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WEIGHTED NORM INEQUALITIES AND HOMOGENEOUS CONES

BY

TATJANA OSTROGORSKI (MONTPELLIER AND BELGRADE)

1. Introduction. In this paper we consider an n-dimensional general-
ization of the classical Hardy inequality:

Let 1 ≤ p < ∞ and α < 1. Then for every positive function f defined

on the positive half-line we have

(1)

∞\
0

(
1

x

x\
0

f(y) dy

)p
xαp dx/x ≤ C

∞\
0

fp(x)xαp dx/x.

This is Theorem 330 of [5], which shows that the Hardy operator Hf(x) =
1
x

Tx
0
f(y) dy is bounded in the weighted Lp space (with weight xαp). The best

constant here is C = 1/(1 − α)p. We write the inequality in a form slightly
different than the one in [5], because it is more suitable for generalization.

We shall use a homogeneous cone V in R
n as a generalization of the half-

line (0,∞), and the power functions defined on V in place of the weights
φγ(x) = xγ (see Section 2 for the definitions). It turns out that the only
properties of the Hardy operator needed to obtain the inequality are the
homogeneity of the kernel and the fact that Hφγ is well defined for γ > −1.
In other words, all operators having these two properties will satisfy the same
weighted norm inequality. As examples we consider the Laplace transform,
the Riemann–Liouville operator, and the Stieltjes transform.

In the one-dimensional case inequality (1) was generalized in many direc-
tions and it was shown that more general functions than the power functions
can be taken as weights. Indeed, Muckenhoupt [8] gave a necessary and suf-
ficient condition for the weights. However, the n-dimensional counterpart of
this condition is not even sufficient, so it makes sense to find weights which
at least satisfy this inequality.

The cones which we consider in this paper are more general than the
self-dual cones considered in [9]. Also the weights in [9] were of a more
special form—powers of the norm (see (11) below), while in this paper we
have n-dimensional power functions (Definition 3). To find these weights
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we must use the theory of homogeneous cones founded by Vinberg [14] and
Gindikin [4]. (See also [12] for inequalities with p ≤ q and [13] for 0 < p < 1.)

In Section 2 we briefly review the notions we need from the theory of
homogeneous cones, as developed by Vinberg [14]. In Section 3 we prove
the weighted norm inequality for a class of integral operators with homoge-
neous kernels. By observing that such integral operators can be written as
convolutions, the proof of this inequality becomes particularly simple (see
also [2] for n = 1). In Section 4 we give some examples of homogeneous
operators—they are all n-dimensional analogues of some classical operators,
and in Section 5 we apply to them the weighted norm inequality. The dual
operators of the classical ones give further examples of homogeneous oper-
ators (Section 6).

2. The homogeneous cones. A homogeneous cone V in R
n is a cone

endowed with a group operation. These cones were studied in [7, 11, 14, 4].
In this section we review some facts we shall need from the theory of homoge-
neous cones (see Vinberg [14]). This theory is based on some nonassociative
algebras, which are now called Vinberg algebras. There is an analogy with
the better known case of symmetric or self-dual cones (which are equal to
their dual cone) and where the corresponding algebras are the Jordan alge-
bras (see, for example, [3]). The symmetric cones are fully classified: there
are 5 types of them. There are infinitely many types of general homogeneous
cones, but their exact classification is not yet known.

Definition 1. Let V be an open convex cone in R
n which does not

contain any straight line. The cone V is said to be homogeneous if there is
a group G of linear automorphisms (a subgroup of GL(n,R) which leaves V
invariant) which is transitive on V , i.e., such that for any u, v ∈ V there is
an element g of G such that v = gu.

A most important property of homogeneous cones is that they always
have a simply transitive group of automorphisms, i.e. a group G such that
for every u, v ∈ V there is a unique g ∈ G such that v = gu. In other words,
there is a bijection Π : G → V which, if we fix an element c ∈ V once for
all, assigns to every v ∈ V a unique gv ∈ G such that v = gvc. Thus the
group operation induces an operation for the elements of the cone

(2) v · u = gvguc.

We shall call this simply transitive group G the group of the cone. This
group is triangular (real solvable) and if g is the Lie algebra of G, then the
exponential mapping is a bijection from the Lie algebra g onto G. By taking
the derivative of the mapping Π above, we see that the mapping π : g → R

n

defined by X 7→ Xc is a vector space isomorphism. Thus we have bijective
mappings between the four sets V , G, g and R

n.
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If x ∈ R
n we write L(x) for the unique element of g such that x = L(x)c

(i.e. L is the inverse of π; this notation will be justified in Definition 2
below). Then we can define the following operation:

x △ y = L(x)L(y)c

for every x, y ∈ R
n. This bilinear operation introduces into R

n the structure
of a Vinberg algebra. This is the nonassociative algebra described in the
next definition.

Also, by the bijectivity of the exponential mapping, every g ∈ G is of
the form g = expL(x), for some L(x) ∈ g.

Definition 2. A Vinberg algebra B = (R,△) is the vector space R
n

with a bilinear operation △ such that

(B) x △ (y △ z)− (x △ y) △ z = y △ (x △ z)− (y △ x)△ z,
(B.1) the operator of left multiplication L(x) : B → B, L(x)y = x △ y,

has real spectrum,
(B.2) TrL(x △ x) > 0, for every x ∈ B \ {0}.

The Vinberg algebra B has an identity c if moreover

(B.3) x △ c = c △ x = x.

We write R(x) : B → B, R(x)y = y△x, for the right multiplication in B.

Vinberg’s Theorem ([14]). Let B be a Vinberg algebra with identity c.
Then there is a complete system of orthogonal idempotents c1, . . . , cm, with
c1 + . . . + cm = c; the number m is called the rank of B. The algebra B is

decomposed into a direct sum of subspaces

(3) B =
∑

i≤j

Bij, i, j = 1, . . . ,m,

where Bii = Rci and the subspace Bij is characterized by the fact that the

operators L(ci) and L(cj) have on it eigenvalue 1/2, and the operator R(cj)
has eigenvalue 1; all the other L(ck) and R(ck) are zero on Bij.

This decomposition is analogous to the Pierce decomposition of Jordan
algebras. Put nij=dimBij. We have nii = 1, but there is almost no restric-
tion for the numbers nij (compare with the case of Jordan algebras, where
all nij are necessarily equal, and the only possibilities are 1, 2, 4 or 8).

We shall write xij for an element of Bij . In particular, xii = xici, for
some xi ∈ R. Thus by (3), every x ∈ B is of the form

(4) x =
∑

i≤j

xij =
∑

i

xici +
∑

i<j

xij .

Consider the Lie algebra g, which, as every triangular Lie algebra, is
decomposed into the sum g = a + n of the abelian subalgebra a and the
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nilpotent subalgebra n = [g, g]. This decomposition corresponds to (4) and
for L(x) ∈ g we have

∑
i xiL(ci) ∈ a and

∑
i<j L(xij) ∈ n. The operators

L(ci) constitute a basis of a—they commute since ci are orthogonal idem-
potents; this is easily seen if we note that in terms of the operators of left
multiplication condition (B) takes the form [L(x), L(y)] = L(x△ y − y △ x).

Lemma 1 ([14]). The trace of L(x) equals

(5) TrL(x) =

m∑

i=1

xiTrL(ci) =

m∑

i=1

xidi

where di = TrL(ci) is given by

(6) di = 1 + νi/2 + µi/2 with νi =
∑

α<i

nαi, µi =
∑

β>i

niβ

for i = 1, . . . ,m.

This follows from the decomposition (4) by making use of the fact that
TrL(xij) = 0 and that the eigenvalues of L(ci) are as in the theorem above.

We shall write d = (d1, . . . , dm), ν = (ν1, . . . , νm) and µ = (µ1, . . . , µm)
for the three multi-indices in (6), which are characteristic for the cone. We
shall need them in Section 4. (See [14, 4 or 10] where the values of these
indices are found for different examples of cones.)

Now we consider functions defined on a homogeneous cone Φ : V → R+.
By what was said above we can obviously associate with the function Φ the
functions

φ : G→ R+, ψ : g → R, Ψ : B → R

defined via the following equations:

(7) φ(g) = Φ(gc), φ(expL(x)) = eψ(L(x)), Ψ(x) = ψ(L(x)).

Definition 3. A function Φ : V → R+ is called a power function if
the corresponding function φ : G → R+ is a Lie group homomorphism (or,
equivalently, ψ : g → R is a Lie algebra homomorphism).

Thus, by definition, a power function is characterized by any of the fol-
lowing equalities:

(8) Φ(gv) = φ(g)Φ(v), Φ(v · u) = Φ(v)Φ(u).

Let α = (α1, . . . , αm) be a multi-index. Let x ∈ B be given in its Pierce
coordinates (4). Let the function Ψα : B → R be defined by

(9) Ψα(x) = α1x1 + . . .+ αmxm

and let, for g = expL(x) and v = gvc, the associated functions (7) be given
by

(10) φα(g) = eψ
α(L(x)) = eΨ

α(x), Φα(v) = φα(gv).
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Lemma 2. Let Φ : V → R+ be a power function. Then there exists a

multi-index α such that Φ is equal to Φα.

P r o o f. The function ψ associated with Φ in (7) is a homomorphism of
the Lie algebra g into the abelian Lie algebra R. Then it must be zero on
n = [g, g] (since the commutator is 0 in R); thus if we write L(x) = H + Y ,
with H ∈ a and Y ∈ n, then ψ(L(x)) = ψ(H). Now any linear function
is a Lie algebra homomorphism from the abelian subalgebra a into R, so
that finally, since H =

∑
i xiL(ci) (by a remark above L(ci) are the basis

elements), we have ψ(H) = α1x1 + . . . + αmxm with αi = ψ(L(ci)). This
with the notation (9) and (10) proves the lemma.

An important example of a power function is the norm of the cone.
By definition (see [7]) it is the power function which is associated with the
function Det g (which is obviously a Lie group homomorphism), i.e.

(11) ∆(gv) = Det g∆(v).

To find the multi-index of this power function note that Det(expL(x)) =
eTrL(x). Then we see by (10) that α equals d, where d is the multi-index
defined in (5) and (6). Thus

(12) ∆(v) = Φd(v), Det g = φd(g).

Formula (2) defines a group operation on the elements of V . Denote
this group by (V, ·) and write v−1 for the inverse in this group. This means
v−1 = (gv)

−1c and equivalently gv−1 = (gv)
−1.

Lemma 3 ([4]). Let V be a homogeneous cone. The measure invariant

under the action v 7→ gv of the group G is given up to a constant by

(13) dm(v) =
dv

∆(v)
=

dv

Φd(v)

where dv is the Lebesgue measure. Consequently , dm(v) is a left and right

Haar measure for the group (V, ·), and is thus also invariant under the in-

version v 7→ v−1.

P r o o f. Indeed, the first assertion follows from (11) and (12). The second
is now obvious from (8) and the third is a well-known property of unimodular
groups.

3. Operators with homogeneous kernels. Now we consider integral
transforms of functions defined on V and prove that they satisfy a weighted
norm inequality similar to Hardy’s inequality (1) from the introduction, in
other words, that they are bounded operators in weighted Lp spaces.

Let F : V → R+ be a positive function defined on V and let dm be the
invariant measure (13). For 1 ≤ p < ∞ and for a multi-index α we define
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the weighted Lp norm as

(14) ‖F‖p,α =
\
V

F p(v)Φpα(v) dm(v).

We shall simply write ‖F‖p when α = 0. Let Lpα = Lpα(V ) be the space of
all positive functions F defined on V such that ‖F‖p,α <∞.

Put F̌ (v) = F (v−1). Since the measure is inversion invariant (Lemma 3),
we have

(15) ‖F‖p,α = ‖F̌‖p,−α.

Let κ be a multi-index. A function k : V × V → R+ is called a homoge-

neous kernel of order κ if

(16) k(gv, gu) = φκ(g)k(v, u)

for every g ∈ G and v, u ∈ V . We write ord(k) = κ.
Define a homogeneous integral operator with kernel k by the formula

KF (v) =
\
V

k(v, u)F (u) dm(u).

We shall also say that κ is the order of K.
In this section we prove the boundedness of K as an operator in weighted

Lp spaces. We start with a particular case: in Theorem 1 we establish the
inequality without weights for an operator of order 0. The key step in the
proof is the fact that a homogeneous operator can be written as a convolution
(Lemma 5). Next, in Theorem 2 we give the inequality from Lpα into Lqβ , with
the order κ related to the weights by formula (25). Operators of arbitrary
orders will be treated in Section 5 by an easy reduction to these particular
cases.

Lemma 4. Let k be a homogeneous kernel of order κ. Then

(17) k(v, u) = Φκ(v)k(c, v−1 · u), KΦα(v) = Φα+κ(v)KΦα(c).

P r o o f. By using the definition of the product (2) we can write k(v, u) =
k(gvc, gvv

−1 · u) and by (16) and (10) this is equal to φκ(gv)k(c, v
−1 · u) =

Φκ(v)k(c, v−1 · u).
By (17) we have

KΦα(v) = Φκ(v)
\
V

k(c, v−1 · u)Φα(u) dm(u).

Now change the variable v−1 · u 7→ u in the last integral. By the invariance
of dm it is equal to

(18)
\
V

k(c, u)Φα(u) dm(u) = KΦα(c)

multiplied by Φα(v).
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Lemma 4 says that a homogeneous operator transforms power functions
into power functions, provided the integral (18) is convergent. (See Section 4
for values of α for which the integral is convergent.) Write

(19) K(u) = k(c, u);

then (18) becomes

(20) KΦα(c) = ‖K‖1,α.

Definition 4. Let F1 and F2 be two positive functions defined on V .
The convolution F1 ∗ F2 is defined by

F1 ∗ F2(v) =
\
V

F1(u)F2(u
−1 · v) dm(u).

Lemma 5. Let K be an integral operator with homogeneous kernel k of

order 0 and let K be the function defined in (19). Then K is a convolution

operator :
KF = F ∗ Ǩ.

P r o o f. By (17) and (19) we have k(v, u) = K(v−1 · u) = Ǩ(u−1 · v).

In this case, when the operator K is a convolution, the boundedness of
K follows from the following Young’s inequality for convolutions.

Let 1 ≤ p ≤ q <∞ and let r be defined by 1/r = 1/q−1/p+1. Let H be

a unimodular locally compact group. If F1 ∈ Lp(H) and F2 ∈ Lr(H) then

(21) ‖F1 ∗ F2‖q ≤ ‖F1‖p‖F2‖r.

(See [6], Theorem 20.18, with q and r interchanged, and Theorem 20.14.
For n = 1 this is Theorem 280 of [5]; see also [2].)

Theorem 1. Let 1 ≤ p ≤ q < ∞ and let r be such that 1/r = 1/q −
1/p + 1. Let K be an integral operator with homogeneous kernel k of order

0 and let K be defined in (19). If ‖K‖r <∞, then

(22) ‖KF‖q ≤ C‖F‖p.

for every F ∈ Lp. The constant C can be taken to be ‖K‖r.

P r o o f. Indeed, by Lemma 5 we have KF = F ∗Ǩ . Now by (15) we have
‖K‖r = ‖Ǩ‖r and this is finite by assumption, so that Young’s inequality
(21) yields ‖F ∗ Ǩ‖q ≤ ‖F‖p‖K‖r and this is (22) with C = ‖K‖r.

Remark. The best constant C in (22) can actually be smaller than ‖K‖r.
By applying a result of [1] we see that the best constant for the cone R

n
+

(the set of points with all coordinates positive) is equal to (ApArAq′)
n‖K‖r,

where Am = [(m1/m)/(m′)1/m
′

]1/2 with 1/m+1/m′ = 1 (so that it is equal
to ‖K‖r only in the limiting case when p = q and r = 1).
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Theorem 2. Let 1 ≤ p ≤ q < ∞ and let r be such that 1/r = 1/q −
1/p+1. Let K be an integral operator with homogeneous kernel k of order κ
and let K be defined in (19). Let α and β be two multi-indices and suppose

(23) ‖K‖r,−α <∞.

Then

(24) ‖KF‖q,β ≤ C‖F‖p,α

for every F ∈ Lpα if and only if

(25) κ+ β − α = 0.

The constant C in (24) can be taken to be ‖K‖r,−α.

P r o o f. First we show that this is the only possible form of the inequality,
i.e. if (24) holds, then the weights satisfy (25). Indeed, consider the function
lg ◦ F (u) := F (gu) for g ∈ G. Then it is easily seen that

(26) ‖lg ◦ F‖p,α = φ−α(g)‖F‖p,α

and

(27) K(lg ◦ F )(v) = φ−κ(g)lg ◦ KF (v).

The following inequality is proved by an application of (27), (26), (24) and
again (26):

‖K(lg ◦ F )‖q,β ≤ Cφ−κ−β+α(g)‖lg ◦ F‖p,α,

and since the constant should not depend on g we obtain (25).
Now to prove the inequality put

h(v, u) = Φβ(v)k(v, u)Φ−α(u).

Then by (25) the order of h equals β + κ − α = 0. Also, since H(u) =
h(c, u) = K(u)Φ−α(u), we have ‖H‖r = ‖K‖r,−α so that the operator H
with kernel h satisfies the conditions of Theorem 1. Thus we have

(28) ‖HG‖q ≤ C‖G‖p

for every G ∈ Lp. Now

HG(v) = Φβ(v)
\
V

k(v, u)Φ−α(u)G(u) dm(u) = Φβ(v)KF (v)

where we have put F = Φ−αG. Thus (28) yields

‖ΦβKF‖q = ‖HG‖q ≤ C‖G‖p = C‖ΦαF‖p,

which with the notation (14) is exactly (24). Since in (28) we had C ≤ ‖H‖r
and this equals ‖K‖r,−α, the theorem follows.

4. The classical operators. Many of the classical operators can be
generalized to n dimensions in such a way that the kernel is homogeneous.
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In order to simplify the notation we shall write down the inequalities for
these operators in the special case p = q. (It is obvious that the general case
p < q is treated in a completely analogous way.) For p = q in Theorem 2 we
have r = 1 and condition (23) reads KΦ−α(c) = ‖K‖1,−α <∞ (see (20)).

Corollary 1. Let 1 ≤ p < ∞. Let K be an integral operator with

homogeneous kernel of order κ and such that KΦ−α(c) < ∞ for some α.
Then

(29) ‖KF‖p,α−κ ≤ C‖F‖p,α.

Thus in order to apply this corollary we only have to check that KΦ−α(c)
< ∞. This is the only point in the proof of the weighted inequality which
really depends on the structure of the homogeneous cone; all the rest is
in complete analogy with the one-dimensional case. For the operators we
consider in this paper the values of α such that KΦ−α(c) <∞ were found by
Gindikin [4] (see also [10] for a proof using Vinberg’s theory of homogeneous
cones). It turns out that for all these operators the values of α are the same;
see Lemmas 6–9 below.

Throughout this section we assume that V is a homogeneous cone and
that d and ν and µ are the multi-indices characteristic for the cone, defined
in (6). When α and β are two multi-indices we shall briefly write α < β for
αi < βi, i = 1, . . . ,m. Also, when 1 stands for a multi-index, it will mean
(1, . . . , 1).

4.1. Hardy’s operator . The cone V defines a partial order in R
n in the

following way: v <V u iff u − v ∈ V . Write (a, b) for the “interval” with
respect to this order, i.e. for the set of all elements v ∈ V such that a <V
v <V b.

Hardy’s operator is defined by

(30) HF (v) =
\

(0,v)

F (u) dm(u).

The kernel is k(v, u) = χ(0,v)(u), with χA the characteristic function of a set
A. Since g ∈ G preserves the cone, it also preserves the order; i.e. u <V v
implies gu <V gv. This shows that the kernel is homogeneous of order 0.

Lemma 6 ([4]). The integral

HΦα(c) =
\

(0,c)

Φα(u) dm(u)

is convergent for α > µ/2.

4.2. The Laplace transform. Let V be a homogeneous cone and B its
Vinberg algebra as in Section 2. Then we can define an inner product by
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putting

(31) 〈x | y〉 = TrL(x △ y).

Condition (B) in Definition 2, written in the form [L(x), L(y)] = L(x △ y −
y △ x), shows that the bilinear form (31) is symmetric. Condition (B.2)
shows that this form is positive-definite.

Let ∆ be a norm of V (see (11)). For v ∈ V define v∗ ∈ R
n by putting

〈v∗ | x〉 = d(log∆)(v)x

for every x ∈ R
n (see [7 or 11]). In fact, this formula defines a mapping

which to every v ∈ V assigns an element v∗ of the dual cone V ∗.

Now the Laplace transform is defined, for every v ∈ V , by

(32) LF (v) =
\
V

e−〈v∗|u〉F (u) dm(u).

It is an integral operator with kernel k(v, u) = e−〈v∗ |u〉 which is homoge-
neous of order 0. Indeed, the mapping ∗ satisfies (gv)∗ = (g−1)⊤v∗, where
⊤ denotes the transposition with respect to the inner product (31) (see [11])
and thus 〈(gv)∗ | gu〉 = 〈(g−1)⊤v∗ | gu〉 = 〈v∗ | u〉, so that finally we have
k(gv, gu) = k(v, u), for every g ∈ G.

Lemma 7 ([4]). The integral

LΦα(c) =
\
V

e−〈c|u〉Φα(u) dm(u)

is convergent for α > µ/2.

The integral in this lemma is called the Gamma function of the cone,
and was first defined in [7].

4.3. The Riemann–Liouville operator . It is defined for a multi-index β
by putting

(33) RβF (v) =
\

(0,v)

Φβ(v − u)F (u) dm(u).

The kernel k(v, u) = χ(0,v)(u)Φ
β(v − u) is homogeneous of order β. Obvi-

ously, Hardy’s operator is a special case, when β = 0.

Lemma 8 ([4]). The integral

RβΦ
α(c) =

\
(0,c)

Φβ(c− u)Φα(u) dm(u)

is convergent for β > −1− ν/2 and α > µ/2.
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4.4. The Stieltjes transform. It is defined for a multi-index ̺ by putting

(34) S̺Φ
α(c) =

\
V

Φ−̺(v + u)F (u) dm(u).

The kernel k(v, u) = Φ−̺(v + u) is homogeneous of order −̺.

Lemma 9 ([4]). The integral

S̺F (v) =
\
V

Φ−̺(c+ u)Φα(u) dm(u)

is convergent for ̺ > µ and µ/2 < α < ̺− µ/2.

We have thus checked that all four operators satisfy the two conditions of
Corollary 1: they are homogeneous and KΦ−α(c) is finite for some α. Then
inequality (29) holds for these values of α.

5. Some variants. In this section we obtain some easy corollaries of the
preceding. As seen in the following lemma, it is possible to modify the two
conditions of Corollary 1 and to change either the order of the operator or
the values of α for which KΦ−α(c) is finite. In Corollary 2 we make the first
change in order to see that all our examples of classical operators satisfy
the same inequality. In Corollary 3 we make the second change in order to
enlarge the domain of these operators; they then take their more usual form.

If k is a homogeneous kernel, put, for some multi-index λ,

k1(v, u) = Φ−λ(v)k(v, u),(35)

k2(v, u) = Φλ(v)k(v, u)Φ−λ(u).(36)

Then one can easily change the order of the operator (reducing it, for exam-
ple, to the case ord(k) = 0), or change the range of α for whichKΦ−α(c) <∞
holds. More precisely, we have the following lemma, whose proof is quite
obvious.

Lemma 10. An integral operator K has order κ and satisfies KΦ−α(c) <
∞, for some α, if and only if any of the following conditions holds:

(a) The operator K1 with kernel (35) has order κ−λ and K1Φ
−α(c) <∞.

(b) The operator K2 with kernel (36) has order κ and K2Φ
−α+λ(c)

<∞.

We note that all the operators considered in the preceding section satisfy
the condition KΦ−α(c) < ∞ for the same values of α : α < −µ/2 (with
an additional restriction for α in the case of the Stieltjes transform: α >
−̺+ µ/2). We shall now modify the Riemann–Liouville operator (33) and
the Stieltjes transform (34) as in Lemma 10(a), so that their order becomes
0, without changing the condition KΦ−α(c) <∞.
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Define

(37) R1
β = Φ−βRβ

as in (35). Thus by Lemma 10(a), R1
β is homogeneous of order 0 and

R1
βΦ

−α(c) = RβΦ
−α(c).

Also, define the modified operator

(38) S1
̺ = Φ̺S̺

which is homogeneous of order 0 and such that S1
̺Φ

−α(c) = S̺Φ
−α(c).

Corollary 2. Let 1≤ p< ∞ and α< −µ/2. Let K be any of the fol-

lowing operators: Hardy’s operator H (30), the Laplace transform L (32), the
modified Riemann–Liouville operator R1

β (37) (for β > −1− ν/2), the mod-

ified Stieltjes transform S1
̺ (38) (for ̺ > µ, with the additional restriction

for α in this case: α > −̺+ µ/2). Then

‖KF‖p,α ≤ C‖F‖p,α.

Now, usually Hardy’s operator is given in the form
T
(0,ν)

F (u) du, since

introducing the invariant measure dm in (30) only worsens the singularity
at the origin; this accounts for the reduced range of α in Corollary 2: α <
−µ/2 (which corresponds to α < 0 in dimension 1). We fix this by applying
Lemma 10(b). Consider the following operators:

H̃F (v) = Φ−d(v)
\

(0,ν)

F (u) du, L̃F (v) = Φ−d(v)
\
V

e−〈v∗ |u〉F (u) du,

R̃βF (v) = Φ−β−d(v)
\

(0,ν)

Φβ(v − u)F (u) du, β > −1− ν/2,(39)

S̺̃F (v) = Φ̺−d(v)
\
V

Φ−̺(v + u)F (u) du, ̺ > µ.

Corollary 3. Let 1 ≤ p < ∞ and α < 1 + ν/2. Let K̃ be any of the

operators (39) (with the additional restriction α > −̺ + µ/2 + d for the

Stieltjes transform). Then

‖K̃F‖p,α ≤ C‖F‖p,α.

Remark. This is exactly the form of the Hardy inequality (1).

P r o o f (of Corollary 3). All the kernels of the operators (39) are ob-

tained from the corresponding kernels (in Corollary 2) as in (36): k̃(v, u) =

Φ−d(v)k(v, u)Φd(u). Thus ord(k̃) = ord(k) = 0. We have to check that

K̃Φ−α(c) < ∞ for α < 1 + ν/2. By Lemma 10(b) this is equivalent to
KΦ−α+d(c) < ∞ for the original operator. Now if α < 1 + ν/2, then
α − d < 1 + ν/2 − d = −µ/2 (see (6)), and thus the condition holds, as
seen from Corollary 2.
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6. The dual operators. Let K be a homogeneous operator. The dual

operator is defined by

K′F (u) =
\
V

k(v, u)F (v) dm(v).

Its kernel k′(v, u) = k(u, v) is obviously homogeneous of the same order.

Lemma 11. If K is a homogeneous operator of order 0, then KΦ−α(c) =
K′Φα(c).

P r o o f. Indeed, if K is the function defined in (19) and K ′ the corre-
sponding function for K′, we have K ′(v) = K(v−1) = Ǩ(v), by (17). Now
by (15) we have ‖K ′‖1,α = ‖K‖1,−α and then (20) yields the lemma.

We now consider the dual operators of the operators in Section 4. Write
(v,∞) = {u ∈ V : u >V v} for infinite intervals. Then the dual of Hardy’s
operator (30) is

H′F (u) =
\

(u,∞)

F (v) dm(v).

The dual of the Laplace transform (32) is

L′F (u) =
\
V

e−〈v∗|u〉F (v) dm(v).

Corollary 4. Let 1 ≤ p <∞ and α > µ/2. Then the operators H′ and

L′ satisfy
‖K′F‖p,α ≤ C‖F‖p,α.

P r o o f. Indeed, to apply Corollary 1, note that they are both of order
0 and K′Φ−α(c) = KΦα(c), by Lemma 11. Now when α > µ/2, we have
KΦα(c) <∞ for both these operators, by Lemmas 7 and 8.
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