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THE LOCAL DUALITY FOR HOMOMORPHISMS AND
AN APPLICATION TO PURE SEMISIMPLE PI-RINGS

BY

MARKUS S C H M I D M E I E R (PRAHA)

The local duality L : MR 7→ RLM defined below is a useful tool both
in module theory and in representation theory. For example, it is applied
in [4, I, Theorem 3.9] to construct Auslander–Reiten sequences for finitely
presented modules. It is shown in [17] that the local duality induces a di-
chotomy for the finite length modules over an artinian ring R which satisfies
a polynomial identity. The consequences of this dichotomy for the represen-
tation theory of R are studied in [18] and [19]. If k is a commutative artinian
ring and R a k-artin algebra, the local duality coincides on the finite length
modules with the (functorial) duality D = Hom(−,E(kk)), where k is the
factor ring k/Rad k.

The local duality L : MR 7→ RLM is not functorial in general. The aim
of this article is to show that L has the following related properties.

• The local duality commutes with finite direct sums, up to isomorphism,
provided each summand has perfect endomorphism ring (Theorem 1.6). Its
relation to further dualities given by proper subrings of the endomorphism
ring is investigated in Propositions 1.2 and 1.5.
• The local duality can be defined for homomorphisms f : MR → NR

between R-modules and it behaves well on a class of homomorphisms which
we call “endofinite” (Theorem 3.2). However, this class may not be closed
under addition or composition (Examples 1 and 2).
• For artinian right pure semisimple PI-rings, the local duality induces

a bijection between the isoclasses of indecomposable finite length left and
right modules. We use this bijection to obtain a new proof for the fact
proved by Herzog [10] that such rings are of finite representation type.

Notation. Throughout this article by a ring we mean an associative ring
with an identity element. A ring R is called semilocal provided its factor
R = R/RadR modulo the (Jacobson) radical RadR is semisimple. We de-
note by Mod-R and R-Mod the categories of all right and left R-modules,
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respectively. For the full subcategory of Mod-R consisting of the finite length
modules we will write mod-R. Homomorphisms of modules will be written
on the side of the elements which is opposite the scalars. For M,N in
Mod-R the group of R-homomorphisms Hom(MR, NR) will also be denoted
by (MR, NR). Obviously, (MR, NR) has a natural structure of an EndNR-
EndMR-bimodule. Furthermore we write M ∈ NR for “M is isomorphic
to a direct summand of the R-module N”. For a right R-module M with
semilocal endomorphism ring S = EndMR, the local dual is defined as the
left R-module

LM = RHom(SM, SI)

of S-homomorphisms from SM to the S-injective envelope I = SE(SS) of
the factor S = S/RadS. For the notion of purity (pure submodules, (Σ-)
pure injective modules, finite matrix subgroups) we refer the reader to [11,
Ch. 6–8].

1. Dualizing modules using subrings of endomorphism rings.
Suppose that M is a right R-module and has a local right perfect endomor-
phism ring S = EndMR. Let T be a subring of S and let TJ be an injective
cogenerator of T -Mod. We denote by

LT,JM = R(TM, TJ)

the dual of M constructed using T and J . Proposition 1.2 is concerned with
the relation between LM and LT,JM : There exists a set X such that the
sum (LM)(X) is a pure submodule of LT,JM and LT,JM is isomorphic to a
summand of the product (LM)X . Sometimes we can obtain an isomorphism
LM ∼= LT,JM : If R is a semilocal ring whose radical factor R is an artin
algebra, the isomorphism class of the dual module RLT,JM does not depend
on the subring T provided M has finite length both as a right R-module
and as a left T -module and TJ = E(TT ) (Proposition 1.5). This extends
a previous result of the author that the composition structure of the dual
module does not depend on the subring T (see [17, Theorem 9]). Moreover,
for a finite direct sum M of modules Mi with perfect endomorphism ring
we obtain RLM ∼=

⊕
LMi (Theorem 1.6).

For the proof of Proposition 1.2 we will need the following lemma.

Lemma 1.1. Let T be a subring of a right perfect ring S, let TJ be
an injective T -module and put SI

′ = (TS, TJ). There exists a set X and
injective envelopes Ix of simple S-modules for x ∈ X such that

∐
x∈X Ix ⊆

SI
′ is a pure and large submodule and SI

′ ∈
∏
x∈X Ix.

P r o o f. We decompose the socle Soc SI
′ =

∐
x∈xEx of SI

′ into
simple modules SEx and write Ix for their injective envelopes. Consider the
following diagram of left S-modules, where ι1, ι2 and ι3 are the canonical
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inclusions:

Soc SI
′ ∐

Ix
∏
Ix

SI
′

ι2 //

ι1

IIIIIIII$$

ι3 //

∃f
�� ∃g

xx
xx

xx
x;;

Since the functor (TS,−) : T -Mod→ S-Mod preserves injective modules
(and cogenerators), SI

′ is injective and there is f such that ι2f = ι1. This f
is a monomorphism, since Im ι2 is a large submodule [1, Prop. 6.17]. Hence
we have g such that fg = ι3. By Bass’ theorem, Soc SI

′ ⊆ SI
′ is a large

submodule of SI
′, so g is a monomorphism and splits. Finally, ι3 is a pure

monomorphism, hence so is f .

Proposition 1.2. Let T be a subring of a local right perfect ring S, let

TJ be an injective cogenerator and SMR a bimodule.

(1) LM ∈RLT,JM .

(2) There is a set X and a pure embedding (LM)(X) ⊆ RLT,JM such
that LT,JM ∈R(LM)X .

(3) If SM is finitely generated and E(SS) is Σ-pure injective, then
LT,JM ∼= R(LM)(X) for some set X.

P r o o f. Put SI = E(SS) and SI
′ = (TS, TJ) and note that LM =

R(SM, SI), whereas LT,JM = R(TM, TJ) ∼= (SM, SI
′).

(1) We have seen in the proof of Lemma 1.1 that SI
′ is an injective

cogenerator, so I ∈ SI ′. Hence LM ∈RLT,JM .

(2) By Lemma 1.1, we have a set X such that the sum I(X) is isomorphic
to a large pure submodule of SI

′ and I ′ is isomorphic to a summand of the
product SI

X . Hence we have

(∗) (LM)(X) = (SM, SI)(X) ⊆ (SM, SI
(X)) ⊆ (SM, SI

′) ∼= RLT,JM

and LT,JM ∈ R(SM, SI
X) = (LM)X . Since (LM)(X) ⊆ R(LM)X is a pure

submodule, also the embedding (LM)(X) ⊆ RLT,JM is pure.

(3) If SI is Σ-pure injective, the pure embedding I(X) ⊆ SI
′ splits and

we have I(X) ∼= SI
′ since I(X) is large in SI

′. Furthermore, if SM is finitely
generated, we have equality in (SM, SI)(X) ⊆ (SM, SI

(X)) and it follows
from (∗) in (2) that LT,JM ∼= R(LM)(X).

In several situations we can obtain an isomorphism RLM ∼= LT,JM using
the following

Lemma 1.3. Let SMR be a bimodule, S a right perfect ring , T ⊆ S a sub-
ring and TJ an injective module. If (TS, TJ) ∼= SS, then (SM, SE(SS)) ∼=
R(TM, TJ).
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P r o o f. Since S is a semilocal ring, we have Soc S(TS, TJ) = (TS, TJ) ∼=
SS and it can be easily seen (as in the proof of Lemma 1.1) that the injective
modules S(TS, TJ) and SE(SS) are isomorphic. The claim follows from an
application of the Hom-⊗-adjoint isomorphism to R(SM, S(TS, TJ)).

The following immediate consequence is well known [5, proof of Prop.
2.7]. It shows that the dualities L and D coincide for modules over artin
algebras.

Corollary 1.4. Suppose MR is a finitely generated module over a k-
artin algebra R. Then RLM ∼= DM where D = (−, kE(kk)) : mod-R →
R-mod is the classical duality.

The following proposition shows that the isoclass of the L-dual module
does not depend on the subring.

Proposition 1.5. Let R be a semilocal ring such that R is an artin
algebra. Suppose that MR is a finite length module and T ⊆ EndMR a
subring such that TM has finite length. Then RLM ∼= (TM, TJ), where

TJ = E(TT ).

P r o o f. In the first step we show that we may assume that R is an
artinian PI-ring, i.e. that R is artinian and R is an artin algebra. Since TM is
finitely generated, say by m1, . . . ,mt, there is a monomorphism R/A→M t

R,
r 7→ (m1r, . . . ,mtr), where A = annMR is the annihilator ideal. So R/A
is right artinian. Since the dual module LM also has finite length as a left

R-module and as a right End TJ-module [17, Theorem 11], it follows from
the same argument thatR/A is also left artinian. Now RL(MR) = RL(MR/A)
and also R(TMR/A, TJ) = R(TMR, TJ) are equal, so the claim of the first
step has been shown.

In the second step we assume that MR is a finite length module over
an artinian PI-ring R. Since T ⊆ EndMR is a subring such that TM has
finite length, we deduce from [17, Cor. 13] that T is an artinian PI-ring. By
Rosenberg and Zelinsky’s theorem [15, Theorem 3] the module TJ is finitely
generated, hence it induces a Morita duality. We claim that R(TM, TJ) ∼=
LM . Let S = EndM . The bimodule S is, both as a left T -module and
as a right S-module, a finite length module over a semiprimary PI-ring. In
this case the multiplicity of Se as a composition factor of the Morita dual
module S(TS, TJ) coincides with the multiplicity of eS as a composition
factor of SS for each primitive idempotent e ∈ S [17, Theorem 11]. Thus
(TS, TJ) ∼= SS and the claim follows from Lemma 1.3.

Now we are able to show that the local duality commutes with finite
direct sums, up to isomorphism.
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Theorem 1.6. Let MR =
∐n
i=1Mi be a sum of modules, each with right

perfect endomorphism ring. Then RLM ∼=
∐n
i=1 LMi.

P r o o f. We may assume that MR has the decomposition M =
∐t
i=1M

ni
i

where the modules Mi have local perfect endomorphism ring Si and are pair-
wise nonisomorphic; otherwise decompose the modules M and M1, . . . ,Mn

in the theorem.

Consider S = End(Mn1
1 ⊕ . . .⊕M

nt
t ) as n×n-matrix ring and take for T

the diagonal subring Sn1
1 ×. . .×S

nt
t , where n = n1+. . .+nt. Put SI = E(SS)

and TJ = E(TT ). Now, S = S
n1×n1

1 × . . .×Snt×ntt is a T -module satisfying

SS ∼= (TS, TJ).

The ring S is right perfect by [1, Prop. 28.11], so it follows from Lemma
1.3 that R(SM, SI) ∼= (TM, TJ). Observe that the ith factor of T acts
trivially on the jth summand of Mn1

1 ⊕ . . . ⊕ Mnt
t for 1 ≤ i, j ≤ n and

j 6= i, so R(TM, TJ) ∼=
∐n
i=1(SiMi, SiE(SiSi)) =

∐n
i=1 LMi and the claim

has been shown.

2. The endomorphism ring of a homomorphism. In this section
we introduce the endomorphism ring of a homomorphism f : MR → NR as
the endomorphism ring of the triple (M,N, f) when considered as a module

over the triangular matrix ring T2(R) =
(R R

0 R

)
, and list several properties.

Let R be a ring. Recall that a right module over T2(R) is a triple
(M,N, f) where M,N are R-modules and f : MR → NR is a homomor-
phism. The ring T2(R) acts on (M,N, f) as

(∗) (m,n) ·
(
r1 r3
0 r2

)
= (mr1, f(m)r3 + nr2).

Homomorphisms between T2(R)-modules (M,N, f) and (M ′, N ′, f ′) are
those pairs of R-homomorphisms h = (µ, ν) where µ : M → M ′ and
ν : N → N ′ satisfy f ′µ = νf . We also write µ = π1(h) and ν = π2(h).
Thus the category Mod-T2(R) is equivalent to the category of homomor-
phisms in Mod-R (see e.g. [7, III, Prop. 2.2] and [6]).

Definition. For a homomorphism f : MR → NR define the endomor-
phism ring of f as

End f = End(M,N, f)T2(R).

We say that f is endofinite if (M,N, f) has finite length when viewed as an
End f -module. The endolength of f is the length of the left End f -module
(M,N, f). We will consider it as an element of N ∪ {∞}. Note that this
length coincides with the length of the left End f -module π1M ⊕ π2N .
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Proposition 2.1. Let R be a ring and f : MR → NR a homomorphism.

(1) The map f : π1M → π2N is an End f -R-bimodule homomorphism.
Suppose %1 : S → EndM and %2 : S → EndN are ring homomorphisms
such that f : %1M → %2N is an S-R-bimodule homomorphism. Then there
exists a uniquely determined ring homomorphism σ : S → End f such that
%1 = π1 ◦ σ and %2 = π2 ◦ σ.

(2) If MR and NR are finite length modules, then End f is a semipri-
mary ring.

(3) Every homomorphism in Mod-R and in R-Mod is endofinite if and
only if T2(R) is an artinian ring of finite representation type.

P r o o f. (1) The proof is straightforward.

(2) The endomorphism ring of a finite length module is semiprimary (see
e.g. [1, 29.3]).

(3) Recall that a ring T is artinian of finite representation type if and
only if every left T -module and every right T -module is endofinite (cf. [26,
Theorem 6] and [13, 11.38]).

3. The local dual of a homomorphism

Definition. Let f : M → N be a homomorphism in Mod-R and
(M,N, f) the corresponding T2(R)-module. Suppose that the endomor-
phism ring S = End f is semilocal and SI = E(SS). We define the local
dual of f as Lf = L(M,N, f) = (S(M,N, f), SI). We will consider Lf also
as a homomorphism of left R-modules

Lf = (f, SI) : (π2N, SI)→ (π1M, SI).

If R is a semilocal ring with R an artin algebra, we characterize those
homomorphisms f in mod-R for which Lf is well behaved. We show in
Theorem 3.2 that the following properties are equivalent: (1) f is endofinite,
(2) Lf is endofinite, (3) Lf is a homomorphism between the finite length
modules RLN , and RLM , and (4) f occurs as the L-dual of a homomorphism
in R-mod. However, the class of these homomorphisms may not be closed
under addition (Example 1) and composition (Example 2).

The local dual of a homomorphism has the following basic properties.

Proposition 3.1. Let f : MR → NR be a homomorphism with semilocal
endomorphism ring S. Put I = SE(SS).

(1) If M and N are finitely presented R-modules, then End Lf ∼= End SI.
In particular , Lf has semiperfect endomorphism ring.

(2) The homomorphism f is endofinite if and only if Lf is endofinite.
Moreover , f and Lf have the same endolength in N ∪ {∞}.
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(3) Assume that R is a semilocal ring with R = R/RadR an artin
algebra. If f is endofinite, and MR and NR have finite length, then there
are left R-module isomorphisms

(π1
M, SI) ∼= RLM and (π2

N, SI) ∼= RLN.

P r o o f. (1) If MR and NR are finitely presented, then so is f when con-
sidered as a T2(R)-module. Hence the assertion follows from [4, I, Cor. 11.3].

(2) This is a consequence of [26, Prop. 3] applied to the T2(R)-module f .

(3) If f is an endofinite homomorphism, then π1M and π2N have finite
length as End f -modules, so we may apply Proposition 1.5.

Definition. Suppose f : MR→NR is a homomorphism between finitely
presented modules and S = End f . If SI = E(SS) induces a Morita duality
S-mod → mod-S′, where S′ = End SI, with respect to which (M,N, f)
is reflexive, then we call f reflexive with respect to L. In this case we see
from Proposition 3.1(1) that S′ = End Lf and the following diagram of
S-R-bimodules commutes, where η is the evaluation map:

M N

((π1M, SI)S′ , IS′) ((π2N, SI)S′ , IS′)

f //

ηM

��
ηN

��

LLf
//

Theorem 3.2 (A dichotomy for homomorphisms). Let R be a semilocal
ring whose radical factor R is an artin algebra and let f : MR → NR
be a homomorphism between finite length modules. Write S = End f and
I = SE(SS).

(1) Suppose f is endofinite. Then Lf is an endofinite homomorphism
between the modules RLN ∼= (π2

N, SI) and RLM ∼= (π1
M, SI) of finite

length. Moreover , f is L-reflexive.

(2) Suppose f is not endofinite. Then Lf is not endofinite, not both mod-
ules R(π1M, SI) and R(π2N, SI) have finite length, and f is not isomorphic
to the L-dual or the L-bidual of a homomorphism between finite length mod-
ules.

P r o o f. If R is a semilocal ring with radical factor an artin algebra, then
so is the triangular matrix ring T = T2(R) [7, III, Prop. 2.5]. Since the L-dual
of a right T -module (M,N, f) is the left T -module ((π1

M, SI), (π2
N, SI), Lf),

the result follows from the corresponding statement for modules [17, Theo-
rem 9] and from Proposition 3.1(3).

Example 1. The sum of two endofinite homomorphisms f, f ′ : MR →
NR may not be endofinite. Let K be a field, φ an automorphism of K such
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that dim FixφK = ∞. By φK we denote the K-K-bimodule K with mul-
tiplication a · b · c = φ(a)bc for a, c ∈ K and b ∈ φK. We consider the

hereditary artinian PI-ring R =
(K K⊕φK

0 K

)
. Note that the centre of R

is the field k = Fixφ, so R is not an artin algebra; moreover, the dual-
ity D = (−, kk) sends every nonzero R-module to an R-module of infinite
length. We consider homomorphisms between the projective indecompos-
able modules P1R =

( 1 0

0 0

)
R and P2R =

( 0 0

0 1

)
R. Since R is left artinian,

P1 and P2 have finite length over their endomorphism ring, which is canon-
ically isomorphic to K. Of course, the dual modules LP1 and LP2 are the
indecomposable injective left R-modules, which are endofinite finite length
modules.

Let f, f ′ : P2 → P1 be the homomorphisms given by (0, 1) 7→ (0, (1, 0))
and (0, 1) 7→ (0, (0, 1)), respectively. Both homomorphisms have endomor-
phism ring K, but the endostructure of the K-R-bimodule homomorphisms
f : P2 → P1 and f : φP2 → P1 is not “compatible”. Thus, their duals are
R-K-bimodule homomorphisms Lf : LP1 → LP2 and Lf ′ : LP1 → (LP2)φ;
however, their sum f +f ′ is “only” a k-R-bimodule homomorphism and the
R-k-bimodule homomorphism L(f + f ′) is a homomorphism between mod-
ules of infinite length. In particular, irreducible morphisms between endo-
finite finite length modules may or may not be endofinite.

Example 2. The composition g ◦ f of two endofinite homomorphisms
f and g between indecomposable modules may not be endofinite. Let T be
an infinite set, φ1 and φ2 bijections of T such that φ1 and φ2 have finite
order but φ2 ◦ φ1 acts transitively on T . (Take e.g. T = Z, φ1(z)= −z and
φ2(z) = −z + 1.) Let K = k(Xi : i ∈ T ) be the field of rational functions
in variables indexed by T . We denote the k-linear action on K given by
Xi 7→ Xφj(i) also by φj for j = 1, 2. Since φj has finite order, the dimension
of K over Fixφj is finite for j = 1, 2 [9, Theorem 3.5.5]. Since φ2 ◦ φ1 acts
transitively on the infinite set T , we have Fix(φ2 ◦φ1)=k. Put Bj=K⊕φjK
for j = 1, 2 and

R =

K B1 B1 ⊗B2

0 K B2

0 0 K

 .

Then R is a hereditary artinian PI-ring. Furthermore, f : P3R → P2R and
g : P2R → P1R given by (0, 0, 1) 7→ (0, 0, (1, 1)) and (0, 1, 0) 7→ (0, (1, 1), 0),
respectively, are both endofinite with End f = Fixφ2 and End g = Fixφ1,
but g ◦ f is not endofinite since End(g ◦ f) = Fix(φ2 ◦ φ1).

4. On the pure semisimplicity conjecture. According to a theorem
of Auslander [2], Ringel–Tachikawa [14] and Simson [20], an artinian ring R
of finite representation type is right pure semisimple. Recall that a ring R
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is said to be right pure semisimple if every right R-module is pure injective,
or equivalently, if every right R-module is a direct sum of modules in ind-R,
the class of finitely presented right R-modules with local endomorphism ring
[11, Theorem 8.4]. It is an open question, called the pure semisimplicity
conjecture (pss-conjecture), whether the converse of this result also holds.
The aim of this section is to give a new short module-theoretic proof of the
pss-conjecture for left artinian polynomial identity rings.

Theorem 4.1 (Herzog). A left artinian PI-ring R is right pure semi-
simple if and only if R is of finite representation type.

The pss-conjecture for artin algebras has been shown by Auslander [3];
the proof of this theorem for local PI-rings, for hereditary PI-rings and for
PI-rings such that the square of the Jacobson radical is zero is due to Simson
[21], [22]. For arbitrary PI-rings, the pss-theorem has been established by
Herzog [10]; the result could be extended by Krause [12] to right dualizing
rings, i.e. to rings for which the local dual of every finitely presented endofi-
nite right R-module is finitely presented. The reader is referred to [26], [24]
and [25] for a discussion of the pure semisimplicity conjecture. In [23], [24]
and [25] also potential counterexamples in the class of hereditary rings are
discussed in relation with Artin problems for division ring extensions.

Note that the assumption in Theorem 4.1 that R is left artinian can be
avoided by passing to a Morita dual ring R′, which is left artinian and right
pure semisimple [21, Prop. 2.4(a)]. Since our proof also collects information
about the category of R-modules, we would like to avoid this change of rings.

The validity of the pss-conjecture for artin algebras is an immediate con-
sequence of the existence of almost split sequences [7], and of the following
proposition, due to Auslander [3, Cor. 2.3].

Proposition 4.2. Let R be a right pure semisimple ring such that there
exists a left almost split morphism N → B in the category Mod-R for every
module N in ind-R. Then there are only finitely many modules in ind-R, up
to isomorphism.

We include a module-theoretic version of Auslander’s proof.

P r o o f. Suppose that(Mi)i∈I is a family of pairwise nonisomorphic mod-
ules in ind-R and M =

∏
i∈IMi is their product. We show in three steps

that the canonical pure monomorphism σ :
∐
i∈IMi →

∏
i∈IMi is an iso-

morphism. Then I must be finite, and we are done.

Step 1. Each Mi occurs as a summand of M : By assumption, the sum∐
i∈IMi is a pure injective module, hence σ is a split monomorphism.

Step 2. Since R is right pure semisimple, M is a direct sum of modules
in ind-R. We show that any direct summand N of M with N in ind-R is
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isomorphic to one of the modules Mi: Assume that N is not isomorphic
to any module Mi and let q : N → B be a left almost split map for N .
Consider the diagram

N B

M

Mi

q //

ι=incl

��
∃fi

�
�
�
�
�
�
�
�
�
�
�
���

πi=can

��

By assumption on N , no πiι is a split monomorphism, so for every i ∈ I
there is a map fi : B → Mi with fiq = πiι. Hence the product map f =
(fi)i∈I makes the upper part of the diagram commutative, i.e. fq = ι. Since
ι is a split monomorphism, so is q—a contradiction.

Step 3. Every Mi0 occurs at most once in a direct sum decomposition
of M : Apply the argument in Step 2 to M ′ =

∏
i 6=i0 Mi instead of M =

M ′ ⊕Mi0 .

So for the proof of Theorem 4.1 we have to show that for every M in
ind-R there exists a left almost split map M → N in the category Mod-R.
This is the case if M is an endofinite module over an artinian PI-ring R. The
following lemma will be used to “transform” one chain condition on finite
matrix subgroups (see [11, Prop. 6.3]) into endofiniteness.

Lemma 4.3. Let MR be a finitely presented module such that the endo-
morphism ring S = EndMR is right perfect. If M satisfies acc for finite
matrix subgroups, then M is endofinite.

P r o o f. Since finitely generated endo-submodules of M are finite ma-
trix subgroups (of type Sm1 + . . .+Smn = {f(m1, . . . ,mn) : f ∈ Hom(Mn

R,
MR)}), the moduleM has acc for finitely generated endo-submodules. Hence
every endo-submodule of M is finitely generated. Since S is right perfect,
every left S-module has dcc for cyclic submodules, hence by Björk’s theo-
rem [8, Theorem 2] also dcc for finitely generated submodules. Thus M is
endofinite.

Now we can give a new proof of Herzog’s Theorem 4.1.

Proof of Theorem 4.1. The ring R is right pure semisimple, so every
right R-module is Σ-pure injective and hence satisfies dcc for finite matrix
subgroups [26, Theorem 8.1]. Thus every left R-module has acc for finite
matrix subgroups [26, Theorem 6]. Since R is left artinian, every module
M ∈ R-ind has finite length. By [1, Cor. 29.3] the endomorphism ring of

RM is semiprimary, hence right perfect, so it follows from Lemma 4.3 that
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M is endofinite. In particular, R is twosided artinian. Moreover, since R
is a PI-ring, the transpose preserves finite endolength [18, Theorem 8], so
also every module in ind-R is endofinite. But every endofinite module M
in ind-R is the L-dual of a module in R-ind [17, Theorem 1] and thus there
exists a left almost split map M → N in the category Mod-R [4, I, Theorem
3.9]. By Proposition 4.2, R is of finite representation type.
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thank L. Angeleri Hügel, H. Krause and W. Zimmermann, the supervisor of
the author’s doctoral dissertation [16] from which the material of Section 4
is taken.

REFERENCES

[1] F. W. Anderson and K. R. Ful l e r, Rings and Categories of Modules, 2nd ed.,
Grad. Texts in Math. 13, Springer, New York, 1992.

[2] M. Aus lander, Representation theory of artin algebras I , Comm. Algebra 1 (1974),
177–268.

[3] —, Large modules over artin algebras, in: Algebra, Topology and Category Theory,
Academic Press, New York, 1976, 1–17.

[4] —, Functors and morphisms determined by objects, in: Representation Theory of
Algebras, Lecture Notes in Pure Appl. Math. 37, Dekker, New York, 1978, 1–244.

[5] —, Applications of morphisms determined by modules, ibid., 245–327.
[6] M. Aus lander and I. Re i ten, On the representation type of triangular matrix

rings, J. London Math. Soc. (2) 12 (1976), 371–382.
[7] M. Aus lander, I. Re i ten and S. O. Smalø, Representation Theory of Artin Al-

gebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995.
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