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1. Introduction and statement of results. Let Ω be a domain in
C2. We say that Ω is a Hartogs domain iff for every (z, w) ∈ Ω and θ ∈ R
we have (z, eiθw) ∈ Ω. We denote by Ωz the set {w ∈ C : (z, w) ∈ Ω} and
call it the vertical section of Ω at z. We say that Ω is a Hartogs domain
over D if Π1(Ω) = D, where Π1(z, w) = z.

There are numerous papers devoted to Hartogs domains and their en-
velopes of holomorphy, e.g. [10], [8], [2]. In these papers the Hartogs do-
mains with connected vertical sections were studied. Diederich and Fornæss
[3] introduced an important class of Hartogs domains with disconnected
vertical sections, the so-called “worm domains”.

Barrett and Fornæss [1] gave a simple geometric construction of a Rie-
mann surface R(Ω) associated with a C1-smooth pseudoconvex, bounded
Hartogs domain Ω in C2 such that Ω is biholomorphically equivalent to a
Hartogs domain in R(Ω)×C and over R(Ω) with connected vertical sections.
Unfortunately, for nonpseudoconvex Hartogs domains this nice construction
leads to non-Hausdorff spaces.

In the present note we give another construction, based on Malgrange’s
construction of envelopes of holomorphy (via sheaves of holomorphic func-
tions) [5].

This construction will permit us to associate with every Hartogs domain
Ω in C2 an open Riemann surface R(Ω) (a Riemann domain over C) and a
biholomorphic embedding Ψ : Ω → R(Ω)×C with the following properties:

(a) If Ω is pseudoconvex then Ψ(Ω) is a Hartogs domain in R(Ω) × C
with connected vertical sections, and Π1(Ψ(Ω)) = R(Ω).

(b) If Ω is nonpseudoconvex then its envelope of holomorphy E(Ω) can
be represented as a Hartogs domain in R(Ω) × C with connected vertical
sections and such that Π1(E(Ω)) = R(Ω).

(b) is a generalization of Corollary 2.5 of [2].
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We now use the Koebe–Poincaré uniformization theorem for open Rie-

mann surfaces (see [6]) and find a holomorphic covering map Ψ : ∆
onto−→ R(Ω)

(or Ψ : C onto−→ R(Ω) in the nonhyperbolic case); ∆ denotes here, as usual,
the unit disc in C.

We consider the mapping Ψ̃ : ∆ × C onto−→ R(Ω) × C (or Ψ̃ : C × C onto−→
R(Ω)). It is of course a holomorphic covering map.

The set Ω̃ := Ψ̃−1(E(Ω)) is hence (by Stein’s theorem [9]) a pseudocon-
vex Hartogs domain in ∆×C (or C×C) and over ∆ (or C) with connected

vertical sections, such that Π1(Ψ̃−1(E(Ω))) = ∆ (or Π1(Ψ̃−1(E(Ω))) = C).
Finally, we get our

Main Theorem. For every Hartogs domain in C2 there exists a pseu-
doconvex Hartogs domain Ω̃ over the unit disc ∆ (or over C) with connected
vertical sections and a holomorphic covering map

Ψ̃ : Ω̃
onto−→ E(Ω)

where E(Ω) denotes, as before, the envelope of holomorphy of Ω.

Corollary 1. Every pseudoconvex Hartogs domain Ω in C2 can be
holomorphically covered by a pseudoconvex Hartogs domain over ∆ (or C)
with connected vertical sections.

Corollary 2. If Ω is a pseudoconvex bounded Hartogs domain in C2

not intersecting the complex line {w = 0} and the homotopy group of Ω has
exactly one generator then Ω is biholomorphically equivalent to a Hartogs
domain over ∆ with connected vertical sections.

Corollary 2 is a generalization of the same statement for worm do-
mains [1].

2. The construction of R(Ω). Let F denote the family of all holo-
morphic functions f on Ω for which ∂f/∂w ≡ 0 on Ω.

These functions depend locally only on z. Fix some point (z0, w0) ∈ Ω.
Consider the sheaf of holomorphic functions with values in CF over C.

Let R be a component of the above sheaf space containing the point
[F ]z0 , the germ of the family F at z0 ([F ]z0 = {[f ]z0}f∈F ). Then R is a
Riemann domain over C.

We can now define a biholomorphic embedding of Ω into R × C as
Φ(z, w) = ([F ]z, w) and define R(Ω) = Π1(Φ(Ω)). Then R(Ω) is an open
subset of a sheaf space and therefore a well defined Riemann surface (a
Riemann domain over C).
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3. Proofs. Every function f holomorphic on the Hartogs domain Ω
can be written in the form

f =

∞∑
j=−∞

fjw
j ,

∂fj
∂w
≡ 0 on Ω for each j ∈ Z.

This implies that if g ∈ H(Φ(Ω)) then g =
∑∞
j=−∞ gjw

j , ∂gj/∂w ≡ 0 on
Φ(Ω) for each j ∈ Z.

The construction of R(Ω) also implies that if (ξ0, w1), (ξ0, w2) ∈ Φ(Ω)
and |w1| < |w2| then every function g holomorphic on Φ(Ω) extends to
a function g̃ holomorphic on an open neighborhood of the set {(ξ, w) ∈
R(Ω) × C : |w1| ≤ |w| ≤ |w2|, ξ = ξ0}. Moreover, if (ξ0, w) ∈ Φ(Ω) and
|w1| < |w| < |w2| then g̃(ξ0, w) = g(ξ0).

Thus there exists a Hartogs domain D̃ in R(Ω) × C with connected

vertical sections such that D̃ ⊃ Φ(Ω) and every holomorphic function on

Φ(Ω) extends holomorphically to D̃.

Analogously to the case of Hartogs domains in C2 (see [2]), (D̃, R(Ω)×C)

is a Runge pair if D̃ ∩ {(ξ, w) : w = 0} 6= ∅, and (D̃, R(Ω)× (C \ {0})) is a
Runge pair otherwise.

Hence the envelope of holomorphy E(Ω) ≈ E(Φ(Ω)) = E(D̃) is a Har-
togs domain in R(Ω)× C with connected vertical sections. This last state-
ment can be proved in exactly the same way as an analogous fact in [2]. How-

ever, we can obtain an easier proof if we use the representation ofE(D̃) as the

set of linear multiplicative functionals on H(D̃) (the space of holomorphic

functions on D̃) (see [4]). The fact that (D̃, R(Ω)×C) or (D̃, R(Ω)×(C\{0})
forms a Runge pair and R(Ω) × C and R(Ω) × (C \ {0}) are Stein mani-

folds implies E(D̃) ⊂ R(Ω)×C. Now E(D̃) must be a Hartogs domain,
because the action of the group {riθ}θ∈R = T extends to an envelope of
holomorphy in an obvious way and must agree with (ξ, w) → (ξ, eiθw) on

H(R(Ω)×C) (or H(R(Ω)×C\{0})). Moreover, E(D̃) must have connected
vertical sections by the first part of our proof.

Thus (a) and (b) are proved and the Main Theorem follows.
Corollary 1 is an immediate consequence of the Main Theorem.
If the assumptions of Corollary 2 are satisfied then R(Ω) must be simply

connected, and therefore it is conformally equivalent to the unit disc by the
Riemann mapping theorem.

4. Admissible families of holomorphic functions. Let Ω be a
pseudoconvex Hartogs domain in C2. Let F denote, as before, the family of
holomorphic functions f on Ω for which ∂f/∂w ≡ 0 on Ω.

Let F1 ⊂ F be a subfamily of F . We can repeat the construction from
Section 2 taking the family F1 instead of F . As a result we get a Riemann
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surface R1(Ω) and a biholomorphic imbedding Φ1 : Ω → R1(Ω) × C such
that Π1(Φ1(Ω)) = R1(Ω).

We say that the family F1 is admissible if Φ1(Ω) has connected vertical
sections.

We have the following

Proposition 1. If F1 is an admissible family then R1(Ω) is conformally
equivalent to R(Ω).

P r o o f. Let ξ ∈ R(Ω). Take w such that (ξ, w) ∈ Φ(Ω). Define Ψ(ξ) =
Π1Φ1Φ

−1(ξ, w). Since Ω is pseudoconvex, R(Ω) has connected vertical sec-
tions and Ψ(ξ) is well defined. Since R1(Ω) has connected vertical sections
we have Ψ−1(ξ) = Π1ΦΦ

−1
1 (ξ, w) for (ξ, w) ∈ Φ1(Ω).

Let us give the following two examples of admissible families:

(i) Let Ω be a bounded pseudoconvex Hartogs domain in C2 with C1-
smooth boundary.

Let K((z, w), (t, s)) be the Bergman kernel function of Ω. It can be
written in the form

K((z, w), (t, s)) =

∞∑
j=−∞

kj((z, w), (t, s))wjsj ,

where for each j ∈ Z, ∂kj/∂w = ∂kj/∂s = 0 on Ω ×Ω.
Take F1 = {kj((z, w), (t, s))}(t,s)∈Ω, j∈Z. If F1 is not admissible then

there exists a larger domain Ω̃ such that K((·, ·), (t, s)) extends holomor-

phically to Ω̃ for all (t, s) ∈ Ω. Since K((z, w), (t, s)) = K((t, s), (z, w)),

there exists Ω̃1 with Ω ⊂ Ω̃ ⊂ Ω̃1 such that K((z, w), (z, w)) extends to a

real-analytic function on Ω̃1.
However, Ohsawa [7] proved that if Ω is bounded, pseudoconvex with

C1-smooth boundary then K((z, w), (z, w))→∞ as (z, w)→ ∂Ω.
Hence F1 must be admissible.

(ii) Let Ω be a worm domain (see [3] or [1]). It was shown in [1] that
F = {x1/p} is admissible for p sufficiently large (depending on Ω).

Problem 1. Which pseudoconvex Hartogs domains in C2 admit finite
admissible families of holomorphic functions?

5. Planar Hartogs domains in C2. An open Riemann surface R is
called planar if it is conformally equivalent to an open domain in C. An
open Riemann surface R is planar iff every Jordan curve in R dissects R
(see [6]).

A Hartogs domain Ω in C2 will be called planar iff R(Ω) is a planar
Riemann surface. We have the following
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Proposition 2. If Ω is a planar Hartogs domain in C2 then its envelope
of holomorphy E(Ω) is biholomorphically equivalent to a Hartogs domain in
C2 with connected vertical sections.

This is an immediate consequence of (a) and (b).
There exist nonplanar Hartogs domains (see [1], §5, Example).

Problem 2. Does there exist a pseudoconvex, bounded Hartogs domain
in C2 with C1-smooth boundary, which is not planar? (Worm domains are
planar!)
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