COLLOQUIUM MATHEMATICUM

VOL. 77

1998

NO. 1

ON REFLEXIVITY OF REPRESENTATIONS OF LOCAL COMMUTATIVE ALGEBRAS

 $_{\rm BY}$

KENT R. FULLER (IOWA CITY, IOWA)

DEDICATED TO FRANK ANDERSON FOR HIS SEVENTIETH BIRTHDAY

An algebra A of operators on a Hilbert space (or any complex vector space) H is called *reflexive* in case no larger algebra of operators on H induces the same lattice of invariant subspaces as A. In [2] E. A. Azoff and M. Ptak proved the following theorem that they say "should be regarded as the main result of [their] paper".

THEOREM A. Suppose A is an operator algebra generated by a commuting family of nilpotents. Then in order for A to be reflexive it is necessary that each rank two member of A generate a one-dimensional ideal. If the underlying space is a finite-dimensional Hilbert space and the generators for A commute with each other's adjoints, then this condition is also sufficient.

If A is an algebra of operators on a \mathbb{C} -space H, then the action of A induces a faithful module $_AH$ whose submodules are the A-invariant subspaces of H, and if A is generated by a commuting family of nilpotent operators, then A is a split local commutative \mathbb{C} -algebra in the sense that, as \mathbb{C} -spaces, $A = \mathbb{C} \oplus J$ with J = J(A) the unique maximal ideal of A.

Let K be an arbitrary field. A module $_RM$ over a K-algebra R is called reflexive (see [6] or [3], for example) if the only K-linear transformations of M that preserve the submodule lattice of $_RM$ are multiplications by elements of R. Thus, if $\lambda : R \to \operatorname{End}(_KM)$ is the ring homomorphism induced by R-scalar multiplication, then $\lambda(R) \cong R/\operatorname{ann}(M)$ and $_RM$ is reflexive if and only if $\lambda(R)$ is a reflexive algebra of K-operators on M. In the terminology of [3], the set of K-linear transformations of M that preserve the submodule lattice of $_RM$ is

 $\operatorname{alglat}(M) = \{ \alpha \in \operatorname{End}(_K M) \mid \alpha m \in Rm \text{ for all } m \in M \},\$

and M is reflexive in case $\lambda(R) = \text{alglat}(M)$.

1991 Mathematics Subject Classification: Primary 16D99, 13C99; Secondary 47D15.

[115]

Here we improve the first part of Theorem A by showing that: If R is a split local commutative K-algebra, then in order for a faithful module $_RM$ to be reflexive it is necessary that each $a \in R$ such that aM is cyclic generates a minimal ideal; and we show that this stronger condition yields a larger class of reflexive modules (or algebras of operators): If in addition $_RM$ is a finite-dimensional direct sum of cyclic modules, then this condition is also sufficient.

Assume that R is a (not necessarily finite-dimensional) split local commutative K-algebra with unique maximal ideal J = J(R), and consider a module $_RM$. An element $a \neq 0$ in R satisfies JaM = 0 if and only if $\lambda(a)$ generates a minimal (i.e., one-dimensional) ideal in $\lambda(R)$; and if |aM : K| = 2 (i.e., $\lambda(a)$ is a rank two member of $\lambda(R)$), then aM is either cyclic or JaM = 0. Thus, as asserted in the preceding paragraph, the following theorem yields a necessary condition for reflexivity that is stronger than the one of Azoff and Ptak's Theorem A.

THEOREM 1. Let R be a split local commutative K-algebra. If $_RM$ is reflexive, then for $a \in R$, JaM = 0 whenever aM is cyclic.

Proof. Assume that $0 \neq aM = Rx = Rau$, for some $x, u \in M$. Then $\lambda(a) : M \to Rau$ is an *R*-epimorphism that splits over *K*, and if $L = \operatorname{Ker}(\lambda(a)) = \operatorname{ann}_M(a)$, then $\lambda(a)(Ru + L) = Rau$. Thus M = Ru + L with $u \notin L$, so there is a subspace $U \leq M$ with

$$u \in U \subseteq Ru$$
 and $_{K}M = U \oplus L$.

Now we see that

$$\lambda(a)|_U: U \to Rau = Kau \oplus Jau$$

is a K-isomorphism. Suppose $Jau \neq 0$ and let

$$N = \{ n \in U \mid an \in Jau \} = (\lambda(a)|_U)^{-1}(Jau),$$

so that $_{K}U = Ku \oplus N$ and

$$_{K}M = Ku \oplus N \oplus L.$$

To see that M is not reflexive, define $\alpha: M \to M$ via

$$\alpha(ku+n+l) = an.$$

If k = 0, then $\alpha(ku + n + l) = a(ku + n + l)$. If $k \neq 0$, then k + j is invertible, where $j \in J$ with

$$an = jau,$$

and letting

$$r = (k+j)^{-1}ja$$

we see that

$$r(ku + n + l) = (k + j)^{-1}(kjau + jan)$$

= $(k + j)^{-1}(kan + jan) = an = \alpha(ku + n + l).$

Thus $\alpha \in \operatorname{alglat}(M)$. But, if ru = 0, then since $N \subseteq U \subseteq Ru$, we would have rN = 0. But $\alpha(N) = aN = Jau \neq 0$, so $\alpha \neq \lambda(r)$.

For a split local algebra R our Theorem 1 maintains that a necessary condition for reflexivity of $_RM$ is that aM is cyclic only if aM is simple (equivalently, one-dimensional). To show that it is sufficient in case M is a finite-dimensional direct sum of cyclic modules we use the following lemma, that appears as Proposition 4.2 in [2], where it is proved in a straightforward manner.

It will be convenient to employ the following notation from [5]: If $\lambda : S \to \text{Hom}_K(U, X)$ is a K-vector space homomorphism, we write $su = \lambda(s)(u)$ and denote such a system, a so-called S-representation, by $_S[U, X]$. Analogously to alglat we let

$$\mathcal{A}(S[U,X]) = \{ \alpha \in \operatorname{Hom}_K(U,X) \mid \alpha u \in Su \text{ for all } u \in U \}$$

and we say that $_{S}[U, X]$ is reflexive if $\lambda(S) = \mathcal{A}(_{S}[U, X])$. An element $u \in U$ is called a *separating vector* in case $su \neq 0$ unless s = 0.

LEMMA 2. Given $S_i[U_i, X_i]$ with separating vectors u_i and $KT \leq S_1 \oplus \ldots \dots \oplus S_l$, let

$$T_i = \{t_i \in T \mid t_i U_j = 0 \text{ for all } j \neq i\}.$$

Then $_T[U_1 \oplus \ldots \oplus U_m, X_1 \oplus \ldots \oplus X_l]$ is reflexive if and only if $_{T_i}[U_i, X_i]$ is reflexive for all $i = 1, \ldots, l$.

From this lemma we glean the following proposition that is one key to our sufficiency theorem.

PROPOSITION 3. Let R be any (not necessarily local) commutative algebra, and suppose M_1, \ldots, M_l are cyclic R-modules with annihilators $\operatorname{ann}_R(M_i) = A_i$, respectively. Let $M = M_1 \oplus \ldots \oplus M_l$ and $I_i = \bigcap_{j \neq i} A_j$. Then RM is reflexive if and only if $I_i[M_i, M_i]$ is reflexive for $i = 1, \ldots, l$.

Proof. Assume, as we may, that M is faithful, and let $S_i = R/A_i$ with representation $S_i[M_i, M_i]$ which has a separating vector the R-generator $m_i \in M_i$. Let

 $T = \{ (r + A_1, \dots, r + A_l) \in S_1 \oplus \dots \oplus S_l \mid r \in R \}.$

Then the action of T on M is induced by canonical isomorphism $R \cong T$, and $I_i \cong (I_i + A_i)/A_i \cong T_i$ canonically, so Lemma 2 applies.

The next two lemmas can be found in [4, Proposition 3.3(b) and Lemma 2.3]; the first of them had appeared earlier in [1, Proposition 5.4].

LEMMA 4. If $\dim({}_{K}S) \leq 1$, then ${}_{S}[U, X]$ is reflexive.

LEMMA 5. If $S = \sum_{j=1}^{n} S_j$ is a sum of subspaces such that the sum $\sum_{j=1}^{n} S_j U$ is direct, then S[U, X] is reflexive if and only if each $S_j[U, X]$ is reflexive.

These lemmas yield the second key to our sufficiency theorem.

PROPOSITION 6. If I is a finitely generated semisimple ideal in a commutative split algebra S, then $_{I}[S,S]$ is reflexive.

Proof. By hypothesis $I = \bigoplus_{j=1}^{n} W_j$ with the W_j one-dimensional ideals, and clearly $\sum_{j=1}^{n} W_j S = \bigoplus_{j=1}^{n} W_j$.

Finally, we are ready to complete our characterization of reflexive finitedimensional direct sums of cyclic modules over split local algebras.

THEOREM 7. Suppose R is a commutative finite-dimensional split local K-algebra, and that $_{R}M = M_{1} \oplus \ldots \oplus M_{l}$ is a faithful module with each M_{i} cyclic. If Ra is simple whenever aM is cyclic, then M is reflexive.

Proof. Let A_i , $S_i = R/A_i$ and I_i be as in Proposition 3. Since M is faithful, $I_i \cap A_i = 0$, so we may assume $I_i \subseteq S_i$, and $S_i M_i \cong S_i S_i$ since $S_i M_i$ is cyclic and faithful. Thus $I_i[M_i, M_i]$ is reflexive if and only if $I_i[S_i, S_i]$ is reflexive. To prove the latter, according to Proposition 6, we need only show that I_i is semisimple. Now if $0 \neq a \in I_i$ and $M_i = Rm_i$, then $aM = aM_i = Ram_i$ is cyclic, so by hypothesis, $S_i a \cong Ra$ is simple (i.e., one-dimensional). Thus I_i is a semisimple. Finally, M is reflexive by Proposition 3.

REMARKS. 1. If one wishes to eschew the faithful hypothesis in Theorem 7, the condition "Ra is simple" must be replaced by "aM is simple".

2. A major portion of the proof of the sufficiency part [2, Theorem 5.7] of Azoff and Ptak's Theorem A, namely [2, Propositions 5.4, 5.5 and 5.6], is devoted to proving that the finite-dimensional Hilbert space V over the (necessarily local split) algebra $\mathcal{A}(\mathbf{a})$ generated by a set of doubly commuting nilpotent linear transformations (matrices) $\{a_1, \ldots, a_N\}$ in the hypothesis of their Theorem 5.7 is a direct sum of local-colocal (i.e., cyclic with a unique minimal submodule) $\mathcal{A}(\mathbf{a})$ -modules. It is in fact rather rare that a cyclic module over a local (\mathbb{C} -)algebra is colocal. Thus our Theorem 7 is applicable to a significantly larger class of modules. The following example illustrates this fact.

EXAMPLE. Let R = K[x, y]/I, the ring of polynomials in x, y modulo the ideal I generated by $\{x^3, x^2y, xy^2, y^3\}$, the monomials of degree 3. Thus, we may assume R has a multiplicative basis $\{1, a, a^2, b, b^2, c\}$ with ab = c = ba. Also, R is a split local K-algebra with maximal ideal J = Ra + Rb. Let

$$M = R/Rb^2 \oplus R/Ra \oplus R/(Ra^2 + Rb)$$

and

$$N = R/Rb^2 \oplus R/Ra \oplus R/(Ra + Rb^2)$$

Then aN has basis $\{a, a^2, c\}$, and is isomorphic to the cyclic module R/J^2 , so N is not reflexive by Theorem 1. On the other hand, M is reflexive by Theorem 7, because the only elements $r \in R$ that have rN cyclic belong to J^2 .

Since $_RM$ is not a direct sum of cyclic-cocyclic modules, and dim $(rN) \neq 2$ unless $r \in J^2$, Azoff and Ptak's Theorem A does not apply here. To obtain their introductory example of direct sums of local-colocal modules that illustrates their theorem, simply factor the ideal generated by a^2 out of R.

REFERENCES

- E. A. Azoff, On finite rank operators and preannihilators, Mem. Amer. Math. Soc. 357 (1986).
- E. A. Azoff and M. Ptak, On rank 2 linear transformations and reflexivity, J. London Math. Soc. (2) 53 (1996), 383–396.
- K. R. Fuller, W. K. Nicholson and J. F. Watters, *Reflexive bimodules*, Canad. J. Math. 41 (1989), 592-611.
- [4] —, —, —, Algebras whose projective modules are reflexive, J. Pure Appl. Algebra 98 (1995), 135–150.
- [5] —, —, —, Direct sums of reflexive modules, Linear Algebra Appl. 239 (1996), 201–214.
- [6] J. F. Habibi and W. H. Gustafson, *Reflexive serial algebras*, ibid. 99 (1988), 217-223.

Department of Mathematics University of Iowa Iowa City, Iowa 52242 U.S.A. E-mail: Kent-Fuller@uiowa.edu

Received 12 November 1997