AN ELEMENTARY PROOF OF THE WEITZENBÖCK THEOREM

BY

ANDRZEJ TYC (TORUŃ)

Introduction. The main aim of this paper is to give an elementary and self-contained proof of the following classical result.

THEOREM (Weitzenböck [8]). Let \(\mathbb{C}^+ \) be the additive group of the complex field \(\mathbb{C} \) and let \(V \) be a finite-dimensional rational representation of \(\mathbb{C}^+ \). Then the algebra \(\mathbb{C}[V]^{\mathbb{C}^+} \) of invariant polynomial functions on \(V \) is finitely generated.

The first modern proof of the theorem is due to Seshadri [6] and it is geometric. Our proof is an algebraic version of Seshadri’s proof.

As a consequence of our considerations and the main result of [5] for \(G = \text{SL}(2, \mathbb{C}) \) we get the following.

THEOREM. Let \(V \) be a finite-dimensional, rational, non-trivial representation of \(\mathbb{C}^+ \) determined by a nilpotent endomorphism \(f \) of the vector space \(V \). Then

1. \(\mathbb{C}[V]^{\mathbb{C}^+} \) is a Gorenstein ring.
2. \(\mathbb{C}[V]^{\mathbb{C}^+} \) is a polynomial algebra if and only if \(V = V_0 \oplus V' \) for some subrepresentations \(V_0, V' \) of \(V \) such that \(V_0 \) is trivial (that is, \(f(V_0) = 0 \)) and the Jordan matrix of \(f|_{V'} : V' \rightarrow V' \) is one of the following:

\[
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

This theorem is equivalent to the following.

THEOREM. Let \(A = \mathbb{C}[X_1, \ldots, X_n] \) and let \(0 \neq d : A \rightarrow A \) be a locally nilpotent derivation such that \(d(W) \subset W \), where \(W = \mathbb{C}X_1 + \ldots + \mathbb{C}X_n \subset A \). Then

1991 Mathematics Subject Classification: Primary 14A50.
1. A^d (= Ker d) is a Gorenstein ring.
2. A^d is a polynomial algebra if and only if $W = W_0 \oplus W'$ for some subspaces W_0, W' of W such that $d(W_0) = 0, d(W') \subset W'$, and the Jordan matrix of the endomorphism $d_{|W'} : W' \to W'$ is one of the above matrices.

1. Preliminaries and auxiliary lemmas. Throughout the paper all vector spaces, algebras, Lie algebras, and tensor products are defined over \mathbb{C}. All (associative) algebras are assumed to be commutative. We denote by L the simple Lie algebra $\text{sl}(2, \mathbb{C}) = \{ (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in M_2(\mathbb{C}) : a + d = 0 \}$. Let $x = (0 1 0), y = (0 0 1 0), h = (1 0 0 -1)$.

Then $\{x, y, h\}$ is a linear basis of L and $[x, y] = h, [h, x] = 2x, [h, y] = -2y$. It is known (see for instance [2, Chap. II]) that every finite-dimensional L-module is semisimple, and for each $m = 0, 1, \ldots$ there exists only one (up to isomorphism) simple L-module $V_m = \langle v_0, \ldots, v_m \rangle$ (= linear span of v_0, \ldots, v_m) of dimension $m + 1$ with

$$x.v_i = (m - i + 1)v_{i-1},$$
$$y.v_i = (i + 1)v_{i+1},$$
$$h.v_i = (m - 2i)v_i$$

for $i = 0, \ldots, m \ (v_{-1} = 0 = v_{m+1})$. In particular, it follows that if W is a finite-dimensional L-module, then the endomorphism $w \to x.w$ of W, as a vector space, is nilpotent.

By a trivial L-module we mean an L-module W such that $t.w = 0$ for all $t \in L$ and $w \in W$.

Given an L-module W, the trivial submodule $\{w \in W : \forall t \in L \ t.w = 0 \}$ of W is called the module of invariants of W and it is denoted by W^L. Notice that $W^L = \{w \in W : x.w = 0 = y.w\}$. If $f : W \to W'$ is a homomorphism of L-modules, then $f(W^L) \subset W'^L$, and $f^L : W^L \to W'^L$ will denote the restriction of f to W^L. If W is an L-module, then W^* denotes the dual vector space provided with the L-module structure given by $(t.w^*)(w) = w^*(-t.w), t \in L, w^* \in W^*, w \in W$.

An L-module W is said to be locally finite if W is a union of its finite-dimensional submodules. It is obvious that each locally finite L-module W is semisimple, that is, $W \cong \bigoplus_{i \in I} V_{m_i}$ for some set I. In particular, $W = W^L \oplus LW$, where $LW = \{ \sum t_i.w_i : t_i \in L, w_i \in W \}$. Let $R_W : W \to W^L$ denote the natural projection. Then the R_W’s define the Reynolds operator on the category of locally finite L-modules, which means that the following conditions hold.
(i) For any locally finite L-module W, $R_W : W \to W^L$ is a surjective homomorphism of L-modules and $R_W(w) = w$ for $w \in W^L$.

(ii) If $f : W \to W'$ is a homomorphism of locally finite L-modules, then $f^L \circ R_W = R_{W'} \circ f$.

In fact, (i) follows immediately from the definition of R_W, and (ii) holds because $f(LW) \subseteq LW'$.

An algebra A is an L-module algebra if A is an L-module and for each $t \in L$ the map $d_t : A \to A$, $d_t(a) = t.a$, is a derivation of A. If A is an L-module algebra, then A^L is a subalgebra of A called the algebra of invariants. An L-module algebra A is called locally finite if A is locally finite as an L-module. If this is the case, then we have the Reynold operator $R = R_A : A \to A^L$. It turns out that R is an A^L-linear map, that is, $R(ay) = aR(y)$ for $a \in A^L$ and $y \in A$. To see this, it suffices to apply the condition (ii) of the Reynold operator to the homomorphism of L-modules $f : A \to A$ given by $f(y) = ay$.

Let W be an L-module. Then the symmetric algebra $S(W)$ will be viewed as an L-module algebra via

$$t.(w_1 \ldots w_m) = \sum_{i=1}^{m} w_1 \ldots w_{i-1}(t.w_i)w_{i+1} \ldots w_m$$

for $t \in L$ and $w_1, \ldots, w_m \in W \subseteq S(W)$. It is obvious that $S(W)$ is locally finite if W is finite-dimensional. In particular, for any finite-dimensional L-module W we have the locally finite L-module algebra $S(W^*)$.

Lemma 1. If W is a finite-dimensional L-module, then the algebra $S(W)^L$ of invariants is finitely generated.

Proof. Notice that $S(W)^L$ is a graded subalgebra of the graded algebra $S(W) = \bigoplus_{n=0}^{\infty} S^n(W)$. Therefore, in order to show that $S(W)^L$ is finitely generated it suffices to prove that the ring $S(W)^L$ is noetherian.

Let I be an ideal in $S(W)^L$. Since the ring $S(W)$ is noetherian, there are $a_1, \ldots, a_n \in I$ such that $IS(W) = a_1S(W) + \ldots + a_nS(W)$. Our claim is that $I = (a_1, \ldots, a_n)$. Obviously $(a_1, \ldots, a_n) \subseteq I$. Let $a \in I$. Then $a = a_1 = a_1y_1 + \ldots + a_ny_n$ for some $y_i \in S(W)$. Hence $a = R(a) = a_1R(y_1) + \ldots + a_nR(y_n) \in (a_1, \ldots, a_n)$, because $R = R_A$ is A^L-linear. This implies that $I = (a_1, \ldots, a_n)$, which means that the ring $S(W)^L$ is noetherian.

From now on, given a finite-dimensional vector space V (respectively, a finite-dimensional L-module V), $\mathbb{C}[V]$ will stand for the algebra $S(V^*)$ (respectively, for the L-module algebra $S(V^*)$) considered as the algebra of polynomial functions on V.

Lemma 2. Let V be a finite-dimensional vector space.

(i) If $f : V \to V$ is a nilpotent endomorphism of V, then there exists a unique (up to isomorphism) L-module structure $\psi : L \times V \to V$ on V such that $f(v) = x.v$, where $x.v = \psi(x, v)$. More precisely, (V, ψ) is isomorphic to $V_{m_1} \oplus \ldots \oplus V_{m_s}$, where $m_1 + 1, \ldots, m_s + 1$ are the dimensions of the Jordan cells of f.

(ii) If $d : \mathbb{C}[V] \to \mathbb{C}[V]$ is a locally nilpotent derivation of $\mathbb{C}[V]$ with $d(V^*) \subset V^*$, then there exists a (unique) L-module structure $\psi : L \times V \to V$ on V such that $d = d_x : \mathbb{C}[(V, \psi)] \to \mathbb{C}[(V, \psi)]$.

Proof. (i) The Jordan matrix of f equals

$$
\begin{pmatrix}
A_1 & 0 \\
& \ddots \\
& & A_s \\
0 & & & \\
& & & 0
\end{pmatrix},
$$

where all A_i's (the Jordan cells of f) are of the form

$$
\begin{pmatrix}
0 & 1 & 0 \\
& \ddots & \ddots \\
& & 0 & 1 \\
0 & & &
\end{pmatrix}.
$$

Let $m_i = \dim A_i - 1$ for $i = 1, \ldots, s$. We can assume that $m_1 \leq \ldots \leq m_s$. Then $V = W_1 \oplus \ldots \oplus W_s$ and $f = f_1 \oplus \ldots \oplus f_s$ for some subspaces W_i of dimension $m_i + 1$ and nilpotent endomorphisms $f_i : W_i \to W_i$ with Jordan matrices A_i, $i = 1, \ldots, s$.

First assume that $s = 1$. Then there exists a basis v'_0, \ldots, v'_m, $m = \dim V - 1$, of V with $f(v'_i) = v'_{i-1}$ for $i = 0, \ldots, m$ ($v'_{-1} = 0$). Set $v_i = v'_i/(m - i)!$, $i = 0, \ldots, m$. Then $f(v_i) = (m - i + 1)v_{i-1}$, so that putting $\psi(x, v_i) = (m - i + 1)v_{i-1}$, $\psi(y, v_i) = (i + 1)v_{i+1}$, and $\psi(h, v_i) = (m - 2i)v_i$, $i = 0, \ldots, m$ ($v_{m+1} = 0$), we get an L-module structure $\psi : L \times V \to V$ such that $(V, \psi) = V_m$.

If s is arbitrary, then we apply the above procedure to each f_i, $i = 1, \ldots, s$. As a result one obtains an L-module structure $\psi : L \times V \to V$ such that $(V, \psi) = V_{m_1} \oplus \ldots \oplus V_{m_s}$.

It remains to prove the uniqueness of ψ. Suppose that $\psi' : L \times V \to V$ makes V an L-module in such a way that $f(v) = \psi'(x, v)$ for all $v \in V$. Then $(V, \psi') \cong V_{n_1} \oplus \ldots \oplus V_{n_s}$ for some $0 \leq n_1 \leq \ldots \leq n_s$. But the relation $f(v) = \psi'(x, v)$, $v \in V$, implies that $r = s$ and $n_1 = m_1, \ldots, n_s = m_s$. This proves part (i).

(ii) Since the evaluation map $ev : V \to V^{**}$, $ev(v)(v^*) = v^*(v)$, $v^* \in V^*$, $v \in V$, is an isomorphism, there is an endomorphism f of V such that the following diagram commutes:
where $g(s)(v^*) = -s(d(v^*))$, $s \in V^*$, $v^* \in V^*$. It is obvious that f is nilpotent because $d_{V^*} : V^* \to V^*$ is nilpotent. So, applying (i) to f we get an L-module structure $\psi : L \times V \to V$ such that $f(v) = \psi(x, v)$ for all $v \in V$.

In particular, we have the induced derivation $d_x : \mathbb{C}[(V, \psi)] \to \mathbb{C}[(V, \psi)]$. For $v^* \in V^*$, $v \in V$,

$$d_x(v^*)(v) = v^*(-\psi(x, v)) = -v^*(f(v)) = -\mathrm{ev}(f(v))(v^*) = -g \circ \mathrm{ev}(v)(d(v^*)) = d(v^*)(v),$$

which means that $d_x = d$ on $V^* \subset \mathbb{C}[V]$. This, however, implies that $d_x = d$. □

Below, U will denote the vector space \mathbb{C}^2 provided with the natural L-module structure given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} az_1 + bz_2 \\ cz_1 + dz_2 \end{pmatrix}.$$

Then $\mathbb{C}[U] = \mathbb{C}[X, Y]$, where $X, Y \in (\mathbb{C}^2)^*$, $X(z_1, z_2) = z_1, Y(z_1, z_2) = z_2$, and the L-module algebra structure on $\mathbb{C}[U]$ is determined by

(1) $d_x(X) = -Y, \quad d_x(Y) = 0 = d_y(X), \quad d_y(Y) = -X.$

If A, B are L-module algebras, then the tensor product $A \otimes B$ is an L-module algebra via $t.(a \otimes b) = t.a \otimes b + a \otimes t.b$, where $t \in L$, $a \in A, b \in B$.

In particular, for any L-module algebra A we have the L-module algebra $A[X, Y] = A \otimes \mathbb{C}[U]$. Observe that $A[X, Y] = \mathbb{C}[V \oplus U]$ whenever $A = \mathbb{C}[V]$ for some finite-dimensional L-module V.

Lemma 3. Let A be a locally finite L-module algebra. Then the homomorphism of algebras $\Phi : A[X, Y] \to A, \Phi(f(X, Y)) = f(1, 0)$, induces an isomorphism of algebras $\Phi : A[X, Y]^L \to A^*$, where $A^* = \{a \in A : x.a = 0\} = \{a \in A : d_x(a) = 0\}$.

Proof. Let $f = \sum_{k=0}^{s} f_k(X)Y^k \in A[X, Y]$ and let $f_k(X) = \sum_{j \geq 0} a_j^{(k)}X^j$, $k = 0, \ldots, s$. Using the formulas (1), we easily verify that $d_x(f) = 0 = d_y(f)$ if and only if the following conditions hold:

(2) $d_x(a_j^{(0)}) = 0 = f'_s(X), \quad d_x(a_j^{(k)}) = (j + 1)a_j^{(k+1)} + a_j^{(k-1)}), \quad k = 1, \ldots, s, \quad j \geq 0,$

$\quad d_y(a_0^{(k)}) = 0, \quad k = 0, \ldots, s,$

(3) $d_y(a_j^{(k)}) = (k + 1)a_j^{(k+1)}, \quad k = 0, \ldots, s - 1, \quad j \geq 1.$
From (3), by induction on \(k \), we get
\[
(4) \quad a_j^{(k+1)} = \frac{1}{(k+1)!} d_y^{k+1}(a_j^{(0)}), \quad k = 0, \ldots, s - 1, \quad j \geq 0.
\]

It turns out that also
\[
(5) \quad d_h(a_j^{(0)}) = ja_j^{(0)} \quad \text{for } j \geq 0.
\]

In fact, by (2) and (3), \(d_h(a_j^{(0)}) = d_x d_y(a_j^{(0)}) - d_y d_x(a_j^{(0)}) = d_x(a_j^{(1)}) = ja_j^{(0)} \) if \(j \geq 1 \), and \(d_h(a_j^{(0)}) = 0 \) because \(d_y(a_j^{(0)}) = 0 \).

From (5) it follows that the set \(\{a_j^{(0)} : j \geq 0\} \setminus \{0\} \) is linearly independent (over \(\mathbb{C} \)). From (2) we know that if \(f \in A[X,Y]^L \), then \(\Phi(f) = f(1,0) = f_0(1) = \sum_{j \geq 0} a_j^{(0)} \in A^x \). Therefore, the homomorphism of algebras \(\Phi \) induces a homomorphism of algebras
\[
\Phi : A[X,Y]^L \to A^x.
\]

If \(\Phi(f) = 0 \) for some \(f \in A[X,Y]^L \), that is, \(\sum_{j \geq 0} a_j^{(0)} = 0 \), then \(a_j^{(0)} = 0 \) for all \(j \geq 0 \), because the set \(\{a_j^{(0)} : j \geq 0\} \setminus \{0\} \) is linearly independent. In view of (4), this yields \(f = 0 \).

It remains to prove that \(\Phi \) is surjective. Since \(A \) is locally finite as an \(L \)-module, \(A = \bigoplus_{i \in I} V_m \), for some set \(I \). It follows that \(A = \bigoplus_{j \in \mathbb{Z}} A_j \), where \(A_j = \{a \in A : d_h(a) = ja\} \). Observe also that \(\{v \in V_m : x.v = 0\} = \langle v_0 \rangle \) for each \(m \geq 0 \). Hence
\[
(6) \quad A^x = \bigoplus_{j \geq 0} A_j \cap A^x.
\]

Now we show the following:
\[
(7) \quad \text{If } a \in A_m \cap A^x \text{ for some } m \geq 0, \text{ then } d_y^{m+1}(a) = 0 \text{ and } d_x d_y^j(a) = (m - j + 1) j d_y^{j-1}(a) \text{ for } j = 1, \ldots, m + 1.
\]

Let \(d_h(a) = ma \) and \(d_x(a) = 0 \) for some \(a \in A \) and \(m \geq 0 \). We can assume that \(a \in V_m \), for some \(i \in I \). Then obviously \(m_i = m \) and \(a = \alpha v_0 \) for an \(\alpha \in \mathbb{C} \), whence \(d_y^j(a) = \alpha j! v_j \) for all \(j \geq 1 \) \((v_j = 0 \text{ if } j > m)\). In particular, \(d_y^{m+1}(a) = 0 \). Furthermore, \(d_x d_y^j(a) = d_x(\alpha j! v_j) = \alpha j! x.v_j = \alpha (m - j + 1) j (j - 1)! v_{j-1} = (m - j + 1) j d_y^{j-1}(a), j = 1, \ldots, m + 1 \). So, the statement (7) is proved.

In order to prove that \(\Phi : A[X,Y]^L \to A^x \) is surjective take an \(a \in A^x \).

By (6), we can assume that \(a \in A_s \cap A^x \) for some \(s \geq 0 \). Set
\[
f_k(X) = \frac{1}{k!} d_y^k(a) X^{s-k}, \quad k = 0, \ldots, s,
\]
and let
\[
f(X,Y) = f_0(X) + f_1(X)Y + \ldots + f_s(X)Y^s.
\]
Making use of (2), (3), and (7), one easily checks that $f \in A[X,Y]^L$. Moreover, $\psi(f) = f(1,0) = f_0(1) = a$. This completes the proof of Lemma 3. □

Given a derivation d of an algebra B, B^d will denote the algebra of constants of d, i.e., $B^d = \ker d$.

2. Results. Let \mathbb{C}^+ denote the additive group of the complex field \mathbb{C}. We consider \mathbb{C}^+ as an algebraic group with the algebra of regular functions $\mathbb{C}[X]$. Then a rational representation of \mathbb{C}^+ is a linear space V together with an action of \mathbb{C}^+ on V such that, given $z \in \mathbb{C}^+$, $v \in V$,

$$z.v = \sum_{i \geq 0} \frac{f_i(v)}{i!} z^i,$$

for some locally nilpotent endomorphism $f : V \to V$. The endomorphism f is uniquely determined by the action, and f is nilpotent whenever V is finite-dimensional.

Let V be a finite-dimensional rational representation of \mathbb{C}^+ determined by the endomorphism $f : V \to V$. Then we have the induced action of \mathbb{C}^+ on the algebra $\mathbb{C}[V]$ defined by $(z.a)(v) = a(-z.v)$ for $a \in \mathbb{C}[V]$, $z \in \mathbb{C}^+$, $v \in V$. It is easy to check that this action is given by

$$z.a = \sum_{i \geq 0} \frac{d^i(a)}{i!} z^i,$$

where d is the derivation of $\mathbb{C}[V]$ determined by $d(v^*) = -v^* \circ f$ for $v^* \in V^* \subset \mathbb{C}[V]$. This implies that $\mathbb{C}[V][\mathbb{C}^+] = \{a \in \mathbb{C}[V] : \forall z \in \mathbb{C}^+ \ z.a = a\} = \mathbb{C}[V]^d$. Notice also that d is locally nilpotent and $d(V^*) \subset V^*$.

Theorem 1. If V is a finite-dimensional rational representation of \mathbb{C}^+, then the algebra $\mathbb{C}[V][\mathbb{C}^+]$ is finitely generated.

Proof. As stated above, the action of \mathbb{C}^+ on $\mathbb{C}[V]$ is given by (\ast), where $d : \mathbb{C}[V] \to \mathbb{C}[V]$ is a locally nilpotent derivation such that $d(V^*) \subset V^*$ and $\mathbb{C}[V][\mathbb{C}^+] = \mathbb{C}[V]^d$.

Using Lemma 2(ii) we see that there exists an L-module structure on V such that $d = d_x$. Applying Lemma 3 to $A = \mathbb{C}[V]$ and taking into account that $A[X,Y] = \mathbb{C}[V \oplus U]$ we obtain

$$\mathbb{C}[V][\mathbb{C}^+] = \mathbb{C}[V]^d = \mathbb{C}[V]^{d_x} \cong \mathbb{C}[V \oplus U]^L.$$

Now from Lemma 1 it follows that $\mathbb{C}[V][\mathbb{C}^+]$ is a finitely generated algebra. □

For the proof of the next theorem we have to recall some well-known links between locally finite L-modules and rational G-modules (= rational representations of G), where $G = \text{SL}(2,\mathbb{C}) = \{M \in M_2(\mathbb{C}) : \det M = 1\}$. Since L is the Lie algebra of the algebraic group G, for any rational G-module
structure \(\varphi : G \times V \to V \) on a vector space \(V \) we have the associated locally finite \(L \)-module structure \(\tilde{\varphi} : L \times V \to V \) on \(V \) (analytically, \(\tilde{\varphi}(t,v) = (\partial/\partial s) \varphi(\exp(st),v)|_{s=0} \) for \(t \in L, v \in V \)). The map \(\tilde{\varphi} \) uniquely determines \(\varphi \) and \((V,\varphi)^G = \{ v \in V' : \forall g \in G \varphi(g,v) = v \} = \{ v \in V : \forall t \in L \tilde{\varphi}(t,v) = 0 \} = (V,\tilde{\varphi})^L \). Moreover, if \((V,\varphi)\) is a rational \(G \)-module and \(\Phi : G \times S(V) \to S(V) \) is the induced action of \(G \) on the symmetric algebra \(S(V) \), then \(\tilde{\Phi} : L \times S(V) \to S(V) \) is the previously defined \(L \)-module algebra structure on \(S(V) \). In particular, \(S(V,\varphi)^G = S(V,\tilde{\varphi})^L \).

It is known ([7, Chap. 3]) that every rational \(G \)-module is semisimple and that for any \(m \geq 0 \) there exists a unique (up to isomorphism) simple rational \(G \)-module \(\varrho_m \) of dimension \(m+1 \). It is not difficult to show that the \(L \)-module associated with \(\varrho_m \) is isomorphic to \(V_m \) for all \(m \geq 0 \). As a consequence of the above facts we get the following.

Corollary 4. Let \(V \) be a finite-dimensional vector space. Then for any \(L \)-module structure \(\psi : L \times V \to V \) on \(V \) there exists a unique rational \(G \)-module structure \(\varphi : G \times V \to V \) on \(V \) such that the following conditions hold.

1. \(\tilde{\varphi} = \psi \).
2. \((V,\varphi) \cong \varrho_{m_1} \oplus \ldots \oplus \varrho_{m_s} \) for some \(m_1,\ldots,m_s \) if and only if \((V,\psi) \cong V_{m_1} \oplus \ldots \oplus V_{m_s} \).
3. \(S(V,\psi)^L \cong S(V,\varphi)^G \).

The \(G \)-module \((V,\varphi)\) is called the *lifting* of the \(L \)-module \((V,\psi)\).

Theorem 2. Let \(V \) be a finite-dimensional rational representation determined by a non-zero nilpotent endomorphism \(f \) of the vector space \(V \). Then

1. \(\mathbb{C}[V]^{G^+} \) is a Gorenstein ring.
2. \(\mathbb{C}[V]^{G^+} \) is a polynomial algebra if and only if \(V = V_{(0)} \oplus V' \) for some subrepresentations \(V_{(0)}, V' \) of \(V \) such that \(\mathbb{C}^+ \) acts trivially on \(V_{(0)} \) (i.e., \(f(V_{(0)}) = 0 \)) and the Jordan matrix of \(f' : V' \to V' \), \(f'(v) = f(v) \), is one of the following:

\[
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

Proof. As in the proof of Theorem 1, \(\mathbb{C}[V]^{G^+} \cong \mathbb{C}[V \oplus U]^L \) for some \(L \)-module structure \(\psi : L \times V \to V \) such that \(\psi(x,v) = f(v) \) for \(v \in V \). But \(U \), being a simple \(L \)-module of dimension 2, is isomorphic to \(V_1 \), so that \(\mathbb{C}[V]^{G^+} \cong \mathbb{C}[V \oplus V_1]^L \). According to Corollary 4, there exists a unique rational \(G = \text{SL}(2,\mathbb{C}) \)-module structure \(\varphi \) on \(V \) such that \(\tilde{\varphi} = \psi \). This implies
that \(\mathbb{C}[V]^{C^+} \cong \mathbb{C}[(V, \varphi) \oplus g_1]^G \), because \(g_1 \) is the lifting of \(V_1 \). Now part 1 of the theorem follows, because, as is well known, \(\mathbb{C}[W]^G \) is a Gorenstein ring for any finite-dimensional rational \(G \)-module \(W \) (see [1, Remark 6.5.5]).

For part 2, in view of [5, Example following Thm. 3], \(\mathbb{C}[V]^{C^+} \cong \mathbb{C}[(V, \varphi) \oplus g_1]^G \) is a polynomial algebra if and only if there exists a trivial submodule \(V_t \) of the \(G \)-module \((V, \varphi) \oplus g_1 \) isomorphic to one of the \(G \)-modules: \(V_t \oplus g_1 \), \(V_t \oplus g_2 \oplus g_1 \). It follows that \(\mathbb{C}[V]^{C^+} \) is a polynomial algebra if and only if \((V, \varphi) \) is isomorphic to one of the \(G \)-modules: \(V_t \oplus g_1 \), \(V_t \oplus g_2 \), \(V_t \oplus g_1 \oplus g_1 \). By Corollary 4(b), this in turn implies that \(\mathbb{C}[V]^{C^+} \) is a polynomial algebra if and only if the \(L \)-module \((V, \psi) \) is isomorphic to one of the \(L \)-modules: \((V_0) \oplus V_1 \), \(V_0 \oplus V_2 \), \(V_0 \oplus V_1 \oplus V_1 \), where \(V_0 \) is the trivial \(L \)-module structure on \(V_t \) as a vector space. The conclusion now follows from Lemma 2(i) applied to \(f : V \to V \). The theorem is proved. ■

Remark. Part 1 of the theorem was announced in [4].

Corollary 5. Let \(A = \mathbb{C}[X_1, \ldots, X_n] \) and let \(d \neq 0 \) be a locally nilpotent derivation of \(A \) with \(d(W) \subset (W) \), where \(W = \mathbb{C}X_1 + \ldots + \mathbb{C}X_n \subset A \).

1. \(A^d \) is a Gorenstein ring.

2. \(A^d \) is a polynomial algebra if and only if \(W = W_0 \oplus W' \) for some subspaces \(W_0, W' \) of \(W \) such that \(d(W_0) = 0 \), \(d(W') \subset W' \), and the Jordan matrix of \(d|_{W'} : W' \to W' \) is one of the three matrices appearing in Theorem 2.

Proof. We can consider \(A \) as the algebra \(\mathbb{C}[V] \), where \(V = \mathbb{C}^n \). Then \(W = V^* \), and hence there exists an endomorphism \(f : V \to V \) such that \(-f^* = d|_W : W \to W \). Since \(d|_W \) is nilpotent, the endomorphism \(f \) is also nilpotent. Therefore, the formula

\[
z.v = \sum_{i \geq 0} \frac{f^i(v)}{i!}z^i, \quad z \in \mathbb{C}^+, \ v \in V,
\]

makes \(V \) a rational representation of \(\mathbb{C}^+ \) such that \(\mathbb{C}[V]^{C^+} = \mathbb{C}[V]^d = A^d \). Now, the corollary is a consequence of Theorem 2, because the Jordan matrices of \(f \) and \(\pm f^* \) coincide. ■

Remark 6. It is easy to see that the corollary is equivalent to Theorem 2.

Remark 7. Let \(M = (a_{ij}) \in M_n(\mathbb{C}) \) be a nilpotent matrix and let \(d : A \to A, A = \mathbb{C}[X_1, \ldots, X_n] \), be the locally nilpotent derivation defined by

\[
d(X_i) = \sum_{i=1}^n a_{ij}X_j, \quad i = 1, \ldots, n.
\]
Essentially, the implication \iff in part 2 of Corollary 5 says that A^d is a polynomial algebra if M is one of the three matrices appearing in Theorem 2. But this follows also from [3], where it was shown that

- $A^d = \mathbb{C}[X_1]$ if $n = 2$ and $M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ (this is obvious),
- $A^d = \mathbb{C}[X_1, X_2^2 - 2X_1X_3]$ if $n = 3$ and $M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ [3, Ex. 6.8.1], and
- $A^d = \mathbb{C}[X_1, X_3, X_2X_3 - X_1X_4]$ if $n = 4$ and $M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ [3, Prop. 6.9.5].

In fact, since $\text{tr.deg}_\mathbb{C} A^D = n - 1$ for any locally nilpotent derivation $D : A \to A$, $D \neq 0$, the generators of A^d in the above three cases are algebraically independent.

REFERENCES

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: atyc@mat.uni.torun.pl

Received 8 January 1998;
revised 10 February 1998