varepsilon\left\|\varrho_{\sigma 0}\right\|_{2, \Omega}^{2}+c_{16}\left\|\varrho_{\sigma 0}\right\|_{0, \Omega}^{2}$.

By using the same argument as in Lemma 3.7, inequality (3.44) and assumptions (3.13) and (3.21) yield (3.33) for sufficiently small ε, δ and α.

Now, we prove the main result of the paper.
Theorem 3.9. Let $\nu>\frac{1}{3} \mu>0, f=0$, and $p \in C^{3}\left(\mathbb{R}_{+}\right)$with $p^{\prime}>0$. Let $\left(v, \varrho_{\sigma}\right) \in \mathfrak{N}(0), S \in H^{5 / 2}, u_{t}^{0}(0) \in H^{1}(\Omega), u_{t t}^{0}(0) \in L_{2}(\Omega)\left(u^{0}\right.$ is a solution of (3.2)) and let the following compatibility condition be satisfied:

$$
\left[\mathbb{D}\left(v_{0}\right)-\left(p\left(\varrho_{0}\right)-p_{0}\right)\right] \bar{n}_{0}=0 \quad \text { on } S .
$$

Moreover, let the following assumptions be satisfied:
$(3.45) \quad \bar{\phi}(0) \leq \alpha$;
(3.46) $\quad\left\|v_{0}\right\|_{0, \Omega}^{2}+\left\|\varrho_{\sigma 0}\right\|_{0, \Omega}^{2} \leq \delta, \quad$ where $\varrho_{\sigma 0}=\varrho_{0}-\varrho_{e}$;
(3.47) $l>0$ is a constant such that $\varrho_{e}-l>0$ and $\varrho_{1}<\varrho_{0}<\varrho_{2}$,
where $\varrho_{1}=\varrho_{e}-l, \varrho_{2}=\varrho_{e}+l$;
(3.48) $\quad \int_{\Omega} \varrho_{0} v_{0} \cdot \eta d \xi=0, \quad \int_{\Omega} \varrho_{0} \xi d \xi=0$,
where $\eta=a+b \times x$ and a, b are arbitrary constant vectors;

$$
\begin{equation*}
\int_{\Omega} \varrho_{0} d \xi=M . \tag{3.49}
\end{equation*}
$$

Then for sufficiently small constants α and δ there exists a global solution of (1.1) such that $\left(v, \varrho_{\sigma}\right) \in \mathfrak{M}(t)$ for $t \in \mathbb{R}_{+}^{1}, S_{t} \in H^{5 / 2}$ for $t \in \mathbb{R}_{+}^{1}$ and

$$
\begin{equation*}
\bar{\phi}(t) \leq \alpha \quad \text { for } t \in \mathbb{R}_{+}^{1} \tag{3.50}
\end{equation*}
$$

Proof. The theorem is proved step by step using the local existence in a fixed interval. In order to extend the solution to the interval $[T, 2 T]$ we first prove that

$$
\begin{equation*}
\varrho_{1}<\varrho(x, t)<\varrho_{2} \quad \forall x \in \bar{\Omega}_{t}, t \in[0, T] . \tag{3.51}
\end{equation*}
$$

By (3.10) and assumption (3.45) we have

$$
\begin{equation*}
\|u(t)\|_{2, \Omega}^{2}+\left\|\eta_{\sigma}(t)\right\|_{2, \Omega}^{2} \leq \psi_{2}(A, T) \alpha \tag{3.52}
\end{equation*}
$$

Hence

$$
\begin{equation*}
|u|_{\infty, \Omega^{T}}^{2}+\left|\eta_{\sigma}\right|_{\infty, \Omega^{T}}^{2} \leq \alpha c(\Omega) \psi_{2}(A, T), \tag{3.53}
\end{equation*}
$$

where $c(\Omega)>0$ is a constant from the imbedding lemma.
Assume now that α is so small that

$$
\begin{equation*}
\left[\alpha c(\Omega) \psi_{2}(A, T)\right]^{1 / 2}<l \tag{3.54}
\end{equation*}
$$

where l is the constant from assumption (3.47). Then by (3.53) we obtain (3.51) and this means that $\varrho_{*}=\varrho_{1}$ and $\varrho^{*}=\varrho_{2}$. Thus, the assumptions of the theorem and Lemmas 3.4, 3.7 yield

$$
\begin{equation*}
\bar{\phi}(t) \leq \alpha \quad \text { for } t \leq T \tag{3.55}
\end{equation*}
$$

where α and δ are so small that (3.15) and (3.32) are satisfied (with constants $c_{1}, c_{2}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12}$ and $c^{\prime \prime}$ depending on $\left.\Omega, \varrho_{1}, \varrho_{2}\right)$. Hence, in view of Theorem 3.1, Lemma 3.8 and estimates (3.4)-(3.5) (with initial conditions at T) for A so large that

$$
\begin{equation*}
C_{1}(T)(\widetilde{c} \bar{\phi}(0)+\alpha)<A \tag{3.56}
\end{equation*}
$$

and for α sufficiently small (so that (3.56) and (3.5) hold with $\bar{\phi}(0)$ replaced by α) there exists a local solution of (1.1) in the interval $[T, 2 T]$ and

$$
\begin{aligned}
(3.57)\|u\|_{\mathcal{A}_{T, \Omega_{T}}}^{2}+\left\|\eta_{\sigma}\right\|_{\mathcal{B}_{T, \Omega_{T}} \leq}^{2} & \psi_{2}(A, T)\left(\left\|\varrho_{\sigma}(T)\right\|_{2, \Omega_{T}}^{2}+\|u(T)\|_{2, \Omega_{T}}^{2}\right. \\
& \left.+\|u(T)\|_{1, \Omega_{T}}^{2}+\left\|u_{t t}(T)\right\|_{0, \Omega_{T}}^{2}\right) \\
\leq & \psi_{2}(A, T) \alpha
\end{aligned}
$$

(where $\mathcal{A}_{T, \Omega_{T}}$ and $\mathcal{B}_{T, \Omega_{T}}$ are given by (1.6) and (1.5), respectively), which yields $\left(v, \varrho_{\sigma}\right) \in \mathfrak{M}(t)$ for $t \leq 2 T$.

To extend the solution to $[2 T, 3 T]$ we have to prove

$$
\begin{equation*}
\bar{\phi}(t) \leq \alpha \quad \text { for } t \leq 2 T \tag{3.58}
\end{equation*}
$$

First, we show the estimate

$$
\begin{equation*}
\varrho_{1}<\varrho(x, t)<\varrho_{2} \quad \forall x \in \bar{\Omega}_{t}, t \in[0,2 T] . \tag{3.59}
\end{equation*}
$$

In view of (3.51) we prove

$$
\varrho_{1}<\eta(\xi, t)<\varrho_{2} \quad \forall \xi \in \bar{\Omega}_{T}, t \in[T, 2 T]
$$

where by η we denote ϱ written in the Lagrangian coordinates $\xi \in \Omega_{T}$ connected with the Eulerian coordinates x by the relation

$$
x=\xi+\int_{T}^{t} v\left(x, t^{\prime}\right) d t^{\prime}=\xi+\int_{T}^{t} u\left(\xi, t^{\prime}\right) d t^{\prime}
$$

In view of (3.55) and (3.57) we get

$$
\|u(t)\|_{2, \Omega_{T}}^{2}+\left\|\eta_{\sigma}(t)\right\|_{2, \Omega_{T}}^{2} \leq \psi_{2}(A, T) \alpha
$$

Hence

$$
\begin{equation*}
|u|_{\infty, \Omega_{T} \times(T, 2 T)}^{2}+\left|\eta_{\sigma}\right|_{\infty, \Omega_{T} \times(T, 2 T)}^{2} \leq \alpha c\left(\Omega_{T}\right) \psi_{2}(A, T), \tag{3.60}
\end{equation*}
$$

where $c\left(\Omega_{T}\right)$ is a constant from the imbedding lemma and by Remark 3.5,

$$
\left[\alpha c\left(\Omega_{T}\right) \psi_{2}(A, T)\right]^{1 / 2}<l
$$

where l is the constant from assumption (3.47). Therefore, (3.60) implies (3.59).

Now, we prove that the volume and shape of Ω_{t} change in $[0,2 T]$ no more than they do in $[0, T]$. To do this we consider $\int_{0}^{t} v\left(x, t^{\prime}\right) d t^{\prime}$ for $0 \leq t \leq 2 T$. We estimate $\int_{0}^{T} v\left(x, t^{\prime}\right) d t^{\prime}$ by applying Lemma 3.3 , and to estimate $\int_{T}^{2 T} v\left(x, t^{\prime}\right) d t^{\prime}$ we use inequality (3.57) for the local solution in $[T, 2 T]$. Thus we have

$$
\begin{align*}
\left|\int_{0}^{t} v\left(x, t^{\prime}\right) d t^{\prime}\right| & \leq \int_{0}^{T}\left|u\left(\xi, t^{\prime}\right)\right| d t^{\prime}+\int_{T}^{2 T}\left|u\left(\xi, t^{\prime}\right)\right| d t^{\prime} \tag{3.61}\\
& <c_{13} T^{1 / 2}\left[\left(\int_{0}^{T}\|u\|_{2, \Omega}^{2} d t^{\prime}\right)^{1 / 2}+\left(\int_{T}^{2 T}\|u\|_{2, \Omega_{T}}^{2} d t^{\prime}\right)^{1 / 2}\right] \\
& \leq T^{1 / 2}\left[\left(c_{17} \int_{0}^{T}\|v\|_{2, \Omega_{t^{\prime}}}^{2} d t^{\prime}\right)^{1 / 2}+c_{14} \alpha^{1 / 2}\right] \\
& \leq T^{1 / 2}\left[\frac{c_{17}}{\left(c^{\prime}\right)^{1 / 2}}\left(\int_{0}^{T} \bar{\phi}\left(t^{\prime}\right) d t^{\prime}\right)^{1 / 2}+c_{14} \alpha^{1 / 2}\right] \\
& \leq T^{1 / 2} \alpha^{1 / 2}\left[c_{17}\left(\frac{\mu_{1}}{c^{\prime}}\right)^{1 / 2}\left(\int_{0}^{T} e^{-\mu_{2} t^{\prime}} d t^{\prime}\right)^{1 / 2}+c_{14}\right] \\
& \leq T^{1 / 2} \alpha^{1 / 2}\left(\frac{c_{17} \mu_{1}}{\left(c^{\prime} \mu_{2}\right)^{1 / 2}}+c_{14}\right)
\end{align*}
$$

where c_{13} and c_{14} are the constants from Remark 3.5, c^{\prime} is the constant from (3.11) and we have used the fact that $\mu_{1}>1$.

If α is sufficiently small then estimates (3.61) and (3.59) imply that the differential inequality (2.58) can be derived in $[T, 2 T]$ with the same constants c_{1} and c_{2} as in $[0, T]$. Similarly, the other constants c_{i} and $c^{\prime}, c^{\prime \prime}$, μ_{1}, μ_{2} are the same in $[T, 2 T]$ as in $[0, T]$.

Next, we prove that assumption (3.21) implies (3.22) for $t \leq 2 T$. To do this integrate (2.8) with respect to t over $(0, t)(t \leq 2 T)$. Using Lemmas 3.23.3 we get

$$
\begin{align*}
\leq & c_{11} c \sup _{0 \leq t^{\prime} \leq t} \phi\left(t^{\prime}\right) \int_{0}^{t} \phi\left(t^{\prime}\right) d t^{\prime}\left(1+\sup _{0 \leq t^{\prime} \leq t} \phi\left(t^{\prime}\right)\right)+c_{10} c_{11} C_{0} \tag{3.62}\\
\leq & \frac{c_{11} c}{c^{\prime}} c_{3} \mu_{1}\left(1+c_{3} \alpha\right) \alpha\left(\int_{0}^{T} \bar{\phi}(0) e^{-\mu_{2} t^{\prime}} d t^{\prime}+\int_{T}^{2 T} \bar{\phi}(T) e^{-\mu_{2}\left(t^{\prime}-T\right)} d t^{\prime}\right)+c_{10} c_{11} \delta \\
\leq & \frac{c_{11} c c_{3} \mu_{1}}{c^{\prime}}\left(1+c_{3} \alpha\right) \alpha\left(\alpha \int_{0}^{T} e^{-\mu_{2} t^{\prime}} d t^{\prime}+\mu_{1} \int_{T}^{2 T} \bar{\phi}(0) e^{-\mu_{2} T} e^{-\mu_{2}\left(t^{\prime}-T\right)} d t^{\prime}\right) \\
& +c_{10} c_{11} \delta \\
\leq & \frac{c_{11} c c_{3} \mu_{1}}{c^{\prime} \mu_{2}}\left(1+c_{3} \alpha\right) \alpha^{2}\left[1-e^{-\mu_{2} T}+\mu_{1}\left(e^{\mu_{2} T}-e^{-2 \mu_{2} T}\right)\right]+c_{10} c_{11} \delta \\
\leq & \frac{c_{11} c c_{3} \mu_{1}^{2}}{c^{\prime} \mu_{2}}\left(1+c_{3} \alpha\right) \alpha^{2}+c_{10} c_{11} \delta
\end{align*}
$$

where c_{10}, c_{11} are the constants from Lemma 3.4 and c_{3} is the constant from Lemma 3.2. Therefore (3.22) is satisfied for $t \leq 2 T$, so by (3.55) and Lemma 3.7 we obtain (3.58) and the existence of a local solution (v, ϱ) such that $(v, \varrho) \in \mathfrak{M}(t)$ for $t \leq 3 T$.

Finally, assume that there exists a local solution in $[0, k T]$ (where $k \geq 3$) satisfying

$$
\begin{align*}
& \|u\|_{\mathcal{A}_{T, \Omega_{i} T}}^{2} \leq A \quad \text { for } i=1, \ldots, k-1 \tag{3.63}\\
& \|\eta\|_{\mathcal{B}_{T, \Omega_{i T}}}^{2} \leq \psi_{1}(A) \quad \text { for } i=1, \ldots, k-1 \tag{3.64}\\
& \bar{\phi}(t) \leq \alpha \quad \text { for } t \leq(k-1) T \tag{3.65}\\
& \|u\|_{\mathcal{A}_{T, \Omega_{i T}}}^{2}+\left\|\eta_{\sigma}\right\|_{\mathcal{B}_{T, \Omega_{i T}}^{2}} \leq \psi_{2}(A, T) \alpha \quad \text { for } i=1, \ldots, k-1 . \tag{3.66}
\end{align*}
$$

Moreover, assume that the volume and shape of Ω_{t} change in $[0,(k-1) T]$ no more than they do in $[0, T]$ and estimate (3.51) holds for $t \leq(k-1) T$ (so the constants $c_{i}, i=1, \ldots, 17, c^{\prime}, c^{\prime \prime}, \mu_{1}, \mu_{2}$ are the same in each $[(i-1) T, i T]$, $i=1, \ldots, k-1$). Since the argument used to show estimate (3.51) for $t \leq k T$ is the same as for $t \leq T$ and for $t \leq 2 T$, to prove the existence of a local solution in $[0,(k+1) T]$ it remains to show that the volume and shape of Ω_{t} change in $[0, k T]$ no more than they do in $[0, T]$ and that assumption
(3.21) implies (3.22) for $t \leq k T$. In fact, applying Lemma 3.3 and estimates (3.63)-(3.66) we have, for $t \in[0, k T]$,

$$
\begin{align*}
& \left|\int_{0}^{t} v\left(x, t^{\prime}\right) d t^{\prime}\right| \tag{3.67}\\
\leq & \sum_{i=0}^{k-1} \int_{i T}^{(i+1) T}\left|u\left(\xi, t^{\prime}\right)\right| d t^{\prime}<c_{13} T^{1 / 2} \sum_{i=0}^{k-1}\left(\int_{i T}^{(i+1) T}\|u\|_{2, \Omega_{i T}}^{2} d t^{\prime}\right)^{1 / 2} \\
\leq & T^{1 / 2}\left[c_{17} \sum_{i=0}^{k-2}\left(\int_{i T}^{(i+1) T}\|v\|_{2, \Omega_{t^{\prime}}}^{2} d t^{\prime}\right)^{1 / 2}+c_{14} \alpha^{1 / 2}\right] \\
\leq & T^{1 / 2}\left[\frac{c_{17}}{\left(c^{\prime}\right)^{1 / 2}} \sum_{i=0}^{k-2}\left(\int_{i T}^{(i+1) T} \bar{\phi}\left(t^{\prime}\right) d t^{\prime}\right)^{1 / 2}+c_{14} \alpha^{1 / 2}\right] \\
\leq & T^{1 / 2}\left[c_{17}\left(\frac{\mu_{1}}{c^{\prime}}\right)^{1 / 2} \sum_{i=0}^{k-2}\left(\bar{\phi}(i T) \int_{i T}^{(i+1) T} e^{-\mu_{2}\left(t^{\prime}-i T\right)} d t^{\prime}\right)^{1 / 2}+c_{14} \alpha^{1 / 2}\right] \\
\leq & T^{1 / 2}\left[c_{17}\left(\frac{\mu_{1}}{c^{\prime} \mu_{2}}\right)^{1 / 2}\left(1-e^{-\mu_{2} T}\right)^{1 / 2} \sum_{i=0}^{k-2}(\bar{\phi}(i T))^{1 / 2}+c_{14} \alpha^{1 / 2}\right] \\
\leq & T^{1 / 2}\left\{c _ { 1 7 } (\frac { \mu _ { 1 } } { c ^ { \prime } \mu _ { 2 } }) ^ { 1 / 2 } (1 - e ^ { - \mu _ { 2 } T }) ^ { 1 / 2 } \left[\overline { \phi } (0) \left(1+\mu_{1} e^{-\mu_{2} T}\right.\right.\right. \\
\leq & T^{1 / 2} \alpha^{1 / 2}\left[\frac{c_{17} \mu_{1}}{\left(c^{\prime} \mu_{2}\right)^{1 / 2}}\left(1-e^{-\mu_{2} T}\right)^{1 / 2} \frac{\left.\left.\left.\mu_{1} e^{-2 \mu_{2} T}+\ldots\right)\right]^{1 / 2}+c_{14} \alpha^{1 / 2}\right\}}{\left.\left(1-e^{-\mu_{2} T}\right)^{1 / 2}+c_{14}\right]}\right. \\
= & T^{1 / 2} \alpha^{1 / 2}\left(\frac{c_{17} \mu_{1}}{\left.\left(c^{\prime} \mu_{2}\right)^{1 / 2}+c_{14}\right),}\right.
\end{align*}
$$

where c_{13}, c_{14} are the constants from Remark $3.5, c_{17}$ is the same constant as in inequality (3.61), c^{\prime} is the constant from (3.11) and we have used the fact that $\mu_{1}>1$.

Thus, the right-hand side of (3.67) is the same as the right-hand side of (3.61). Therefore, for α sufficiently small the shape of Ω_{t} changes in $[0, k T]$ no more than it does in $[0, T]$ and the constants $c_{i}(i=1, \ldots, 17), c^{\prime}, c^{\prime \prime}, \mu_{1}$, μ_{2} from Theorem 2.8, Lemmas 3.2-3.4, 3.7, 3.8, Remark 3.5 and inequality (3.11) are the same in each $[i T,(i+1) T]$ for $i=0, \ldots, k-1$.

In the same way we prove

$$
\begin{equation*}
\|v\|_{0, \Omega_{t}}^{2}+\left\|\varrho_{\sigma}\right\|_{0, \Omega_{t}}^{2} \leq c_{9} \alpha^{2}+c_{10} c_{11} \delta \tag{3.68}
\end{equation*}
$$

for $t \leq k T$, where $c_{i}(i=9,10,11)$ are the constants from Lemma 3.4.

Estimates（3．67）－（3．68），（3．65）and Lemma 3.7 yield $\bar{\phi}(t) \leq \alpha$ for $t \leq k T$ and hence we obtain the existence of a local solution (v, ϱ) of（1．1）such that $\left(v, \varrho_{\sigma}\right) \in \mathfrak{M}(t)$ for $t \leq(k+1) T$ ．

REFERENCES

［1］S．Agmon，A．Douglis and L．Nirenberg，Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions，I，II，Comm．Pure Appl．Math． 12 （1959），623－727， 17 （1964）， 35－92．
［2］L．Landau and E．Lifschitz，Hydrodynamics，Nauka，Moscow， 1986 （in Russian）；English transl．：Fluid Mechanics，Pergamon Press，Oxford， 1987.
［3］V．A．Solonnikov，Solvability of a problem on a motion of a viscous incom－ pressible liquid bounded by a free surface，Izv．Akad．Nauk SSSR．Ser．Mat． 41 （1977），1388－1424（in Russian）．
［4］－，On a nonstationary flow of a finite mass of a liquid bounded by a free surface，Zap．Nauchn．Sem．LOMI 152 （1986），137－157（in Russian）；English transl．：J．Soviet Math． 40 （1988），672－686．
［5］－，On a nonstationary motion of an isolated volume of a viscous incom－ pressible fluid，Izv．Akad．Nauk SSSR Ser．Mat． 51 （1987），1065－1087（in Russian）．
［6］－，On a nonstationary motion of a finite isolated mass of selfgravitating fluid，Algebra i Analiz 1 （1989），207－249（in Russian）．
［7］V．A．Solonnikov and A．Tani，Evolution free boundary problem for equa－ tions of motion of viscous compressible barotropic liquid，preprint，Paderborn Univ．
［8］G．Ströhmer and W．M．Zaja̧czkowski，Local existence of solutions of the free boundary problem for the equations of compressible barotropic viscous self－gravitating fluids，Appl．Math．（Warsaw），to appear．
［9］—，一，On the existence and properties of rotationally symmetric equilibrium states of compressible barotropic self－gravitating fluids，Indiana Univ．Math． J． 46 （1997），1181－1220．
［10］—，一，On stability of equilibrium solution for compressible barotropic viscous self－gravitating fluid motions bounded by a free surface，to appear．
［11］E．Zadrzyńska and W．M．Zaja̧czkowski，On local motion of a general compressible viscous heat conducting fluid bounded by a free surface，Ann． Polon．Math． 59 （1994），133－170．
［12］－，－，On global motion of a compressible viscous heat conducting fluid bounded by a free surface，Acta Appl．Math． 37 （1994），221－231．
［13］－，一，On the global existence theorem for a free boundary problem for equa－ tions of a viscous compressible heat conducting fluid，Ann．Polon．Math． 63 （1996），199－221．
［14］—，一，On the global existence theorem for a free boundary problem for equa－ tions of a viscous compressible heat conducting capillary fluid，J．Appl．Anal． 2 （1996），125－169．
［15］－，一，Local existence of solutions of a free boundary problem for equations of compressible viscous heat－conducting fluids，Appl．Math．（Warsaw） 25 （1998）， 179－220．
［16］W．M．Zajạczkowski，Existence of local solutions for free boundary prob－
lems for viscous compressible barotropic fluids, Ann. Polon. Math. 60 (1995), 255-287.
[17] -, On nonstationary motion of a compressible barotropic viscous fluid bounded by a free surface, Dissertationes Math. 324 (1993).
[18] W. M. Zaja̧czkowski, On nonstationary motion of a compressible barotropic viscous capillary fluid bounded by a free surface, SIAM J. Math. Anal. 25 (1994), 1-84.

Ewa Zadrzyńska
Institute of Mathematics and Operations Research Military University of Technology Kaliskiego 2
01-489 Warszawa, Poland
E-mail: emzad@impan.gov.pl

Wojciech Zajạczkowski
Institute of Mathematics Polish Academy of Sciences
/Sniadeckich 8
00-950 Warszawa, Poland
E-mail: wz@impan.gov.pl

[^0]: 1991 Mathematics Subject Classification: 35A05, 35R35, 76N10.
 Key words and phrases: free boundary, compressible viscous barotropic fluid, global existence.

