FURTHER PROPERTIES OF AN EXTREMAL SET OF UNIQUENESS

BY

DAVID E. GROW AND MATT INSALL (ROLLA, MISSOURI)

Let T denote the group $[0, 1)$ with addition modulo one. In [4] we presented an elementary construction of a countable, compact subset S of T which could not be expressed as the union of two H-sets, and conjectured that S is not expressible as the union of finitely many H-sets. Here we use a descriptive set theory result of S. Kahane [6] to help show that S cannot be expressed as the union of finitely many Dirichlet sets. For the connection of this problem with that of characterizing sets of uniqueness for trigonometric series on T, see [7] and [4].

Let \mathbb{Z} denote the integers and \mathbb{N} the nonnegative integers. If x and y are real numbers then by $x \equiv y$ we shall mean $x - y \in \mathbb{Z}$, and in this case we identify x and y with a single point in T. A subset E of T is a set of uniqueness if the only trigonometric series $\sum_{n=-\infty}^{\infty} c(n)e^{2\pi inx}$ on T which converges to zero for all x outside E is the zero series: $c(n) = 0$ for all n. A compact subset E of T is an H-set if there exists a nonempty open interval I in T such that

$$N(E; I) = \{n \in \mathbb{Z} : nx \notin I \text{ for all } x \in E\}$$

is infinite: E is a Dirichlet set if $N(E; (\varepsilon, 1 - \varepsilon))$ is infinite for all $\varepsilon > 0$. The families of all H-sets and Dirichlet sets in T will be denoted by H and D, respectively. Every finite subset of T is a Dirichlet set [3], every Dirichlet set is clearly an H-set, and every H-set is a set of uniqueness [8]. Indeed, any countable union of (compact) H-sets is a set of uniqueness [1].

A family B of compact subsets of T is hereditary if $E \in B$ implies all compact subsets of E are also in B. It is clear from the definitions that H, D, and the class F, consisting of all finite subsets of T, are each hereditary families of compact subsets of T. If B is any hereditary family of compact sets in T and E is any compact subset of T, let the B-derivate of E, $d_B(E) = d_B^{(1)}(E)$, consist of those points x in E such that, for every open interval I containing x, the closure of $E \cap I$ does not belong to the family B.
For \(n > 1 \), let the \(n \)th \(B \)-derivate of \(E \) be defined inductively by \(d_B^{(n)}(E) = d_B(d_B^{(n-1)}(E)) \); to obtain future economy of expression, we adopt the convention \(d_B^{(0)}(E) = E \). If there exists a positive integer \(n \) such that \(d_B^{(n)}(E) \) is empty, then we say that \(E \) has finite \(B \)-rank; in this case, the least such integer \(n \) is called the \(B \)-rank of \(E \). For the family \(F \) of finite sets, observe that \(d_F(E) \) denotes the set of limit points of \(E \), and that \(E \) has finite \(F \)-rank if and only if the classical Cantor–Bendixson rank of \(E \) is finite. For Cantor–Bendixson derivates, we use the classical notation \(E' \) for \(d_F(E) \), and \(E^{(n)} \) for \(d_F^{(n)}(E) \). For a connection between the Cantor–Bendixson rank and Dirichlet sets, see [5].

We shall use the following \(B \)-rank result of S. Kahane [6].

Proposition 1. Let \(n \in \mathbb{N} \), let \(E \) be a compact subset of \(T \), and let \(B \) be a hereditary family of compact subsets of \(T \). If \(E \) is the union of \(n \) sets from \(B \), then the \(B \)-rank of \(E \) is at most \(n \).

Given \(x \) in \(T \), let \(x = \sum_{k=1}^{\infty} x_k 2^{-k} \), \(x_k \in \{0,1\} \), denote its binary expansion, and write \(x = 0.x_1x_2x_3\ldots \); this expression for \(x \) is unique if the terminating expansion is chosen whenever possible. Let \(S_{-1} = \{0\} \) and, for each \(n \in \mathbb{N} \), let \(S_n \) signify the set of all \(x = 0.x_1x_2x_3\ldots \) in \(T \) such that \(\sum_{k=1}^{\infty} x_k = n + 1 \) and \(x_k = 0 \) if \(1 \leq k \leq n \). Define \(S = \bigcup_{n=1}^{\infty} S_n \). Note that a point of \(T \) belongs to \(S \) if and only if the number of ones in the binary expansion of \(x \) does not exceed the number of its leading zeros by more than one. Clearly, \(S \) consists of rational points and hence is countable; it is not hard to see that \(S \) is closed (and hence compact) and has infinite Cantor–Bendixson rank ([4], or see Lemma 3 below).

Theorem 1. The set \(S \) has infinite Dirichlet rank.

Corollary. The set \(S \) cannot be expressed as the union of a finite number of Dirichlet sets.

Proof. Proposition 1 implies that if \(S \) were a union of \(n \) Dirichlet sets, then the Dirichlet rank of \(S \) would not exceed \(n \).

The proof of Theorem 1 will be based on the following three lemmas.

Lemma 1. If \(y \in [0, 1) \cap \mathbb{Q} \) and \(N \in \mathbb{N} \), then
\[
\{y\} \cup \{y + 2^{-m} : m \in \mathbb{N}, m \geq N\}
\]
is not a Dirichlet set.

Proof. Without loss of generality, we may assume that \(N \geq 2 \). It suffices to show that the set \(J_{M,N} \) consisting of all nonnegative integers \(k \) such that
\[
k\{y + 2^{-m} : m \in \mathbb{N}, m \geq N\} \subseteq [0, 2^{-M}] \cup [1 - 2^{-M}, 1]
\]
is finite for sufficiently large positive integers \(M \).
If $y = 0$, let M be any integer not less than 2. If $y \neq 0$, then denote by δ the smallest nonzero element of the finite subgroup

$$G = \{ jy : j \in \mathbb{Z} \}$$

of T. Choose $M \in \mathbb{N}$ such that $2^{-M} < \delta$.

We first show that

$$ky \equiv 0 \quad \text{for all } k \in J_{M,N}. \tag{1}$$

If $y = 0$ then (1) is clear, so suppose $y \neq 0$. Fix $k \in J_{M,N}$ and let $p \in \mathbb{N} \cap [0, \delta^{-1} - 1]$ be such that $ky \equiv p\delta$. Since $k2^{-n} \to 0^+$ as $n \to \infty$, it follows that

$$k(y + 2^{-n}) \to p\delta^+ \quad \text{as } n \to \infty. \tag{2}$$

Because $2^{-M} < \delta$, the only element of G contained in $[0, 2^{-M}] \cup [1 - 2^{-M}, 1]$ is 0. But (2) and the facts that $p \in \mathbb{N} \cap [0, \delta^{-1} - 1]$ and $k \in J_{M,N}$ imply that $p = 0$, thus establishing (1).

Next, we show that for each $k \in J_{M,N}$,

$$k(y + 2^{-n}) \in [0, 2^{-M}] \quad \text{for all } n \geq N. \tag{3}$$

To see this, fix $k \in J_{M,N}$. Since $ky \equiv 0$ and $0 < k2^{-n} < 2^{-M}$ for all n sufficiently large, it follows that there exists an integer $N_1 = N_1(k) \geq N$ such that

$$k(y + 2^{-n}) \in [0, 2^{-M}] \quad \text{for all } n \geq N_1. \tag{4}$$

If (3) does not hold, then (4) implies that there exists a largest integer $\nu \geq N$ such that

$$k(y + 2^{-\nu}) \in [1 - 2^{-M}, 1]; \tag{5}$$

hence $k \in J_{M,N}$ implies

$$k(y + 2^{-(\nu+1)}) \in [0, 2^{-M}]. \tag{6}$$

But from (1) and (5), it follows that

$$k2^{-\nu} = z + r \quad \text{where } z \in \mathbb{Z} \text{ and } r \in [1 - 2^{-M}, 1), \tag{7}$$

and (1) and (6) imply

$$k2^{-(\nu+1)} = y + s \quad \text{where } y \in \mathbb{Z} \text{ and } s \in (0, 2^{-M}]. \tag{8}$$

Dividing (7) by 2 yields

$$k2^{-(\nu+1)} = (z + r)/2 \quad \text{where } r/2 \in [2^{-1} - 2^{-M-1}, 2^{-1}). \tag{9}$$

If z is even, then (8) and (9) imply $s \equiv r/2$, clearly a contradiction since $M \geq 2$ implies that $(0, 2^{-M}] \cap [2^{-1} - 2^{-M-1}, 2^{-1})$ is empty. If z is odd, then (8) and (9) yield $s \equiv (1 + r)/2$, again a contradiction since $(0, 2^{-M}] \cap [1 - 2^{-M-1}, 1)$ is empty. Therefore (3) is established.
Finally, we show that \(J_{M,N} \) is finite. To this end, fix \(k \in J_{M,N} \). By (1) and (3), we have

\[k2^{-N} = z + r \quad \text{where} \quad z \in \mathbb{Z} \text{ and } r \in [0, 2^{-M}]. \]

We shall show that

\[z2^{-j} \leq z \quad \text{for all} \quad j \in \mathbb{N}, \]

so that \(z = 0 \). This will conclude the proof because (10) then implies \(k = 2^N r \leq 2^{N-M} \).

Note that (10) implies that (11) holds for \(j = 0 \). Suppose that (11) holds for some integer \(j \geq 0 \), but that \(z2^{-(j+1)} \) is not an integer. Then

\[
\begin{align*}
 k2^{-(N+j+1)} &= (z + r)2^{-(j+1)} \\
 &= 2^{-1} + r2^{-(j+1)} \in [2^{-1}, 2^{-1} + 2^{-(M+j+1)}],
\end{align*}
\]

in contradiction to (1) and (3). Therefore (11) holds by induction, and the proof of Lemma 1 is complete.

Lemma 2. Let \(x = 0.x_1x_2x_3\ldots \in S \setminus \{0\} \), with \(x_{j+1} \) and \(x_{j+K} \) denoting the first and last nonzero binary digits of \(x \), respectively. If \(y \in S \setminus \{x\} \) and \(|y - x| < 2^{-2(J+K+1)} \) then \(y > x \) and \(y_j = x_j \) for all \(1 \leq j \leq J+K \).

Proof. Let \(y = 0.y_1y_2\ldots y_{J+L} \) denote the binary expansion of \(y \). Suppose \(x_j = y_j \) for all \(j < j_0 \) and \(x_{j_0} \neq y_{j_0} \).

Case 1: \(x_{j_0} > y_{j_0} \). Note that this is precisely the case when \(x > y \). If \(y_{j_0+1} = 0 \) then

\[
2^{-2(J+K+1)} > |x - y| \geq 2^{-j_0} - \sum_{j=j_0+2}^{J+L} y_j 2^{-j} > 2^{-(j_0+1)}.\]

Consequently, \(j_0 + 1 > 2(J + K + 1) \), and hence \(x_j = 1 \) for some \(j = j_0 > J + K \), a contradiction. If \(y_{j_0+1} = 1 \) then, since \(y \in S \) and \(y \) has at most \(j_0 \) leading zeros in its binary expansion, it follows that \(\sum_{j=j_0+1}^{\infty} y_j \leq j_0 + 1 \). Arguing as when \(y_{j_0+1} = 0 \), we have

\[
2^{-2(J+K+1)} > 2^{-j_0} - \sum_{j=j_0+1}^{J+L} y_j 2^{-j} \geq 2^{-j_0} - \sum_{j=j_0+1}^{2j_0+1} 2^{-j} = 2^{-(2j_0+1)}.\]

Thus, \(2j_0 + 1 > 2(J + K + 1) \) and hence \(j_0 > J + K \), a contradiction just as before. Therefore the case \(x_{j_0} > y_{j_0} \) cannot occur.

Case 2: \(x_{j_0} < y_{j_0} \). Note that this is precisely the case when \(y > x \). We have
2^{-2(J+K+1)} > |y - x| \geq 2^{-j_0} - \sum_{j=j_0+1}^{J+K} x_j 2^{-j}.

Since \(x \in S\) and \(x\) has \(J\) leading zeros in its binary expansion, it follows that \(\sum_{j=1}^{\infty} x_j \leq J + 1\). Therefore

\[
2^{-j_0} - \sum_{j=j_0+1}^{J+K} x_j 2^{-j} \geq 2^{-j_0} - \sum_{j=j_0+1}^{j_0+J+1} 2^{-j} = 2^{-(j_0+J+1)}.
\]

Combining the last pair of displayed inequalities gives \(j_0 + J + 1 > 2(J + K + 1)\), and hence \(j_0 > J + K\). This completes the proof of Lemma 2.

Definition. Let \(x\) be a nonzero element of \(\mathbb{T}\) with binary expansion \(x = 0.x_1x_2x_3\ldots\). (Recall that if \(x\) has two binary expansions, we agree to consider only the terminating expansion.) Suppose that \(x_j = 0\) if \(j \leq J\) and \(x_{J+1} = 1\). Define the deficiency of \(x\) by

\[
def(x) = 1 + \sum_{j=1}^{\infty} x_j.
\]

Furthermore, define \(def(0) = \infty\).

The following properties of the deficiency are clear:

(a) \(\text{def}(x) > -\infty\) if and only if \(x\) is a binary rational number;
(b) \(\text{def}(x) \geq 0\) if and only if \(x \in S\).

Lemma 3. Let \(n \in \mathbb{N}\) and \(x \in S\). Then \(x \in S^{(n)}\) if and only if \(\text{def}(x) \geq n\).

Proof. The proof is by induction. The case \(n=0\) is property (b) above. Suppose the result holds for \(n \geq 0\). If \(x \in S^{(n+1)}\), then there exists a sequence \(\{y^{(m)}\}_{m=1}^{\infty}\) from \(S^{(n)} \setminus \{x\}\) such that \(y^{(m)} \to x\) as \(m \to \infty\). By the induction hypothesis, \(\text{def}(y^{(m)}) \geq n\) for all \(m \geq 1\). Lemma 2 implies that \(\text{def}(x) > \text{def}(y^{(m)})\) for \(m\) sufficiently large. Hence \(\text{def}(x) \geq n + 1\). Conversely, suppose \(\text{def}(x) \geq n + 1\). For sufficiently large \(m\), say \(m \geq N\), we have

\[
def(x + 2^{-m}) = \text{def}(x) - 1 \geq n.
\]

The induction hypothesis implies that the sequence \(\{x + 2^{-m}\}_{m=N}^{\infty}\) is contained in \(S^{(n)} \setminus \{x\}\), and hence \(x \in S^{(n+1)}\).

Proof of Theorem 1. By Lemma 3, we have \(0 \in S^{(n)}\) for all \(n \in \mathbb{N}\). Therefore it suffices to show that for each \(n \in \mathbb{N}\), we have \(S^{(n)} \subseteq d^{(n)}(S)\); for this we use induction. For \(n = 0\) the inclusion is clear. Suppose the inclusion \(S^{(n)} \subseteq d^{(n)}(S)\) holds for \(n \geq 0\). Then
\[d_D^{(n+1)}(S) = d_D(d_D^{(n)}(S)) = \begin{cases} \{x \in d_D^{(n)}(S) : \text{if } I \text{ is an open interval containing } x, \\ \quad \text{then } I \cap d_D^{(n)}(S) \text{ is not a Dirichlet set} \} \\ \supseteq \{x \in S^{(n)} : \text{if } I \text{ is an open interval containing } x, \\ \quad \text{then } I \cap S^{(n)} \text{ is not a Dirichlet set} \} \end{cases} = d_D(S^{(n)}). \]

To finish the proof, it therefore is enough to show that \(S^{(n+1)} \subseteq d_D(S^{(n)}). \) Let \(x \in S^{(n+1)}; \) by Lemma 3, we have \(\text{def}(x) \geq n+1. \) Lemma 2 then implies that for sufficiently large \(m, \) say \(m \geq N, \) we have \(\text{def}(x+2^{-m}) = \text{def}(x)-1 \geq n. \) Thus \(\{x + 2^{-m}\}_{m=N}^{\infty} \) is contained in \(S^{(n)} \) by Lemma 3. If \(I \) is any open interval containing \(x, \) Lemma 1 then implies that \(I \cap \{x + 2^{-m}\}_{m=N}^{\infty} \subseteq I \cap S^{(n)} \) is not a Dirichlet set. Hence \(S^{(n+1)} \subseteq d_D(S^{(n)}), \) and the proof of Theorem 1 is complete.

The question as to whether the set \(S \) is expressible as the union of finitely many \(H \)-sets cannot be answered so easily, as demonstrated by the next two results. A simple compactness argument yields the first assertion.

Proposition 2. Let \(E \subseteq \mathbb{T} \) be compact and let \(B \) be a hereditary family of compact subsets of \(\mathbb{T}. \) If the \(B \)-rank of \(E \) is \(1 \) then \(E \) can be expressed as the union of finitely many \(B \)-sets.

Theorem 2. The \(H \)-rank of the set \(S \) is \(2. \)

The following lemma will be used to establish Theorem 2.

Lemma 4. For every \(J \in \mathbb{N}, \) \(S \cap [2^{-J-1}, 1-2^{-J-1}] \) is an \(H \)-set.

Proof. If \(y \in S \cap [2^{-J-1}, 1-2^{-J-1}], \) then \(y \) has at most \(J \) leading zeros in its binary expansion, and consequently has at most \(J+1 \) ones. Thus, for all \(j \in \mathbb{N}, \) we have \(2^j y = x \) where
\[
0 \leq x \leq \sum_{k=1}^{J+1} 2^{-k} = 1 - 2^{-(J+1)}. \]

Therefore \(2^j (S \cap [2^{-J-1}, 1-2^{-J-1}]) \) misses the interval \((1-2^{-J-1}, 1)\) for all \(j \in \mathbb{N}. \)

Proof of Theorem 2. It suffices to show that \(d_H(S) = \{0\}. \) Suppose that \(y \in S \setminus \{0\}, \) and choose \(J \in \mathbb{N} \) such that \(2^{-J-1} < y < 1 - 2^{-J-1}. \) Then \(I = (2^{-J-1}, 1-2^{-J-1}) \) is an open interval containing \(y, \) and Lemma 4 implies that \(S \cap I \) is an \(H \)-set. Thus \(d_H(S) \subseteq \{0\}. \)

To show the reverse inclusion, suppose by way of contradiction that \(0 \not\in d_H(S). \) Then there is an open interval \(I \) containing \(0 \) such that \(S \cap I \) is an
Choose \(J \in \mathbb{N} \) such that \(T \) is the union of \(I \) and
\[
I_J = [2^{-J-1}, 1 - 2^{-J-1}].
\]
Another application of Lemma 4 shows that \(S = (S \cap I) \cup (S \cap I_J) \) is the union of two \(H \)-sets, contradicting the Theorem of [4]. Thus \(d_H(S) = \{0\} \).

REFERENCES

Department of Mathematics and Statistics
University of Missouri
Rolla, Missouri 65401
U.S.A.
E-mail: grow@umr.edu
insall@umr.edu

Received 21 July 1997