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ON RESIDUALLY FINITE GROUPS AND
THEIR GENERALIZATIONS

BY

ANDRZEJ STROJNOWSKI (WARSZAWA)

The paper is concerned with the class of groups satisfying the finite
embedding (FE) property. This is a generalization of residually finite groups.
In [2] it was asked whether there exist FE-groups which are not residually
finite. Here we present such examples. To do this, we construct a family
of three-generator soluble FE-groups with torsion-free abelian factors. We
study necessary and sufficient conditions for groups from this class to be
residually finite. This answers the questions asked in [1] and [2].

1. The construction of the group G(¢).Let ¢ be a map from
Z into Z \ {0}. We define G(¢) to be the group generated by elements
{®i}icz U{yj}jez U {2} with the following relations:

cxd =Tl =1, 2 ey = 1. -1, . . —1,...  _ ¢@G—7)

[xzal‘]] - [ywyj] =1, 2 Tz=%i-1, 2 Yjz=Yj-1, yj ZiY; = X; .

It is obvious that the group G(¢) is generated by three elements x = g,
y =1y and z.

Let us start with a lemma describing the abelian subgroups of G(¢).

LEMMA 1.1. Let H be a normal subgroup of a group G and let h € H
be an element of infinite order. Assume we are given a set S consisting of
integers s such that h is conjugate to h® € G. For each s € S we choose
an element ys € G such that y;'hys = h®. Let Y denote the subgroup of
G generated by the set {ys}ses and let C be the multiplicative semigroup
generated by S. Then:

(i) There exists a subgroup A of H such that h € A and A is isomorphic
to the additive group of ZC~1.
(ii) For any y in'Y there exist a and b in C such that y~*h%y = hb.
(iii) For any a and b in C there exists y in Y such that y~'hy = h°.
(iv) If Y is abelian then the subgroup A of H generated by {y~‘hy :
y € Y} is isomorphic to the additive group of ZC~1.
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Proof. (i) Let ¢1,¢o,c3,... be the list of all elements of C. By in-
duction we can construct a sequence hg, hi,ho,... of elements of H such
that hg = h, h{» = h,_; and each h, is conjugate in G to h. The sub-
group A = (hg, h1, ha,...) of H is clearly isomorphic to the additive group of
7ZC— 1.

(ii) We proceed by induction on the length of the word y written in the
letters ys.

If y=y, weset a=sand b= 52 ify=y;! weset a=s%and b=s.

Let y = ysz or y = y; 'z where z is an element of Y of smaller length.
By induction, there exist @ and b in C such that z~'h%z = h®. Now we have
yflhay — hbs or yflhasy — hb.

(iii) There exist g and z in Y such that g~'hg = h® and x~'hz = h.
Therefore, (g~ 'x) " hog~— 'z = hb.

(iv) By (i), it is sufficient to prove that for all y € Y the element y~1hy
belongs to the subgroup A = (hg, hi,ha,...). Take some y € Y. By (ii),
there exist ¢, and ¢; in C such that y~'hé»y = h. By (i), there exists
z € Y such that z~'hz = h,,. Since Y is abelian and h = hf{"’c”_l'”cl, we get

Yy hiny = (y_lz_lhzy)c" =2 Yy Wy = 27 oy = R,

Hence,
y_lhy _ (y—lhzny)cnq.-@q _ hf:cnfl-..q c A.

NOTATION. Similarly to Lemma 1.1, for the group G(¢) we will denote
by C' the subsemigroup of Z generated by im ¢.

PROPOSITION 1.2. Ewvery element of the group G(¢) can be uniquely
written as a finite product

Hx?(i) . H yf(j) At

€L JEZ
where t € Z and (i) € ZC~L, B(4) € Z for all integers i, j.

Proof. By Lemma 1.1(iv), the subgroup X; = (ijiy;1 2 j € Z)is
isomorphic to the additive group of ZC~!. Now it is sufficient to use the fact
that Z_IXZ‘Z = Xi,]_.

Let X be the normal subgroup of G(¢) generated by z = z¢ and let YV
be the normal subgroup of G(¢) generated by x = x and y = yg. These
definitions yield:

COROLLARY 1.3. There exist normal subgroups X and Y of G(¢) such

that X is isomorphic to the infinite product of the additive group ZC~', and
Y/X, G(¢)]Y are free abelian groups.
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2. Residually finite groups. In this section we describe some condi-
tions for the group G(¢) to be residually finite.

DEFINITION. We will say that a group G is approzimated by finite p-
groups if for every 1 # g € G there exists a normal subgroup H of G such
that g ¢ H and the index of H in G is p™ for some n.

Clearly, if G is approximated by finite p-groups then G is approximated
by finite groups and so G is a residually finite group.
Consider the following two simple examples.

EXAMPLE 2.1. Let ¢(i) = 1 for all i. Then G(¢) is approximated by
finite p-groups for any prime p. This is clear since G(¢) is a wreath product
of the free abelian group generated by x and y by the infinite cyclic group
generated by z.

EXAMPLE 2.2. Let ¢ be a map onto the set of all primes. Then G(¢)
contains subgroups isomorphic to the additive group of rational numbers so
it is not residually finite.

This example was described by P. Hall in [5], Theorem 2. He proved
that this is a minimal example (in the sense of minimal soluble rank) of a
soluble group which is not residually finite. Moreover, this group contains a
maximal subgroup of infinite index. See also [9], Theorem 9.58.

LEMMA 2.3. Let H be the normal subgroup of G(¢) generated by z" and
y™. Then H consists of finite products

Hm?(l) . H yf(J) s
i€Z JEZ

where (i) € ZC~ and Y-, 5 alin+ k) belongs to the ideal J(n,m) of ZC~*
generated by the integers ¢(j) — d(j —n) and ¢(j)™ — 1 for all j. Moreover,
B(j) € Z and }_;cq B(jn + k) € mZ for all integers k.

Proof. We have 2" € H so H contains also

-1

1_-—n n, —1_-n
$Z‘l‘i+n

=x;2"w; 2z and yjy]jrln =y;z"y; 2",
for all integers ¢ and j. Consequently, H contains

B)=0l=n) _ ;o)

(2

z yi*]'y;—1j+n,xi_¢(J)yi7j+ny;_1j

and 4
220" 2 gy

Let k € J(n,m). Then there exists an integer ¢ € C such that ck is a
sum of integers of the form ¢(j) — ¢(j — n) or ¢(5)™ — 1. Then z¢* is a
product of xf(j)7¢(j7n), xfuw*
exists y € Y such that y—!

! and their inverses. By Lemma 1.1, there
r;y = x¢. This yields #¥ € H. Using elements of
(i)

the form xixl;ln, we can prove that a finite product [[,.z ;" belongs to
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H, where a(i) € ZC~! and ), 7 a(in + k) belongs to the ideal J(n,m) of

ZC 1. Similarly we can prove that for all integers k, the product ] ez yf @)
belongs to H, where HjeZ B(jn + k) € mZ. To end the proof, one can easily
check that the subgroup defined above is stable under conjugations by x, y
and z.

THEOREM 2.4. Let ¢ be a map from Z into Z \ {0}. Let C be the mul-
tiplicative semigroup generated by the image of ¢. Then the group G(¢) is
residually finite if and only if for any positive integer N there exist integers
m > N, n> N and t > N such that t ¢ C and the ideal J(n,m) of ZC~!
generated by the set {¢(j) — ¢(j —n), ¢p(j)™ — 1 : j € Z} is contained in
tZC 1.

Proof. = Suppose G(¢) is residually finite. Take an integer N > 0.
Then there exists a normal subgroup H of G(¢) such that 2%, y* and z* do
not belong to H for : < N. Let n, m and ¢ be the smallest positive integers
such that H contains 2", y™ and z!. By Lemma 2.3, H contains 27 for all
j € J(n,m). Hence J(n,m) C tZC~*.

< Fix a positive integer N. Let m,n,t > N be integers such that t & C
and J(n,m) C tZC~!. Let Hy be the normal subgroup generated by 2", y™
and z!. Then by Lemma 2.3, the subgroup Hy consists of finite products

H mf‘(l) . H yf(ﬂ) s,

€7 JEZL

where a(i) € ZC™1, Y,y alin+k) € tZC~1, B(j) € Z and > jez Bjn+k) €
mZ for all integers k. This subgroup has a finite index equal to nm™t™. It is
clear that the intersection of the subgroups Hy over all positive integers N
is trivial. Hence G(¢) is residually finite.

THEOREM 2.5. Let ¢ : Z — Z \ {0} be periodic with period n (that is,
d(n+1) = ¢(i) for all i € Z). Then G(¢) is residually finite.

Proof. Suppose p is a prime with does not divide any of ¢(1),...,o(n)
where n is the period of ¢. Let Gp be the normal subgroup of G(¢) generated
by 27, y?~1 and xP. Since p divides ¢(i)P~! — 1 for all i, by Lemma 2.3 the
group Gp consists of elements of the form

i€l JjEL

where >, . a(i+ pk) € pZC~! for all i and ", ., B(j + pk) € (p — 1)Z for
all j. One can easily check that the index of Gp in G(¢) is np(p — 1)"Pp"P.
It is clear that the intersection of all subgroups Gp, for p prime not dividing
any of ¢(1),...,¢(n), is trivial.



RESIDUALLY FINITE GROUPS 29

THEOREM 2.6. Let p be a prime. Then G(¢) is approzimated by finite p-
groups if and only if p & C and for any positive integer N there exist integers
m > N, n > N and t > N such that the ideal J(p™,p™) is contained in

Ly -1
P ZC~+.

Proof. = Suppose G(¢) is approximated by finite p-groups. Let N > 0
be an integer. Then there exists a normal subgroup H of G(¢) such that
G(¢)/H is a finite p-group and 2%, 3* and x* do not belong to H for i < p™.
Let n, m and t be the smallest positive integers such that H contains 2™, y™
and z'. By Lemma 2.3, H contains 27 for all j € J(n,m). Hence J(n,m) C
tZC~'. Furthermore, n, m and t are some powers of p since the index of H
is a power of p.

< Let Hy be a normal subgroup of G(¢) defined in the following way:
Let m,n,t > N be integers such that J(p",p™) C p'ZC~!. Let Hy be the
normal subgroup generated by 2P, ¢ and 2?". Then by Lemma 2.3, Hy
consists of finite products

[0 [[o09 ",

€L JEZ

where a(i) € ZC™, Y, cgalin+k) € pZC~!, B(j) € Z and > jez Blin+
k) € p™Z for all integers k. This subgroup has a finite index equal to
ptmP " Tt is clear that the intersection of all subgroups Hy over all
positive integers N is trivial. Hence G(¢) is residually finite.

THEOREM 2.7. Let m > 1. Let ¢ : Z — 7Z be defined by ¢(i) = im + 1.
Then G(¢) is approzimated by finite p-groups if and only if the prime p divides
m.

Proof. = Suppose that p does not divide m. Then there exists an integer
¢ such that p divides im + 1. Hence p € C and consequently G(¢) is not
approximated by finite p-groups.

< Suppose p divides m. Let n be a positive integer. Then the ideal
J(p™, p™) is generated by

() = —p")=jm+1-(j—p")m—1=p"m
and by
o) —1=(m+1)"" — 1.

One can easily show by induction on n that all these elements belong to p"Z.
This yields J(p™, p") C p"ZC~1. By Theorem 2.6, G(¢) is approximated by
finite p-groups.

Now we show that the residual finiteness of G(¢) does not depend on the
semigroup C.
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EXAMPLE 2.8. Let m > 0 be an integer and let ¢ (i) = m for all 4. Then
G(¢) is approximated by finite p-groups for all primes p relatively prime to m.

EXAMPLE 2.9. Let ¢(i) = 1 for i # 0 and ¢(0) = m, where m > 1 is an
integer. Then G(¢) is not residually finite.

Proof. Suppose H is a normal subgroup of G(¢) of a finite index. Then
H contains z" for some n. This yields

Yoyn ' = yoz"yo 'z " € H.
Consequently, H contains

—1,,—¢(0) —1

— 0)— 0
mt _ G $O=6(m) _ 00 1,60 -1,

Zo
Hence G(¢) is not residually finite.

3. Groups with the finite embedding property
DEFINITION. Following [3], we will say that a group G is a Finite Em-

bedding group (FE-group) if for every finite subset X of G there exists an
injection ¥ of X into a finite group H such that if z, y and xy are in X then

W(zy) = ¥(x)¥(y).
THEOREM 3.1 ([3], Proposition 1.2). All residually finite groups are FE-
groups.
THEOREM 3.2. Every finitely related FE-group G is residually finite.

Proof. Let G be a FE-group generated by a set S with relations 71, ...
..oyTn. Then G = F(S)/R where F(S) is the free group generated by S
and R is the normal subgroup of F(S) generated by the set of relations. Let
¢ : F(S) — G be the canonical projection. Let v # 1 be an element of G
and w € F(S) be such that ¢(w) = v. Let X be the set of all subwords
of w,ry,...,r, including the empty word. By definition, there exists an
injection ¥ of ¢(X) into a finite group H such that if z, y and zy are in ¢(X)
then

W (ry) = U(2)0(y).

Let A: F(S) — H be the group homomorphism given by

{!P(qﬁ(s)) ifseXns,

A(s) = :
1 if se S\ X.

We arrive at a commutative diagram of group morphisms:

F(S)-A g
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By the properties of ¥, the set {ry,...,r,} of relations is contained in ker A.
Hence we can extend ¥ to a group homomorphism A\ : G — H. Since V¥ is
an injection, A\(v) # 1. Furthermore, ker A is a subgroup of G of finite index.

PROPOSITION 3.3. Let G be a group such that for every finite subset X
of G there exists an injection ¥ of X into a residually finite group I' such
that if x,y and xy are in X then ¥(zy) = ¥(x)¥(y). Then G is a FE-group.

Proof. Let X, ¥ and I' be as in the assumptions. Since ¥(X) is a
finite subset of I', there exists an injection T of ¥(X) into a finite group H
such that if x, y and zy are in X then 7(¥(xy)) = 7(¥(z))7(¥(y)). Now
ToW: X — H is the required injection.

The aim of this section is to prove that G(¢) is a FE-group for every ¢.
This gives us a series of not residually finite FE-groups.

THEOREM 3.4. The group G(¢) satisfies the FE condition for all func-
tions ¢.

Proof. Let ¢ : Z — Z\ {0} and let X be a finite subset of G(¢). Then
there exists a positive integer n such that all elements of X can be written

as products
n . n .
] l x?(l), l [ y]@(J) At

i=—n Jj=—n

where for all i and j we have a(i) € ZC~ 1, B(j) € Z and —n <t < n. The
multiplication in X looks as follows:

ﬁ 200 ﬁ 9t ﬁ 200, H I

i=—n j=—-n i=—n j=—n

L T 9 T 220 T -

i=—n j=—n i=—n j=—n

n+t . . n . B n+t
a(i)+d(i—t) | | ) o(j+t—1) . o .
H x, j=—n PV ) H yj[_"(JH'Y(J )tk

i=—n Jj=—n

Let ¢ : Z — Z \ {0} be a periodic function with period 6n + 2 defined by

. o(i) for —3n <i < 3n,
Y(i) = :
M  fori=3n+1,

where M is an integer so large that every element of X can be considered
as an element of G(¢). Let A : X — G(v) be the injection given by

/\( ﬁ w?(i)- ﬁ yf(j)-zt> _ ﬁ m;x(z H BG) .t

i=—n Jj=—n i=—n j=—n
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It is clear that A(ab) = A(a)A(b) for a,b € X. Since by Theorem 2.5, G(v))
is residually finite, it is a FE-group by Proposition 3.3.

COROLLARY 3.5. There exists a finitely generated FE-group which is not
locally residually finite.

Proof. Let ¢ be a function from Z onto the set of all primes. Then
G(¢) is generated by 3 elements, it is not residually finite since it contains
subgroups isomorphic to the additive group of Q and by Theorem 3.3, it is
a FE-group.

4. Idempotents. One of the famous open problems in group theory is
the following one formulated by Kaplansky [6]:

CONJECTURE. The group algebra k|G] of a torsion free group G over a
field has no nontrivial idempotents.

Formanek [4] gave a partial answer to this conjecture in the case when
K is a field of characteristic 0 and for groups satisfying the following non-
divisibility condition:
(%) For each 1 # g € G there are infinitely many primes p such that g
is not conjugate to any of g7, gpz,gps, .

Zalesskil and Mikhalev [8] studied idempotents in group algebras of po-
sitive characteristic p and formulated the following condition:

(Dp)  For any g € G, if g is conjugate to gpN for some integer N > 0 then
¢ has finite order.

In [1] Bass reformulated the condition (x) follows:

(D) Suppose H is a finitely generated subgroup of G, g € G, N is an
integer > 0 and for all but finitely many primes p, g is conjugate in
H to gpN. Then ¢ has finite order.

He proved that linear groups satisfy condition (D) and the torsion free
linear groups satisfy Kaplansky’s Conjecture. He also proved that the (D)-
groups satisfy the following conjecture:

BAss’ STRONG CONJECTURE [1]. Let P be a finitely generated projec-
tive module over the integral group ring Z|G]. Then rp(g)=0 for g#1, where
rp 15 the trace map.

Strojnowski [10] proved Bass’ Strong Conjecture for groups satisfying the
following condition:

(WD)  Suppose H is a finitely generated subgroup of G, g € H, N is an
integer > 0 and for all primes p, ¢ is conjugate to gi"N. Then g = 1.
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In this paper we give a series of examples to show how these conditions
differ.

THEOREM 4.1. (i) G(¢) satisfies condition (D) if and only if the group
CC~1 does not contain any power of the prime p.

(ii) G(¢) satisfies condition (D) if and only if for all integers N > 0 the
group CC~ does not contain infinitely many elements of the set {p™: p is
a prime}.

(iii) G(¢) satisfies condition (WD) if and only if for any integer N > 0
there exists a prime number p such that pN does not belong to the group
cCc—1.

Proof. Since the proofs of all parts are similar we only show (i). Let p" €
CC~!. Then by Lemma 1.1(iii), there exists an element g of the subgroup

1zg = a?" . Hence G(¢) does not satisfy

generated by all ys such that g~
condition (D).

Conversely, if G(¢) does not satisfy (D,) then there exists h € G(¢) of
infinite order such that h is conjugate to its p”th power. Since the groups
G(¢)/Y and Y/X are free abelian, they do not contain the additive group

Z[1/p]. Hence by Lemma 1.1(i), h € X. Let h = [’ 2% and let g =

i=a i

Hd BU) . Lt ¢ G(¢) be such that g~'hg = h?". Then

j=cYj

b o b O TTe i— )8
hpN = sza(l)p ’ = Z_t(H J}Za( )Hj:C ¢( J) )Zt
i=a

i=a

Hence t = 0 and for all ¢, if a(i) # 0 then H?:C #(i — §)PU) = pr. Thus,
p" e CCL

EXAMPLE 4.2. Let ¢ be a map from the integers onto the set {pP : p is
a prime}. Then G(¢) satisfies conditions (D) and (WD) but does not satisfy
(%) or (D,) for any prime p.

EXAMPLE 4.3. Let ¢ be a map from the integers onto {2p : p is an odd
prime}. Then G(¢) satisfies (WD), (D), (x), and (D,,) for all primes p but is
not residually finite since it contains a subgroup isomorphic to the additive
group of all rational numbers.

Now we show that nondivisibility conditions are not stable under infinite
extensions by cyclic groups.

EXAMPLE 44. Let H = G(¢) x (g) be the semidirect product of the
group G(¢) from Example 4.3 and the infinite cyclic group generated by ¢
such that gz = zg, gy = yg and ¢~ 'zg = 2%. Then z is conjugate in H to xP
for all primes p. Hence the group H does not satisfy any of the conditions
(WD), (D), (+) or (D,).
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PROPOSITION 4.5. The following classes of groups are closed under sub-
direct products:

(i) (Dp)-groups having at most p-torsion.
(ii) Torsion free (D)-groups.
(iii) (WD)-groups.

Proof. Since proofs of all parts are similar we only show (i). Let G C
HjeJ G; be a subdirect product of (D,)-groups with p-torsion only. Let g =

N . —
(gjj-v),h = (h;) € G be such that h='gh = g . Then for each j, h; 1gjhj =
g% sogj=1. Hence g = 1.

In [1] Bass wrote: “We do not know whether all residually finite groups
satisfy condition (D)”. The negative answer was given by Wilson [11]. Now
we present a new construction of such “bad” groups.

THEOREM 4.6. Let m>1. Let ¢ : Z— 7 be defined by ¢(i) =im + 1.
Then G(¢) satisfies the condition (WD) but does not satisfy (D) or (x).
Moreover, for each prime p the following conditions are equivalent:

(i) p divides m.
(ii) G(¢) is approzimated by finite p-groups.
(iii) G(¢) satisfies condition (D).

Proof. The implication (i)=-(ii) follows from Theorem 2.7.

(ii)=-(iii) follows from Proposition 4.5.

(iii)=-(i). Take a prime ¢ such that ¢ does not divide m. Since at least two
of the integers 1,q,q2,...,¢"™ are congruent modulo m, m divides ¢ — 1
so ¢"™ has the form im + 1. Hence G(¢) does not satisfy (D).

Furthermore, by Theorem 4.1(ii), ¢™ — 1 € C for primes ¢ > m implies
that G(¢) satisfies neither (D) nor (x).
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