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GREEN WALKS IN A HYPERGRAPH

BY

WOLFGANG R U M P (EICHSTÄTT)

Introduction. For a finite group G, the blocks Λ of ẐpG with cyclic
defect are described by their Brauer tree. This tree has to be understood
in conjunction with an embedding into the plane, and a clockwise “walk
around the tree” [2] corresponds to a cyclic projective resolution in which
each indecomposable projective Λ-lattice occurs exactly twice [2, 4, 7].

In a recent paper, Roggenkamp [8] introduced a class of orders Λ over
a complete noetherian local domain R which are similarly associated with
a combinatorial object G like a Brauer tree, such that there are projective
resolutions of Λ-modules corresponding to Green walks in G. Namely, G
may be an arbitrary finite connected graph, possibly with “truncated” edges,
that is, a kind of generalized edges which are attached to one vertex only.
In contrast to a tree, a graph G (with or without truncated edges) does not
always admit an embedding into the plane. Therefore, one has to specify a
local embedding in this case, or equivalently, a cyclic ordering of the germs
of edges at every vertex. Let us refer to this concept as a TC-graph (T =
truncated, C = cyclic ordering).

In the following example, there are two truncated edges f and g.
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If the cyclic ordering at vertex y is given by the clockwise orientation of
the plane, there are two finite Green walks f → e → e → h → f and
g → h→ g which correspond to a pair of finite projective resolutions for the
associated R-order (cf. [8]; also Example 2 of §4 below). In fact, Roggenkamp
[8] shows that the occurrence of finite Green walks depends on the presence
of truncated edges, whereas for a graph G without truncated edges, there are
only cyclic Green walks in G.
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In the present note, we generalize TC-graphs by a natural concept, quite
easy to define, which occurs as underlying structure of a wide class of rings Λ
(including the orders considered in [8]), with projective resolutions according
to Green’s walk. Namely, we define a (finite) cycle hypergraph H simply by
a map ε : C � E between finite sets, together with a permutation π on C.
Then the cycles of π are the vertices, the elements of E the edges, and ε
gives the rule of attachment between vertices and edges.

For example, consider the set C = {1, 2, 3, 4, 5, 6} with permutation π =
(1)(23456), and define a cycle hypergraph H by ε : C � E = {e, f, g, h}
with ε(1) = ε(5) = e, ε(2) = g, ε(3) = ε(6) = h, ε(4) = f . Then there are
two vertices x = {1}, y = {2, 3, 4, 5, 6}, and H coincides with the TC-graph
depicted above.

In general, any edge e ∈ E may be attached to arbitrarily many ver-
tices, possibly with multiplicities. For instance, a graphical loop, such as h
in the preceding TC-graph, has to be regarded as an edge with a twofold
attachment to its vertex. Apart from these multiplicities of attachment, our
notion of hypergraph coincides with that of Berge [1]. Being more general,
however, our concept allows us to distinguish between 1-loops, i.e. edges
with one vertex of multiplicity one, and 2-loops, i.e. edges with one vertex
of multiplicity two as in a usual graph. (In fact, the 1-loops or “truncated
edges” [8] are just the loops that occur in matroid theory [1, 10].) Thus if a
cycle hypergraph has edges with at most two vertices (multiplicities counted)
then it is equivalently given by a TC-graph.

Next let us associate an R-order ΛH with H. Assume first that R is one-
dimensional, i.e. a complete discrete valuation domain. Then for the given
permutation π on C there exists a basic hereditary order Γ with an inde-
composable Γ -lattice Pc for each c ∈ C such that RadPc ∼= Pπc. Secondly,
the partition on C induced by ε gives rise to a subalgebra of Γ/RadΓ which
corresponds to a suborder ΛH of Γ with RadΛH = RadΓ . If we require that
ΛH is totally split, i.e. ΛH/RadΛH is a product of fields k := R/RadR, then
up to isomorphism, ΛH is uniquely determined by H. A characterization of
such totally split orders ΛH as a special class of Bäckström orders will be
given in Theorem 1.

Before we consider more general rings related to H, let us say a word
about Green walks and projective resolutions in the case of an arbitrary
finite cycle hypergraph H. We shall associate with H a directed graph WH

with vertex set C such that for each c ∈ C, the arrows in WH starting from
c point to the r possible continuations c1, . . . , cr ∈ C of a Green walk. (In
contrast to classical Green walks, there may be several continuations!) In
terms of projective resolutions, this means that the syzygy of the ΛH -module
Pc is Pc1 ⊕ . . . ⊕ Pcr . From this it follows that the syzygies of the simple
ΛH -modules are given by WH . Moreover, there is a one-to-one correspon –
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dence e 7→ Pe between the edges e of H and the indecomposable projective
ΛH -modules Pe, and the projective cover of the Λ-module Pc is just Pε(c).
Therefore, a projective resolution of ΛH/RadΛH can be described entirely
in terms of H.

For a TC-graph G, our R-order ΛG coincides with Roggenkamp’s order
Λ(G) ([8], Definition 4.5) in the totally split case. More generally, it is shown
in [8] that the hereditary order Γ corresponding to our permutation space
C can be replaced by an arbitrary QH-order [7], that is, an R-order Γ with
a regular element ω ∈ RadΓ such that Γ/Γω is a product of local algebras.
Then the relationship between Green walks and projective resolutions re-
mains valid without change. Moreover, the dimension of R does not affect
this correspondence.

Now let us return to an arbitrary finite cycle hypergraph H. In §4 we as-
sociate with H a most general class of rings Λ for which the correspondence
between Green walks and projective resolutions is valid. For any semiperfect
ring S, we define a (two-sided) ideal ProS ⊂ RadS and call it the proradical
of S. We call S prohereditary if there is an invertible ideal (§3) J between
ProS and RadS with

⋂
J i = 0. (If S has no local ring-direct factors, then J

necessarily coincides with ProS.) We then prove that every QH-order is pro-
hereditary, and that for every prohereditary ring Γ with defining ideal J as
above, the correspondence between Green walks and projective resolutions
holds for a class of subrings Λ of Γ with ProΛ ⊂ J ⊂ Λ.

We owe thanks to the referee for the suggestion to present our results in
a general form (instead of restricting our exposition to totally split orders),
so that the known examples of Brauer tree orders (e.g. blocks with cyclic
defect) are explicitly covered by the article.

1. Hypergraphs. Let us define a hypergraph H = (X;E) as a function

E ×X → N,(1)

associating with each pair (e, x) a non-negative integer ex, such that for
each e ∈ E, and each x ∈ X,

r(e) :=
∑
y∈X

ey > 0, r(x) :=
∑
f∈E

fx > 0.(2)

The elements of X (resp. E) are called vertices (resp. edges), and H is
said to be finite if X and E are finite sets. The expressions (2) will be
called the rank of e and x, respectively; they can be infinite if H is. The
supremum supe∈E r(e) (resp. supx∈X r(x)) defines the rank (resp. corank) of
the hypergraph H. If r(e) = 2 for all e ∈ E, then H is said to be a graph.
In fact, there are two kinds of edges in this case: edges e ∈ E which connect
two different vertices x 6= y, i.e. ex = ey = 1, and loops e with ex = 2 for
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a single x ∈ X. For an arbitrary hypergraph H, the function (1) gives the
multiplicity of attachment between vertices and edges.

Our terminology generalizes that of C. Berge [1] whose (finite) hyper-
graphs arise if the function (1) is restricted to values 0 and 1. Therefore,
he is bound to define a loop (boucle) as an edge of rank one. Generaliz-
ing this, we define a loop as an edge e with ex 6= 0 for just one vertex x.
So there are loops of all different ranks r > 0, briefly called r-loops. From
a graph-theoretical point of view, the 1-loops could be imagined as “half”
edges with one free end not attached to a vertex. They have been introduced
by K. W. Roggenkamp [8] as truncated edges in order to generalize Green’s
“walk around the Brauer tree” [2]. Note that our definition of a hypergraph
is dual with respect to vertices and edges.

In order to generalize the notion of a Brauer graph, let us define a permu-
tation space as a set C together with a bijection π : C → C. For any c ∈ C,
a successor πc and a predecessor π−1c are uniquely defined. If π operates
transitively on C 6= ∅ , we shall call C a cycle. In this case, π generates a

cyclic group Z/nZ of permutations on C, which determines C up to isomor-
phism. Hence there is a one-to-one correspondence between non-negative
integers n and cycles Zn. Note that the infinite cycle is denoted by Z0. The
following generalization of the well-known cycle decomposition of a (finite)
permutation is obvious:

Proposition 1. Every permutation space C has a unique decomposi-
tion into cycles.

Now let us define a cycle hypergraph H as a permutation space C together
with a surjective map ε : C � E such that the set X of cycles in C satisfies

ex := |ε−1(e) ∩ x| <∞(3)

for all x ∈ X and e ∈ E. Then (3) defines a hypergraph with vertex set X
and edge set E since

r(x) = |x|, r(e) = |ε−1(e)|.(4)

If H is finite and of rank ≤ 2, this concept is equivalent to Roggenkamp’s
truncated graph with local embedding into the plane [8]. In fact, for each
vertex x ∈ X, the elements c ∈ x can be regarded as the germs of edges ε(c)
at x, and the cycle structure on x is equivalent to a local plane embedding
at x.

Example 1. In the example given in the introduction, we have two edges
f, g of rank one, and two edges e, h of rank two. The vertex x is of rank one,
whereas y has rank five. Hence, this cycle hypergraph is of rank two and
corank five. In principle, the TC-graph notation could be extended to cycle
hypergraphs of rank ≥ 3 if the edges of rank ≥ 3 are depicted by means of
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star-shaped regions. However, with increasing corank, even for rank ≤ 2, it
will be more appropriate to draw the partition on C induced by ε together
with the cycles in C. The above example then takes the following form:
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Examples of higher rank will be given at the end of §4.

Now let us define Green walks in an arbitrary cycle hypergraph H given
by a structure map ε : C � E. For each c ∈ C, we introduce arrows
c → πd for all d 6= c with ε(d) = ε(c). Then these arrows determine a
directed graph WH with vertex set C which we shall call the resolution graph
of H. If H is of rank ≤ 2, then the directed paths in WH are just the Green
walks defined in [8]. Therefore, we define a Green walk in H as any directed
path in WH , starting at some c ∈ C and continued as far as possible. Thus
for higher rank of H, there may be several continuations at each vertex of
such a walk. (This generalizes the fact that in a TC-graph, the number of
possible continuations is zero or one.) In §4 we shall see that WH embodies
the combinatorial structure of projective resolutions of certain modules over
the rings associated with H.

2. The order of a cycle hypergraph. Let R be a fixed complete
discrete valuation domain with quotient field K, valuation ideal p = RadR,
and residue field k. For the theory of R-orders and their representations we
refer to [5].

In this section we shall start with any finite cycle hypergraph H and
associate with H a canonical R-order ΛH . These orders ΛH will be the
prototype of orders for which a correspondence between Green walks and
projective resolutions holds. Their internal characterization as a special class
of Bäckström orders (Theorem 1) will then suggest the definition of a most
general class of rings Λ with an underlying cycle hypergraph H for which
such a correspondence is valid. These rings Λ independent of the ground ring
R will be introduced in §4.

In the present section we shall consider R-orders Λ (in a semisimple K-
algebra) with the property that each simple Λ-module is of k-dimension one.
Let us call them totally split orders. Equivalently, this says that Λ/RadΛ



138 W. RUMP

is a k-algebra kn = k × . . . × k for some n ∈ N. Hence the set HomR-alg(Λ, k)
of R-algebra homomorphisms into k has n elements which can be identified
with the simple Λ-modules.

For the following construction, note first that there is a contravariant
equivalence between the category of k-algebras kn and the category set of
finite sets, given by the functors Homk-alg(−, k) and Map(−, k). If we replace
k by the quotient field K of R, it follows that the functors HomR-alg(−, R)
and Map(−, R) establish a duality between the category of R-orders Rn in
Kn and set.

Construction of ΛH . Let H be a finite cycle hypergraph H with structure
map ε : C � E. The permutation π−1 on C corresponds to an algebra
automorphism τ of kn, where n = |C|, and ε corresponds to a k-subalgebra
B of kn. For each cycle Zm of C, there is a factor algebra km of kn, and τ
induces an automorphism τ ′ of km which permutes the simple components
cyclically. By the second duality mentioned above, there is a unique lifting
τ0 : R0 → R0 of τ ′ along the R-algebra epimorphism

R0 := Rm � km.(5)

If % ∈ pr p2 is a uniformizing element of R, we define the hereditary R-order
Γm in Mm(K) as a crossed product

Γm := R0 ⊕R0σ ⊕ . . .⊕R0σ
m−1(6)

with
σm = %, σa = τ0(a)σ(7)

for each a ∈ R0. (If a = (a1, . . . , am) ∈ R0, then (7) implies (aσ)m =
a1 . . . am · %. Hence Γm does not depend on the choice of %.) From (7) we
infer

RadΓm = RadR0 ⊕R0σ ⊕ . . .⊕R0σ
m−1,(8)

whence Γm is totally split with Γm/RadΓm = km according to (5). Thus
for each cycle in C, we have constructed an R-order (6), and the product of
these orders yields an R-order ΓC with ΓC/RadΓC = kn. Now the order ΛH
is obtained by the pullback:

ΓC // // kn

ΛH

� ?

OO

// // B
� ?ε

∗

OO

(9)

Let us reflect a bit upon this construction. By (7), the inner automor-
phism a 7→ σaσ−1 of Γm induces the automorphism τ0 on R0, hence the
automorphism τ ′ on km. Therefore, the cycle Zm and the hereditary order
Γm determine each other.
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There is another way to obtain Γm. Let S be a K-vector space of dimen-
sion m, and let

P0 ⊃ P1 ⊃ . . . ⊃ Pm = pP0(10)

be a composition series of full R-lattices in S. Define Pi+jm := pjPi for all
j ∈ Z. Then the Pi, i ∈ Z, constitute an infinite chain

. . . ⊃ P−1 ⊃ P0 ⊃ P1 ⊃ . . .(11)

with simple quotients Pi/Pi+1, and Pi+m = pPi for all i ∈ Z. Clearly, if
x1, . . . , xm ∈ S are chosen such that xi ∈ Pi−1 r Pi, then they form a K-
basis of S. Therefore, up to an automorphism of S, a chain (11) is unique.
In particular, there exists a K-linear automorphism σ of S with

σPi = Pi+1, i ∈ Z.(12)

Then the hereditary order Γm is given by

Γm = {a ∈ EndK(S) | aPi ⊂ Pi for all i ∈ Z},(13)

and P1, . . . , Pm represent the isomorphism classes of indecomposable Γm-
representations. Thus we may assume

Γm = P1 ⊕ . . .⊕ Pm.(14)

Now (12) implies σΓm = Jm := RadΓm, and therefore Γmσ ⊂ σΓm. Hence
Γm ⊂ σΓmσ−1 and thus

σΓm = Γmσ = Jm.(15)

Consequently, the inner automorphism a 7→ σaσ−1 of Γm permutes the Pi in
(14) cyclically and induces an automorphism on Γm/Jm = km corresponding
to a cycle Zm.

As above, let ΓC be the product of these Γm, according to the cycles Zm
in C, and JC := RadΓC . Then (15) generalizes to

ωΓC = ΓCω = JC(16)

for some invertible element ω of A := KΓC , and the inner automorphism
a 7→ ωaω−1 of ΓC induces the automorphism τ of kn = ΓC/JC . Hence the
permutation space C is recovered from ΓC .

Next let us focus our attention upon the pullback (9). Recall that an R-
order Λ is said to be a Bäckström order if there exists a hereditary overorder
Γ such that RadΓ = RadΛ.

Lemma. For a Bäckström order Λ, the hereditary overorder Γ with
RadΓ = RadΛ is unique.

P r o o f. For any simple KΛ-module S, let SΛ(S) be the set of (non-zero)
Λ-lattices in S. The uniqueness of Γ then follows from

SΓ (S) = {I ∈ SΛ(S) | ∀I ′ ∈ SΛ(S) : I ′ ⊂ I or I ′ ⊃ I},(17)
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since Γ is the multiplier of its indecomposables (cf. (13)). Now SΓ (S) is a
chain, and for each I ∈ SΛ(S), (RadΓ )I ⊂ I ⊂ ΓI. Hence the inclusion “⊂”
in (17) follows. Conversely, let I be in the right-hand side of (17). Denote
by ∆ the unique maximal order in D := (EndKΛ S)op, and Π := Rad∆.
Suppose α ∈ ∆ and Iα 6⊂ I. Then I ⊂ Iα ⊂ Iα2 ⊂ . . . ⊂ I∆. Hence
I = Iα, and it follows that I∆ = I. Since ΓI/(RadΓ )I is semisimple as a
Λ-module, there exists an I ′ ∈ SΛ(S) with I+I ′ = ΓI and I∩I ′ = (RadΓ )I.
By assumption, I and I ′ are comparable, whence I ∈ SΓ (S).

Recall that a digraph is a graph whose vertex set is a disjoint union XqY
such that every edge e connects a vertex x ∈ X to a vertex y ∈ Y . If, in
addition, every such e is equipped with multiplicities ex, ey ∈ N r {0}, we
shall speak of a di-hypergraph. Such a hypergraph can be drawn by attaching
the value (ex, ey) to every edge e between x and y. By convention, the value
(1, 1) is always omitted.

With any Bäckström order Λ, a di-hypergraph GΛ is naturally associated
as follows (cf. [6]). If QΛ denotes the set of isomorphism classes [U ] of simple
Λ-modules U , then the vertex set of GΛ is the disjoint union QΛqQΓ , where
Γ is given by the lemma. By abuse we simply write U instead of [U ]. Now
we define Z-linear maps

ZQΛ
dΛΓ−→ ZQΓ

dΓΛ−→ ZQΛ(18)

as follows. For U ∈ QΛ, let PU be a projective cover. Then ΓPU is the
projective cover of a semisimple Γ -module

⊕
V ∈QΓ V

dV U , and for V ∈ QΓ ,
dUV denotes the multiplicity of U in a composition series of the Λ-module
V . Then

dΛΓ (U) :=
∑
V ∈QΓ

dV U · V, dΓΛ(V ) :=
∑
U∈QΛ

dUV · U.(19)

The maps (18) are represented in the di-hypergraph GΛ by drawing an edge
with value (dUV ,dV U ) between each pair of vertices U, V . Note that the
maps (18) are adjoint to each other:

〈dΛΓU, V 〉Γ = 〈U,dΓΛV 〉Λ,(20)

where the scalar products are given by the intertwining numbers:

〈U,U ′〉Λ := dimk HomΛ(U,U ′).(21)

Equivalently, (20) says that

dV U · dimk EndΓ (V ) = dUV · dimk EndΛ(U)(22)

for each pair U ∈ QΛ, V ∈ QΓ . Hence dUV = 0 if and only if dV U = 0. Thus
if for each pair (dUV ,dV U ) 6= (0, 0), an edge e with multiplicities eU := dUV
and eV := dV U is introduced, we obtain a di-hypergraph GΛ which is known
as the valued graph of Λ (see [6]).
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By (9), the orders Λ = ΛH are Bäckström orders, and we shall see that
their di-hypergraph GΛ has the property that all edges are of value (1, 1),
and there is only one edge starting from any vertex of QΓ :r r r rrr r r r

r r rA
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. . . . . . . . .

. . .

QΓ :

QΛ:

(23)

Such Bäckström orders Λ will be called of fan type.

Theorem 1. The correspondence H 7→ ΛH defines a bijection between
the finite cycle hypergraphs H and the isomorphism classes of totally split
Bäckström orders of fan type. Moreover , for an R-order Λ, the following are
equivalent :

(a) Λ is of the form ΛH for a finite cycle hypergraph H.
(b) Λ is a Bäckström order with a totally split hereditary order Γ .
(c) Λ is a totally split Bäckström order of fan type.

P r o o f. The implication (a)⇒(b) follows by the construction of ΛH .
(b)⇔(c). If Γ is totally split, then each simple Γ -module V coincides

with a simple Λ-module U . Hence there is exactly one edge in GΛ starting
from V , and dUV = 1. Since V = k, we also infer dV U = 1, and Λ is totally
split. The converse follows immediately by (22).

(b)⇒(a). We have already shown that there is a bijective correspon-
dence between totally split hereditary orders Γ and finite permutation spaces
C. The Bäckström orders for such a Γ correspond to the (necessarily semi-
simple) k-subalgebras B of Γ/RadΓ = kn, and Λ is given by a pullback (9).
This also shows that Λ uniquely determines the cycle hypergraph H with
Λ ∼= ΛH .

As a consequence we note that the hereditary order Γ belonging to ΛH
is a hereditary hull [3] of Λ, i.e. Γ is a minimal hereditary overorder of Λ:

Corollary. If ΛH is the order of a cycle hypergraph H given by ε :
C � E, then ΓC is the unique hereditary hull of ΛH .

P r o o f. The property of Γ to be a hereditary hull of an R-order Λ means
that for each simple KΓ -module S, the chain SΓ (S) cannot be refined by
some I ∈ SΛ(S) with I∆ = I, where ∆ denotes the maximal order in
D := (EndKΓ S)op. This is obviously satisfied for a totally split hereditary
overorder Γ .

3. Prohereditary rings. Having associated an order ΛH with any finite
cycle hypergraph H, our next purpose, going in reverse direction, will be to
introduce a general class of rings for which an underlying cycle hypergraph
H can be naturally defined. To this end, we start with a generalization
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of hereditary orders and QH-orders [8]. Let S be a semiperfect ring. For
a finitely generated projective S-module P , let us call a homomorphism
P →M into an S-module M indirect if it factors through an indecomposable
projective S-module Q which is not a direct summand of P . For a given M ,
the sum of all images of indirect homomorphisms P → M will be called
the proradical ProM of M . Clearly, this definition is functorial, i.e. for any
homomorphism f : M → N of S-modules, f(ProM) ⊂ ProN . In particular,
this implies that ProS := Pro(SS) is a (two-sided) ideal of S. Moreover, we
have

Proposition 2.For every semiperfect ringS, the proradical is contained
in the Jacobson radical RadS, and S/ProS is a product of matrix rings over
local rings.

P r o o f. Since each indirect homomorphism P → Q, with Q indecom-
posable and projective, maps into the radical of Q, we have ProS ⊂ RadS.
Secondly, each indirect homomorphism P → S/ProS is zero since it factors
through the natural epimorphism S � S/ProS. Hence

Pro(S/ProS) = 0.

Therefore, it remains to prove that S is a product of matrix rings over local
rings whenever ProS = 0. Now this condition says that there are no non-
zero homomorphisms between any pair of non-isomorphic indecomposable
projective S-modules. Hence, S = (EndS S)op gives the desired result.

Let us call an ideal I of S invertible if SI is a progenerator (i.e. a finitely
generated projective generator of S-Mod) with (EndS I)op = S (i.e. the
restriction S = (EndS S)op → (EndS I)op is a ring isomorphism). Then we
define a prohereditary ring as a semiperfect ring S with an invertible ideal J
such that ProS ⊂ J ⊂ RadS and

∞⋂
i=0

J i = 0.(24)

We refer to J as the defining ideal of S. If J coincides with the proradical,
then S will be called strictly prohereditary. Thus a local ring S is proheredi-
tary if and only if it has an invertible ideal J which satisfies (24). Note that
in this case, ProS = 0 6= J .

Proposition 3 (cf. [7], Theorem 1.5). For a basic semiperfect ring S,
the following are equivalent :

(a) S is prohereditary.

(b) There is a left projective ideal J ⊂ RadS satisfying (24) such that
(EndS J)op = S, and S/J is a product of local rings.
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(c) S is a product of rings of the form
Ω

Ω

Ω

I

I

I

· · · · · · · · ·

· · · · · · ·

··
··
··
··
·

··
··
···············

··········

 ⊂ Mn(Ω),

where n ≥ 1, and Ω is local prohereditary with defining ideal I.

Note. The proposition shows that QH-orders [7, 8] over a complete
noetherian local domain R are prohereditary.

P r o o f. (a)⇒(b) (of Proposition 3). This follows immediately by Propo-
sition 2.

(b)⇒(c). For each indecomposable projective S-module P , the submod-
ule JP = J ⊗S P is projective, and HomS(J, J ⊗S P ) = HomS(J, J)⊗S P =
S ⊗S P = P . Hence, JP is again indecomposable, and P 7→ JP yields
a permutation on the isomorphism classes of indecomposable projective S-
modules. Therefore, we get a set of pairwise disjoint cycles P % JP % J2P %
. . . % JnP ∼= P of indecomposable projectives. If Q belongs to a different cy-
cle, then each homomorphism Q→ P induces a map Q/JQ→ P/JP which
must be zero by the assumption that S/J is a product of local rings. Hence, Q
maps into JP , and by induction, the image of Q lies in

⋂
J iP = 0. Therefore,

let us assume that there is just one cycle, i.e. SS ∼= P ⊕ JP ⊕ . . .⊕ Jn−1P .
By the above, we have HomS(J ⊗S P, JP ) = HomS(P, HomS(J, JP )) =
HomS(P, P ), whence there is a common endomorphism ring

Ω := EndS(P ) = EndS(JP ) = . . . = EndS(Jn−1P ).

For i, j ∈ {0, . . . , n− 1} with i > j, we have

HomS(J iP, JjP ) = HomS(J iP, J iP ) = Ω,
and

HomS(JjP, J iP ) = HomS(JjP, Jj+nP ) = HomS(P, JnP ) =: I,

where I ∼= Ω is invertible with
⋂
Ii = 0.

(c)⇒(a). We may assume that S is of the matrix form given in (c), and
n ≥ 2. Then ΩI ∼= ΩΩ since Ω is local, and

ProS =


Ω

I

IΩ

Ω

I

· · · · · ·

· · · · · · · · ·

··
··
··

··
··
··
··
··············

·········

 ∼= S

as a left S-module, whence J := ProS is invertible and satisfies (24).
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As an immediate consequence, we note:

Corollary. Let S be a semiperfect ring. Then

(a) If S is prohereditary , then every ring S′ Morita equivalent to S is
prohereditary.

(b) If S is basic and prohereditary , then S is strictly prohereditary if
and only if S has no local ring-direct factors.

(c) If S is basic and prohereditary with defining ideal J , then J = Sω =
ωS for some regular element ω ∈ RadS.

P r o o f. (a) and (b) follow by the preceding proof. For the proof of (c),
let S be basic and prohereditary. Then SJ ∼= SS by Proposition 3(c), i.e.
J = Sω, where the right multiplication by ω is injective. Since (EndS J)op =
S, we infer that Sω = ωS, and ω is regular.

4. Rings with Green walks. Let Γ be a prohereditary ring with
defining ideal J . The Γ -modules of the form Q/JQ with Q indecomposable
projective will be called prosimple. Let QΓ be a representative system of
the isomorphism classes of prosimple Γ -modules. Generalizing the concept
of Bäckström order, we call a semiperfect subring Λ of Γ a Bäckström ring
with respect to Γ if ProΛ ⊂ J ⊂ Λ, and Γ/J is a finite direct sum of Λ-
modules isomorphic to some P/JP with ΛP indecomposable and projective.

Let QΛ be a representative system for the isomorphism classes of these Λ-
modules P/JP . Just as in §2, we define a di-hypergraph GΓΛ with vertex set
QΛ qQΓ , and for (U, V ) ∈ QΛ ×QΓ , we introduce an edge with multiplicity
(dUV ,dV U ), where dUV is the multiplicity of U in ΛV , and if PU , PV are
projective covers of U and V , respectively, then dV U denotes the multiplicity
of PV in ΓPU .

Motivated by Theorem 1, we now define a ring with Green walks as a
Bäckström ring Λ with respect to a prohereditary ring Γ such that GΓΛ is of
the form (23). Clearly, there is no loss of generality if we assume Λ to be
basic. Then the latter condition says that Γ is also basic, and that for each
V ∈ QΓ , the Λ-module ΛV lies in QΛ.

Note. In contrast to Bäckström orders, a ring Λ with Green walks does
not always determine Γ . Therefore, we have to consider Λ in conjunction
with its prohereditary overring Γ , and the defining ideal J of Γ . These data
will be kept fixed throughout the sequel.

Next we define the cycle hypergraph HΓ
Λ of Λ (with respect to Γ and J).

Firstly, the map Q 7→ JQ for indecomposable projective Γ -modules Q in-
duces a permutation π on QΓ and turns C := QΓ into a permutation space.
Moreover, with E := QΛ, the di-hypergraph (23) is equivalent to a map

ε : C � E,
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and thus we obtain a finite cycle hypergraph H = HΓ
Λ . The edges e ∈ E

of H correspond to the simple Λ-modules or equivalently, to the Λ-modules
Ue := Pe/JPe ∈ QΛ and their projective covers Pe, the elements c ∈ C
correspond to the indecomposable projective Γ -modules Pc, and the vertices
x ∈ X, i.e. the cycles of C, correspond to the indecomposable ring-direct
summands of Γ . Hence

JPc = Pπc,(25)

and the projective resolutions of the Ue are given by the short exact se-
quences ⊕

ε(d)=e

Pπd�Pe � Ue,(26)

⊕
ε(d)=e
d6=c

Pπd�Pe � Pc(27)

for each e ∈ E and c ∈ ε−1(e). To obtain (27), consider a homomorphism f :
Pe → Pc of Λ-modules which induces an isomorphism Pe/JPe

∼−→ Pc/JPc.
Then f extends to a homomorphism ΓPe → Pc of Γ -modules which must
be surjective by Nakayama’s lemma. Therefore, JPe is mapped onto JPc,
whence f is surjective, and the exactness of (27) follows.

By these exact sequences, the rôle of the resolution graph WH defined
in §1 becomes apparent. Namely, its arrows just give the syzygies according
to (27). Together with H, the resolution graph WH yields the projectives
as well as the syzygies of a projective resolution of Λ/J . Moreover, the
arrows in WH also give some information about the maps in this projective
resolution. Therefore, WH exactly describes what could be said to be the
combinatorial structure of a projective resolution of Λ/J . In particular, the
preceding discussion yields:

Theorem 2. For a ring Λ with Green walks and underlying cycle hy-
pergraph H, the global dimension of Λ is infinite if the resolution graph
WH contains an oriented cycle; otherwise, gldΛ is the maximum number
of vertices in a directed path of WH . For each vertex c of WH , there are
r(ε(c)) − 1 arrows starting from c, and r(ε(π−1c)) − 1 arrows ending in c.
There is no loop in WH if and only if ε(πc) 6= ε(c) for each c ∈ C.

Hence if the rank of H is ≤ 2, every path in WH has at most one
continuation on and backwards, which implies Roggenkamp’s result [8]:

Corollary. If H is of rank ≤2, then WH is a disjoint union of oriented
cycles and finite paths. Accordingly , the corresponding projective resolutions
are either cyclic or bounded of the form

0→ Pem → . . .→ Pe0 � Ue0
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with e0, . . . , em ∈ E and 1-loops e0 and em. Moreover , in the totality of
these projective resolutions, every edge e ∈ E occurs exactly twice.

Note. By the results of §2, each cycle hypergraph H arises from a ring
with Green walks, for instance from the totally split R-order ΛH for any
complete discrete valuation domain R.

Example 2. For the cycle hypergraph H of Example 1, the resolution
graph WH consists of two chains:

5→ 1→ 6→ 4, 3→ 2.

Hence gldΛH = 4, and similarly for each ring with Green walks and under-
lying cycle hypergraph H. Applying ε we get the projective resolutions

Pf � Ph → Pe → Pe � P5, Pg � Ph � P3,

which can be completed by (26) to

0→ Pf → Ph → Pe → Pe → Pf � Uf , 0→ Pg → Ph → Pg � Ug.

Here every edge of H occurs exactly twice.

Example 3. Consider the following cycle hypergraphs H1, H2, H3:

H1:

1 4

2 3-

?@
@I

e f

H2:

5

3

1 2

4

e f g

-

-

HH
HH

HY
�
�	

H3:
5

2

4 1

7

3

8

6

e f g h

-

-

-

-

�
�	

�
�	

HH
H

HHY

PP
PP

PP
PPi

H1 corresponds to the totally split R-order:

ΛH1
=


R R R

R R

p p

p

RR

@@

 , R R := {(a, b) ∈ R×R | a− b ∈ p} .

The resolution graphs of H1, H2, H3 are

WH1 :

2 3

1

4
x

�




� J
J
Ĵ

WH2 : 1 5 2

3

4

- -?

?@@R

@@R
WH3 :

1 5 3 8

7462

� --?

-

? ?

� �

6

WH1
has a loop since ε−1(f) contains the arrow 3 → 4; ΛH2

is of global
dimension three, whereas gldΛH3 =∞ since WH3 contains an oriented cycle.
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Note that for a cycle hypergraph H of arbitrary rank, the order ΛH
may have infinitely many indecomposable representations. Nevertheless, the
global dimension of ΛH does not depend on R, in contrast e.g. to tiled
orders [9]. For an arbitrary Bäckström order Λ with hereditary order Γ ,
Wiedemann [11] has shown that whenever gldΛ is finite, it is bounded by
the number of indecomposable Γ -lattices. For ΛH this follows immediately
by Proposition 2:

gldΛH ≤ |C|.(28)

It is easy to see that the maximum is attained for every given permutation
space C. The simplest way to achieve this is to build a tree with the given
vertices by means of edges of rank two and to complete it by adding a single
1-loop. (There are other possibilities to get equality in (28), but the rank of
H has to be two for this purpose!)
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