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1. Introduction. The primary aim of this note is to prove the follow-
ing result, providing the solution (in the positive) to a problem that first
appeared in [8] as P897.

Theorem 1.1. If Ω is any class of topological groups and V (Ω) the va-
riety of topological groups generated by Ω, then every Banach–Lie group (in
particular , every finite-dimensional Lie group and every additive topological
group of a Banach space) in V (Ω) is contained in QSP(Ω).

Here variety [9] means a class of topological groups closed with respect
to forming direct products of arbitrary subfamilies equipped with Tychonoff
topology (which operation is denoted in the sequel by C), proceeding to
topological subgroups (S), and quotient groups (Q). The symbol P denotes
forming finite direct products of topological groups, while S refers to taking
closed topological subgroups.

The version of the above theorem stated for finite-dimensional Lie groups
was announced in [5], however it appears that the proposed proof is incor-
rect. In our analysis of what went wrong in the original proof, we isolate a
new concept playing a central role in the argument, that of a locally minimal
topological group. While being similar to widely known minimal topological
groups, locally minimal topological groups are found more often. In partic-
ular, every Banach–Lie group, including every finite-dimensional Lie group,
every additive group of a Banach space, as well as every discrete group, is
locally minimal. The major technical result which we obtain is of indepen-
dent interest, and it states, in particular, that whenever a locally minimal
group G having no small normal subgroups (in an obvious sense) isomorphi-
cally embeds into the product of a family of topological groups, it embeds
isomorphically into the product of a finite subfamily. While it turns out that
topological groups with no small subgroups (NSS groups) are not necessar-
ily in this class—and this was essentially the flaw of the proof in [5]—the
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so-called groups uniformly free from small subgroups, introduced by Enflo
in [3] and very close in their properties to NSS groups, are. They contain,
in particular, all Banach–Lie groups, whence Theorem 1.1 follows.

2. Locally minimal topological groups. A (Hausdorff) topological
group G = (G, τ) is called minimal [2] if it admits no Hausdorff group
topology strictly coarser than τ . We need a somewhat weaker version of this
concept and for this reason we introduce the following new notion.

Definition 2.1. We say that a topological group G = (G, τ) is locally
minimal if there exists a neighbourhood of the identity, V , with the property
that whenever σ is a Hausdorff group topology on G with σ ⊆ τ such that
the σ-interior of V is nonempty, one has σ = τ .

It is useful to observe that local minimality is indeed a local property
in the sense traditionally used in the theory of topological groups: a neigh-
bourhood of the identity, V , possessing the property from Definition 2.1,
can be chosen so as to be arbitrarily small. In other words, for every neigh-
bourhood of the identity, U , there is a neighbourhood of the identity W such
that W ⊆ U and whenever σ is a Hausdorff group topology on G coarser
than the original topology τ and having a nonempty σ-interior of W , then
σ = τ . (The proof is in fact trivial: just put W = U ∩ V , where V is as in
the definition.)

Every minimal topological group is obviously locally minimal. To see
that the converse is not true, notice that every discrete topological group G
is locally minimal if one puts V = {eG}. In particular, the additive group
of integers, Z, equipped with the discrete topology, is locally minimal, while
this group is well known to support a wealth of nondiscrete group topologies.
(See e.g. Chs. I and II in [2].)

We aim to show that the class of locally minimal topological groups
includes all (underlying topological groups of) Banach–Lie groups. To prove
this, we recall a concept introduced by Enflo [3]. A topological group G is
said to be uniformly free from small subgroups if it contains a neighbourhood
of the identity, U , such that for every neighbourhood of the identity, V , there
exists a positive integer nV with the property that x 6∈ V ⇒ xn 6∈ U for
some n ≤ nV .

For any subset S of a group G and for any positive integer n we set

1

n
S = {x ∈ G : ∀k = 1, . . . , n, xk ∈ S}.

The following is obvious.

Proposition 2.2. If V is a neighbourhood of the identity in a topological
group G and n is a positive integer , then the set (1/n)V is a neighbourhood
of the identity in G.
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We wish to reformulate the concept of a group uniformly free from small
subgroups in a more convenient form for our purposes. The following is
immediate.

Proposition 2.3. A topological group G is uniformly free from small
subgroups if and only if for some neighbourhood of the identity , U , the sets
(1/n)U form a neighbourhood basis at the identity.

Recall that a topological group G has no small subgroups, or else is
an NSS group, if some neighbourhood of the identity, V , contains no sub-
groups of G other than {eG}. It is easy to see that every topological group
uniformly free from small subgroups is an NSS group, but the converse is
not true because, for example, each group uniformly free from small sub-
groups is metrizable, while an NSS group need not be so. (The simplest
such example would be the abelian topological group from Example 2.1.1
in [3]. There exists, however, a vast class of NSS groups of importance that
are not metrizable unless they are discrete—the free topological groups on
submetrizable spaces, cf. [10], [12].)

Remark 2.4. There exist metrizable NSS groups that are not uniformly
free from small subgroups. Such is the additive group of any nonnormable
locally convex Fréchet space admitting a continuous norm, e.g. the space
C∞(X) of all infinitely smooth real-valued functions on a compact manifold
equipped with the usual topology of uniform convergence with all deriva-
tives.

Proposition 2.5. If a topological group G is uniformly free from small
subgroups, then it is locally minimal.

P r o o f. Select as U the neighbourhood appearing in the definition of
a group uniformly free from small subgroups, and denote by V any neigh-
bourhood of the identity such that V V −1 ⊆ U . Let σ be a Hausdorff group
topology on G such that σ ⊆ τ and the σ-interior of V is nonempty. Then
the σ-interior of U is easily checked to contain e. Now for every n ∈ N the
set (1/n)U must be σ-open. But such sets form a basis for τ at the identity,
which shows that σ = τ .

Remark 2.6. Not every locally minimal group—and in fact, not every
minimal group—is uniformly free from small subgroups. The most widely
known example is the group S(X) of all permutations of an infinite set X
equipped with the topology of pointwise convergence with respect to the
discrete topology on X. It is minimal [2] but not even an NSS group, since
open subgroups form a neighbourhood basis at the identity.

Theorem 2.7. Every Banach–Lie group is uniformly free from small
subgroups.
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P r o o f. LetG be a Banach–Lie group, and denote by g the corresponding
Banach–Lie algebra. Equip g with a submultiplicative norm. Let ε > 0 be
so small that (i) the restriction of the exponential map exp : g → G to the
open ball Oε ⊂ g of radius ε centred at zero is a diffeomorphism onto its
image, and (ii) the Hausdorff series H(x, y) converges for any two elements
x, y ∈ Oε, making Oε into a local Banach–Lie group with respect to the
Hausdorff multiplication ∗. (For the basics of Banach–Lie theory we refer
the reader to [1].) Now choose a δ > 0 so that for every x, y ∈ Oδ one has
x ∗ y ∈ Oε. Define U = expOδ. We claim that for every positive integer n,

1

n
U = exp(Oδ/n).

The inclusion ⊇ is immediate. Let now x ∈ G be such that xk ∈ U for
all k = 1, . . . , n. Since in particular x ∈ U , there is a unique x̃ ∈ Oδ with
exp x̃ = x. Now we proceed by induction on k. Suppose that x̃ ∈ Oδ/k for
some k=1, . . . , n− 1. Then clearly (k + 1)x̃∈O(k+1)δ/k⊆O2δ⊆Oε, because

(k + 1)/k ≤ 2. Since xk+1 = exp((k + 1)x̃) and xk+1 ∈ U , one must have
(k+1)x̃ ∈ Oδ, as exp|Oε

is injective and therefore (exp|Oε
)−1(exp(Oδ)) = Oδ.

But this means exactly that x̃ ∈ (1/(k + 1))Oδ = Oδ/(k+1). We have thus
established that x̃ ∈ Oδ/n and therefore x ∈ exp(Oδ/n).

Finally, observe that the open balls Oε/n form a neighbourhood basis in
the Banach–Lie algebra g and their images under exp form a neighbourhood
basis in G.

Corollary 2.8. Every Banach–Lie group (in particular , every finite-
dimensional Lie group and the additive topological group of every Banach
space) is a locally minimal topological group.

Remark 2.9. The above result does not seem to extend to more general
classes of useful infinite-dimensional Lie groups. The additive topological
group of the Fréchet space C∞(X) (Remark 2.4) is an obvious example of
a regular abelian Fréchet–Lie group in the sense of [7] whose underlying
topological group is not locally minimal: if V is a neighbourhood of zero,
then for some n ∈ N large enough the interior of V with respect to the
Cn-topology is nonempty, and the latter topology is strictly coarser than
the C∞-topology.

Let us say that a topological group G has no small normal subgroups if
there is a neighbourhood of the identity, V , containing no nontrivial normal
subgroups of G. (Equivalently: no nontrivial closed normal subgroups of G.)
This notion is perfectly in line with the well known and important concept
of a group with no small subgroups. Clearly, every NSS group has no small
normal subgroups, but the converse is not true. (As an example, consider
again the full symmetric group, S(X), of an infinite set X, equipped with the
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topology of pointwise convergence. It is known to be topologically simple,
that is, to contain no proper nontrivial closed normal subgroups [4]. At the
same time, it is not an NSS group, as noticed in Remark 2.4.)

It turns out that in the absence of small normal subgroups, the property
of local minimality can be strengthened as follows.

Proposition 2.10. Let G be a locally minimal topological group having
no small normal subgroups. Then each neighbourhood U of the identity in
G contains a neighbourhood V of the identity such that whenever σ is a
(not necessarily Hausdorff ) group topology on G with σ ⊆ τ such that the
σ-interior of V is nonempty , one has σ = τ .

P r o o f. Let W be a neighbourhood of the identity with the property
taken from Definition 2.1 of local minimality; one can also assume without
loss of generality thatW contains no small normal subgroups and (since local
minimality is a local property) W ⊆ U . Choose a symmetric neighbourhood
V of the identity such that V 2 ⊆ W . Now let σ be a group topology on G
with σ ⊆ τ and such that the σ-interior of V is nonempty. Denote by N the
σ-closure of {eG}. Then N is contained in the σ-closure of V , which is in
turn a subset of V 2 ⊆W . (Recall that the closure of a set X in a topological
group is exactly the intersection of all sets of the form XO as O runs over
a neighbourhood basis at the identity.) By the assumption, one must have
N = {eG}, that is, σ is a Hausdorff topology and therefore σ = τ .

3. The main results. The following two are the central technical
results of this note.

Lemma 3.1. Let H, F , G be Hausdorff topological groups and let π :
H → G be an open continuous surjective homomorphism, f : H → F be a
continuous homomorphism and g : F → G be a homomorphism such that
π = g◦f . Let G be locally minimal and have no small normal subgroups, and
let V be a neighbourhood of the identity in G chosen as in Proposition 2.10.
Suppose the interior of g−1(V ) in F is nonempty. Then the surjective ho-
momorphism g : F → G is continuous and open.

P r o o f. Denote by σ the factor topology of the group topology on F
formed with respect to the homomorphism g : F → G. In other words, the
σ-open subsets of G are exactly the images of open subsets of F under the
homomorphism g. Since the latter is surjective, σ is a group topology on
G (possibly non-Hausdorff). If W is an open subset of F , then g(W ) =
π(f−1(W )) is an open subset of G with respect to its original topology,
therefore σ is coarser than the original topology on G. Since g−1(V ) is
assumed to have a nonempty interior in F , the σ-interior of V is nonempty.
Now we are under the assumptions of Proposition 2.10 and can conclude
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that σ coincides with the original topology of G. But this means exactly
that g : F → G is continuous and open.

Now we are able to establish a rectified version of the flawed Lemma 5.2
of [5].

Lemma 3.2. Assume that a topological group G is a quotient group of a
subgroup of the product of a family G of topological groups. Assume that G
is locally minimal and has no small normal subgroups. Then G is a quotient
group of a subgroup of the product of a finite subfamily of G.

P r o o f. Let G = {Gα : α ∈ A}, let H be a topological subgroup of∏
α∈AGα, and denote by π : H → G the factor homomorphism with kernel

N . Denote by V a neighbourhood of the identity in G small enough to
contain no nontrivial normal subgroups of G and to satisfy the property
stated in Proposition 2.10. There are a finite set B={α1, . . . , αn} of indices
and neighbourhoods Vαi

⊆ Gαi
of the identity, i = 1, . . . , n, such that

p−1B (Vα1
× . . .× Vαn

) ∩H ⊆ π−1(V ),

where

pB :
∏
α∈A

Gα →
∏
α∈B

Gα ≡ Gα1 × . . .×Gαn

is the canonical projection homomorphism.
Define F = pB(H); it is a topological subgroup of Gα1

× . . . × Gαn
.

Let f = pB |H : H → F ; it is a continuous homomorphism with kernel
p−1B (e)∩H. Since p−1B (e)∩H ⊆ π−1(V ) and therefore π(p−1B (e)) is a normal
subgroup of G contained in V , it is trivial and one has p−1B (e) ∩ H ⊆ N .
Because of that, π factors through p−1B (e) ∩ H to give rise to a surjective
homomorphism g : F → G.

Notice that π = g ◦ f , π : H → G is open, continuous and onto, f : H →
F is continuous, and g : F → G is a group homomorphism. The interior
of g−1(V ) in F is nonempty, because it contains the set W = (Vα1 × . . .
. . .× Vαn) ∩ F : indeed,

g(W ) = π(f−1(W )) = π(p−1B (Vα1 × . . .× Vαn) ∩H) ⊆ V.
We are now under the assumptions of Lemma 3.1, which result tells us that
the surjective homomorphism g is continuous and open and therefore G is
a topological factor group of F < Gα1

× . . .×Gαn
.

Remark 3.3. Even though a topological subgroup F of a finite sub-
product, having G as its factor group, is a continuous homomorphic image
of the topological subgroup H of the infinite product, it need not be a topo-
logical factor group of H. Here is a counterexample. Let E be an infinite-
dimensional normed space, and denote by Eσ the space E having its weak
topology. Fix a nontrivial continuous linear functional f : E→C. LetH be a
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subgroup of the Tychonoff product Eσ ×Eℵ0 formed by all constant maps,
that is, the image of E under the diagonal embedding x 7→ (x, x, x, . . .).
Clearly, H is topologically isomorphic to E. Let G = C and define a homo-
morphism π : H → G via π(x, x, x, . . .) = f(x). Certainly, G is a topological
factor group of H. Choose as a finite subproduct the first factor, Eσ. The
projection of the infinite product onto the first factor, restricted to H ∼= E,
is the canonical continuous map E → Eσ, which is not open.

Remark 3.4. In the above example we have used an infinite product
of topological groups to make the setting look more “generic”. However,
as was justly pointed out by the referee of this paper, the product E × Eσ
would do just as well. In this case H = {(x, x) : x ∈ E} is simply the
graph of the continuous identity function E → Eσ which fails to be open
since E is infinite-dimensional. The graph of any continuous function is
always isomorpic to its domain (under the projection onto its domain). The
projection onto the range is a continuous bijective morphism which is not an
isomorphism of topological groups. This example also illustrates that not
all finite partial projections preserve the property of the absence of small
subgroups even if they project the subgroup H bijectively onto its image.

The following is an immediate consequence of Lemma 3.2, Proposi-
tion 2.5 and the fact that every group uniformly free from small subgroups
is NSS and therefore has no small normal subgroups.

Corollary 3.5. Let G be a topological group uniformly free from small
subgroups. Then, whenever G is isomorphic to a topological subgroup of
the direct product of a family G of topological groups, G is isomorphic to a
subgroup of the product of a finite subfamily of G.

Remark 3.6. In view of the above Corollary 3.5, it is useful to remem-
ber that not every locally minimal topological group having no small normal
subgroups is uniformly free from small subgroups. A counterexample is con-
veniently provided by the same infinite symmetric group S(X).

Corollary 3.7. Let G be a Banach–Lie group. Then whenever G is
isomorphic to a topological subgroup of the direct product of a family G of
topological groups, G is isomorphic to a subgroup of the product of a finite
subfamily of G.

By simply reformulating Lemma 3.2, we obtain the following result,
which is the corrected version of Proposition 5.3 in [5].

Proposition 3.8. For a class Ω of topological groups, the members of
QSC(Ω) which are locally minimal and have no small normal subgroups, are
contained in QSP(Ω).
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Remark 3.9. Proposition 5.3 of [5] claimed that for a class Ω of topo-
logical groups, the members of QSC(Ω) having no small subgroups are con-
tained in QSP(Ω). This statement is not true, and the simplest way to see
this is to observe that if applied to the class Ω of all metrizable topological
groups, it yields immediately the wrong statement: every abelian NSS group
is metrizable. (As the operations P, S, and Q all preserve the first axiom of
countability, and every abelian topological group is isomorphic to a topo-
logical subgroup of the product of metrizable groups, see e.g. [6].) Now cf.
the earlier comment on the issue preceding Remark 2.4.

Repeating word for word the argument contained in [5] on pp. 161–162
between the statement of Proposition 5.3 and the statement of Theorem 5.4,
we obtain the following corrected version of Theorem 5.4.

Theorem 3.10. The class of members of V (Ω) that are locally minimal
and have no small normal subgroups is contained in SPQSP(Ω) ⊆ QSP(Ω).

Now the proof of our Theorem 1.1 proceeds exactly as that of Theo-
rem 5.5 in [5], but we replace the NSS property with that of being locally
minimal and having no small normal subgroups, apply Corollary 2.8, and
also observe that since a Banach–Lie group is complete in its two-sided uni-
formity [1], it is therefore closed in any topological group containing it as a
topological subgroup [11].
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