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ON 4-FIELDS AND 4-DISTRIBUTIONS
IN 8-DIMENSIONAL VECTOR BUNDLES

OVER 8-COMPLEXES

BY

MARTIN Č A D E K AND JIŘÍ V A N Ž U R A (BRNO)

Let ξ be an oriented 8-dimensional spin vector bundle over an 8-complex.
In this paper we give necessary and sufficient conditions for ξ to have 4 lin-
early independent sections or to be a sum of two 4-dimensional spin vector
bundles, in terms of characteristic classes and higher order cohomology op-
erations. On closed connected spin smooth 8-manifolds these operations can
be computed.

1. Introduction. While the existence of 3-fields and 3-distributions
in vector bundles over manifolds has been treated by many authors (see
for instance [AD], [CS], [D], [K1], [K2], [N2], [R2], [T4]) and more or less
completely solved, the results on the existence of 4-fields and 4-distributions
are rare and not so complete (see [AR], [N1], [N2], [R1], [K1]). Especially,
the case of 4k-dimensional vector bundles over 4k-manifolds seems to be
difficult to deal with.

In this paper we solve the problem for 8-dimensional oriented spin vector
bundles over 8-manifolds. The method of the Postnikov tower enables us
to reveal that there is a generating class (see [T2]) in this case and that
the obstructions can be computed using secondary and tertiary cohomol-
ogy operations. The computation of these operations over closed connected
smooth spin 8-manifolds has been carried out in our previous paper [CV3]
which serves as an important preliminary material for the present one.

Our main results are Theorem 3.1 and Corollary 3.2 on the existence of
4-dimensional spin vector bundles over 8-manifolds (in Section 3), Theorem
4.1 with Corollaries 4.2, 4.3 on the existence of 4-fields and Theorem 4.4
on the existence of 4-distributions (in Section 4). Section 2 has auxiliary
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character and summarizes facts needed for the statements and proofs of the
main results.

2. Notation and auxiliary results. In this section we introduce no-
tation and recall some facts about the singular cohomology of classifying
spaces.

We will use wm(ξ) for the mth Stiefel–Whitney class of the vector bun-
dle ξ, pm(ξ) for the mth Pontryagin class, and e(ξ) for the Euler class.
For a complex vector bundle ξ the symbol cm(ξ) denotes the mth Chern
class. The wm, pm, e and cm will stand for the characteristic classes of
the universal vector bundles over the classifying spaces BSO(n) and BU(n),
respectively. The pullbacks of the Stiefel–Whitney, Pontryagin and Euler
classes in H∗(BSpin(n)) will be denoted by the same letters.

The mappings i∗ : H∗(X,Z2) → H∗(X,Z4) and %m : H∗(X,Z) →
H∗(X,Zm) are induced by the inclusion Z2 → Z4 and the reduction mod m,
respectively. We will also use the Steenrod operations Sqi : Hn(X;Z2) →
Hn+i(X;Z2) and P i3 : Hn(X;Z3)→ Hn+4i(X;Z3).

We say that x ∈ H∗(X;Z) is an element of order n (n = 2, 3, 4, . . .) if
and only if x 6= 0 and n is the least positive integer such that nx = 0 (if it
exists).

The Eilenberg–MacLane space with the nth homotopy group G will
be denoted by K(G,n), and ιn will stand for the fundamental class in
Hn(K(G,n);G). When writing the fundamental class, it will be always
clear which group G we have in mind.

Now we summarize some facts about the groups Spin(3) and Spin(4) and
the cohomologies of their classifying spaces. It is well known that Spin(3)
is isomorphic with the group Sp(1) of unit quaternions. So, identifying
Spin(3) × Spin(3) with Sp(1) × Sp(1), we can define a homomorphism ϑ :
Spin(3)× Spin(3)→ SO(4) using the representation

(α, β) · v = αvβ,

where α, β ∈ Sp(1), v ∈ H ∼= R4 and stands for conjugation. Since the
kernel of this homomorphism is {(1, 1), (−1,−1)} ∼= Z2, there is an isomor-
phism

ϑ : Spin(3)× Spin(3)→ Spin(4).

It induces a homeomorphism on the level of classifying spaces which will be
denoted by the same letter.

Lemma 2.1. The cohomology ring of BSpin(3) is

H∗(BSpin(3);Z) ∼= Z[r],

where p1 = 4r.
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The cohomology ring of BSpin(4) is

H∗(BSpin(4);Z) ∼= Z[q, s],

where q and s are defined with the aid of the first Pontryagin class and the
Euler class by the relations

p1 = 2q, e = 2s− q.
Moreover ,

ϑ∗(q) = r ⊗ 1 + 1⊗ r, ϑ∗(s) = 1⊗ r.
P r o o f. The cohomology of BSpin(3) is well known. The existence of q

and s ∈ H4(BSpin(4);Z) follows from the relation

%4p1 = Pw2 + i∗w4,

where P is the Pontryagin square, which in H∗(BSpin(4);Z) reads as

%4(p1 + 2e) = 0.

Since ϑ∗ : H∗(BSpin(4);Z)→ H∗(BSpin(3)×BSpin(3);Z) ∼= Z[r⊗ 1, 1⊗ r],
it is sufficient to prove the last part of our lemma.

Computing ϑ : Sp(1) × Sp(1) → SO(4) on the standard tori and using
the classical results of Borel and Hirzebruch (see [BH]), we easily get

ϑ∗(p1) = 2(r ⊗ 1 + 1⊗ r), ϑ∗e = 1⊗ r − r ⊗ 1.

Hence

ϑ∗q = r ⊗ 1 + 1⊗ r, ϑ∗s = 1⊗ r.

Further, we recall the definition of two higher order cohomology opera-
tions introduced in [CV3].

Definition 2.2. Let Σ denote the secondary cohomology operation as-
sociated with the relation

Sq2 ◦ Sq2 %2 = 0

on integral cohomology classes of dimension 4.
Let Φ be the tertiary cohomology operation associated with the relation

i∗ Sq2 ◦Σ = 0

on integral cohomology classes of dimension 4 and uniquely determined by
the properties

Φ(r) = 0, Φ(2r) = −%4r2

for r ∈ H4(BSpin(3);Z).
Let Ω be the secondary cohomology operation associated with the rela-

tion

i∗ Sq2 ◦ Sq2 = 0

in dimension 5.
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Let X be a CW-complex. The operations Σ, Ω and Φ are defined on
the sets Def(Σ,X) = {x ∈ H4(X;Z) : Sq2 %2x = 0}, Def(Ω,X) = {x ∈
H5(X;Z2) : Sq2 x = 0} and Def(Φ,X) = {x ∈ H4(X;Z) : Sq2 %2x = 0,

0 ∈ Σ(x)}, respectively. The values of Σ(x) form a subset of H7(X;Z2),
while Ω(x) and Φ(x) are subsets ofH8(X;Z4). The indeterminacies of Σ and
Ω are Indet(Σ,X) = Sq2H5(X;Z2) and Indet(Ω,X) = i∗ Sq2H6(X;Z2),
respectively. The indeterminacy of the remaining operation is Indet(Φ,X) =
ΩDef(Ω,X).

For further properties of Σ, Ω and Φ we refer to [CV3]. In particular,
the formula

Φ(x+ y) = Φ(x) + Φ(y)− %4(xy)

holds for all x, y ∈ Def(Φ,X) ([CV3, Lemma 3.9]).

Lemma 2.3. For q and s ∈ H4(BSpin(4);Z),

Σ(q) = 0, Σ(s) = 0, Φ(q) = %4(s2 − qs), Φ(s) = 0.

P r o o f. Since H5(BSpin(4);Z2) = H7(BSpin(4);Z2) = 0, we have
Σ(q) = Σ(s) = 0 and Indet(Φ,BSpin(4)) = 0. Since Φ(r) = 0 for r ∈
H4(BSpin(3);Z), using the formula for Φ(x+ y), we get

Φ(s) = Φ(ϑ∗)−1(1⊗ r) = (ϑ∗)−1Φ(1⊗ r) = 0,

Φ(q) = Φ(ϑ∗)−1(r ⊗ 1 + 1⊗ r) = (ϑ∗)−1Φ(r ⊗ 1 + 1⊗ r)
= −(ϑ∗)−1%4(r ⊗ r) = −%4(q − s)s = %4(s2 − qs).

Using the first Steenrod operation with Z3 coefficients we obtain the
other two relations in H8(BSpin(4);Z3).

Lemma 2.4. For q and s ∈ H4(BSpin(4);Z),

P 1
3 %3q + %3q

2 = %3(s2 − sq), P 1
3 %3s+ %3s

2 = 0.

P r o o f. According to the proof of Theorem 3.8 in [CV3] we know that

P 1
3 %3r + %3r

2 = 0

in H8(BSpin(3);Z3). This immediately yields the second relation. Further,
according to [BS],

P 1
3 %3p1 = %3(2p2 − p21)

where p2 = e2 in H8(BSpin(4);Z). Substitute p1 = 2q and e = 2s− q to get

P 1
3 %32q = %3(8s2 − 8sq − 2q2).

This yields the first relation in our lemma.

Finally, we recall the cohomology of BSpin(8) and the spin characteristic
classes.
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Lemma 2.5. The cohomology rings of BSpin(8) are

H∗(BSpin(8);Z2) ∼= Z2[w4, w6, w7, w8, ε]

and

H∗(BSpin(8);Z) ∼= Z[q1, q2, e, δw6]/〈2δw6〉
where q1, q2 and ε are defined by the relations

p1 = 2q1, p2 = q21 + 2e+ 4q2, %2q2 = ε.

P r o o f. See [Q] and [CV2].

Let ξ be an oriented 8-dimensional vector bundle over a CW-complex
X given by the homotopy class of some mapping ξ : X → BSO(8). ξ has
a spin structure iff w2(ξ) = 0. If some lifting ξ : X → BSpin(8) is fixed,
we talk about a given spin structure. In this case we can define the spin
characteristic classes

q1(ξ) = ξ∗q1, q2(ξ) = ξ∗q2.

The first spin characteristic class is always independent of the choice
of ξ. Moreover, if H4(X;Z) has no element of order 4, then it is uniquely
determined by the relations

2q1(ξ) = p1(ξ), %2q1(ξ) = w4(ξ).

The second spin characteristic class is independent of the spin structure
ξ if X is simply connected or H8(X;Z) ∼= Z. In the case of an 8-dimensional
manifold q2(ξ) is uniquely determined by the relation

16q2(ξ) = 4p2(ξ)− p21(ξ)− 8e(ξ).

See [CV2].

3. Four-dimensional spin vector bundles over 8-complexes. The
previous section enables us to prove the following result on the existence of
4-dimensional spin vector bundles over CW-complexes of dimension 8.

Theorem 3.1. Let X be a connected CW-complex of dimension ≤ 8 and
let P,E ∈ H4(X;Z). Then there exists an oriented 4-dimensional vector
bundle η over X with

w2(η) = 0, p1(η) = P, e(η) = E

if and only if there are Q,S ∈ H4(X;Z) such that

(1) P = 2Q, E = 2S −Q,
(2) Sq2 %2Q = Sq2 %2S = 0,
(3) 0 ∈ Σ(Q), 0 ∈ Σ(S),
(4) %4(S2 −QS) ∈ Φ(Q), 0 ∈ Φ(S),
(5) P 1

3 %3Q+ %3Q
2 = %3(S2 −QS), P 1

3 %3S + %3S
2 = 0.
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P r o o f. Every oriented 4-dimensional spin vector bundle η over a CW-
complex X is determined by a mapping η : X → BSpin(4). Let η have the
prescribed characteristic classes. Then η∗(p1) = P1 and η∗(e) = E. Put
Q = η∗(q) and S = η∗(s). Now Lemmas 2.1, 2.3 and 2.4 imply that Q and
S satisfy conditions (1)–(5).

Conversely, let there be Q and S such that (1)–(5) hold. Consider the
fibration

F → BSpin(4)
α−→ K(Z, 4)×K(Z, 4)

where α is determined by elements q, s ∈ H4(BSpin(4);Z). Next consider
the mapping f : X → K(Z, 4) × K(Z, 4) determined by elements Q,S ∈
H4(X;Z). Then η with the prescribed properties exists if f can be lifted in
the fibration α:

BSpin(4)

X K(Z, 4)×K(Z, 4)

α

��
f //

η
3<

p

p

p

p

p

Therefore we will build the Postnikov tower for the fibration α. The fibre F
is 4-connected and the next homotopy groups are

π5(F ) ∼= Z2 ⊕ Z2, π6(F ) ∼= Z2 ⊕ Z2, π7(F ) ∼= Z12 ⊕ Z12.

The first invariants can be easily obtained from the Serre exact sequence
for the fibration F → BSpin(4)→ K(Z, 4)×K(Z, 4). They are Sq2 %2ι4⊗ 1
and 1 ⊗ Sq2 %2ι4. The universal example for the secondary operation Σ is
the fibration

K(Z2, 5)
j1→ Y1

π1−→ K(Z, 4)

induced from the path fibration K(Z2, 5) → PK(Z2, 6) → K(Z2, 6) by the
mapping Sq2 %2ι4 : K(Z, 4) → K(Z2, 6). That is why the first stage of the
Postnikov tower is the product Y1 × Y1. We have

F 1 F K(Z2, 5)×K(Z2, 5)

F1 BSpin(4) Y1 × Y1

K(Z, 4)×K(Z, 4) K(Z, 4)×K(Z, 4)

K(Z2, 6)×K(Z2, 6)

// //

��
j1×j1
��

// α1 //

α

��
π1×π1

��
______
______

Sq2 %2ι4⊗11⊗Sq2 %2ι4
��
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The next invariants are σ ⊗ 1, 1 ⊗ σ ∈ H7(Y1 × Y1;Z2) where σ ∈
H7(Y1;Z2) is the element defining the operation Σ. The universal example
for the tertiary cohomology operation Φ is the fibration

K(Z2, 6)
j2−→ Y2

π2−→ Y1

induced from the path fibration K(Z2, 6) → PK(Z2, 7) → K(Z2, 7) by the
mapping σ : Y1 → K(Z2, 7). Hence the second stage of the Postnikov tower
is the product Y2 × Y2. We have

F 2 F1 K(Z2, 6)×K(Z2, 6)

F2 BSpin(4) Y2 × Y2

Y1 × Y1 Y1 × Y1

K(Z2, 7)×K(Z2, 7)

// //

��
j2×j2
��

// α2 //

α1

��
π2×π2

��
___________
___________

σ⊗11⊗σ
��

In the stage Y2×Y2 there are two Z4-invariants and two Z3-invariants in
dimension 8. (F2 is 6-connected and π7(F2) ∼= Z12⊕Z12

∼= Z4⊕Z4⊕Z3⊕Z3.)
First, consider Z4-coefficients. According to [CV3, Section 3], H8(Y2;Z4)

∼= Z4⊕Z4 with the generators %4π
∗
2π

∗
1ι4 and ϕ which is the element defining

the tertiary cohomology operation Φ. Using the Künneth formula for Z2-
coefficients, the exact sequence associated with the short exact sequence
0 → Z2 → Z4 → Z2 → 0 and the knowledge of H∗(Y2;Z2) and H∗(Y2;Z4)
from [CV3] (see Section 3), we find that H8(Y2 × Y2;Z4) ∼= (Z4)5 with the
generators %4π

∗
2π

∗
1ι

2
4⊗1, 1⊗%4π∗

2π
∗
1ι

2
4, %4(π∗

2π
∗
1ι4⊗π∗

2π
∗
1ι4), ϕ⊗1 and 1⊗ϕ.

Moreover,

α∗
2(%4π

∗
2π

∗
1ι

2
4 ⊗ 1) = %4q

2, α∗
2(1⊗ %4π∗

2π
∗
1ι

2
4) = %4s

2,

α∗
2(%4(π∗

2π
∗
1ι4 ⊗ π∗

2π
∗
1ι4)) = %4(qs),

and using Lemma 2.3,

α∗
2(ϕ⊗ 1) = Φ(q) = %4(s2 − qs), α∗

2(1⊗ ϕ) = Φ(s) = 0.

Hence the invariants are ϕ ⊗ 1 − 1 ⊗ %4π∗
2π

∗
1ι

2
4 + %4(π∗

2π
∗
1ι4 ⊗ π∗

2π
∗
1ι4) and

1⊗ ϕ.
Analogously, using Lemma 2.4 we find that the Z3-invariants are

P 1
3 (%3π

∗
2π

∗
1ι4 ⊗ 1) + %3π

∗
2π

∗
1ι

2
4 ⊗ 1 − %3(1 ⊗ π∗

2π
∗
1ι

2
4 − π∗

2π
∗
1ι4 ⊗ π∗

2π
∗
1ι4) and

P 1
3 (1⊗ %3π∗

2π
∗
1ι4) + 1⊗ %3π∗

2π
∗
1ι

2
4.

This shows that f : X → K(Z, 4) × K(Z, 4) given by the cohomology
classes Q and S can be lifted to the third stage of the Postnikov tower if
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and only if the conditions (2)–(5) are satisfied. But because dimX ≤ 8, we
can see that these conditions are necessary and sufficient for the existence
of a lift of f to BSpin(4) in the fibration α.

Now we apply Theorem 3.1 to a closed connected smooth spin manifold
of dimension 8.

Corollary 3.2. Let M be a closed connected smooth spin manifold of
dimension 8 and let P,E ∈ H4(M ;Z). Then there exists an oriented 4-
dimensional vector bundle η over M with

w2(η) = 0, p1(η) = P, e(η) = E

if and only if there are Q,S ∈ H4(M ;Z) such that

(i) P = 2Q, E = 2S −Q,

(ii) Sq2 %2Q = Sq2 %2S = 0,

(iii) {4E2 + P 2 − 2Pp1(M)}[M ] ≡ 0 mod 64,

{2(2E + P )p1(M)− (2E + P )2}[M ] ≡ 0 mod 128,

(iv) P 1
3 %3P = %3(2E2 − P 2), P 1

3 %3E = %3EP .

P r o o f. Let M be as above. Theorems 5.3 and 5.5 of [CV3] assert that

Φ(z) = %4 ·
1

2
{zq1(M)− z2}

for all z ∈ Def(Φ,M) and

0 ∈ Σ(z)

for all z ∈ Def(Σ,M). Using this and the fact that H8(M ;Z) ∼= Z we will
show that (iii) is equivalent to (4) of Theorem 3.1 on M . We have

4E2 + P 2 − 2Pp1(M) = 4(2S −Q)2 + (2Q)2 − 8Qq1(M)

= 16S2 + 8Q2 − 16QS − 8Qq1(M)

= 8{2(S2 −QS)− (Qq1(M)−Q2)}.
Next

2(2E + P )p1(M)− (2E + P )2 = 16(Sq1(M)− S2).

Similarly, substituting for P and E in (iv) we get (5) of Theorem 3.1:

0 = P 1
3 %3P − 2%3E

2 + %3P
2 = 2P 1

3 %3Q+ 2%3Q
2 − 8%3S

2 + 8%3SQ

= 2{P 1
3 %3Q+ %3Q

2 − %3(S2 − SQ)}.

Further, using the fact that P 1
3 %3P = 2%3E

2 − %3P 2, we have

0 = P 1
3 %3E − %3EP = −2P 1

3 %3E − %3EP − P 1
3 %3P + 2%3E

2 − %3P 2

= −4P 1
3 %3S − %3(2S −Q)2 − 2%3(2S −Q)Q− 4%3Q

2

= −P 1
3 %3S − %3S2.



4-FIELDS AND 4-DISTRIBUTIONS 221

4. Four linearly independent sections and 4-distributions. In
this section we will find necessary and sufficient conditions for an oriented
8-dimensional spin vector bundle over an 8-complex to have 4 linearly inde-
pendent sections or to be a sum of two 4-dimensional spin vector bundles.

Theorem 4.1. Let ξ be an oriented 8-dimensional vector bundle over a
connected CW-complex X of dimension ≤ 8 with w2(ξ) = 0. Then ξ has
4 linearly independent sections if and only if for some spin structure on ξ
there is S ∈ H4(X;Z) such that the following conditions are satisfied :

(1) w6(ξ) = 0, Sq2 %2S = 0,
(2) 0 ∈ Σ(q1(ξ)), 0 ∈ Σ(S),
(3) e(ξ) = 0,
(4) q2(ξ) = S2 − q1(ξ)S,
(5) %4q2(ξ) ∈ Φ(q1(ξ)),
(6) 0 ∈ Φ(S),
(7) P 1

3 %3S + %3S
2 = 0.

P r o o f. The vector bundle ξ over X has 4 linearly independent sections
if and only if the mapping ξ : X → BSpin(8) which is determined up to
homotopy by the spin structure of the vector bundle can be lifted in the
standard fibration

V8,4 → BSpin(4)
κ−→ BSpin(8).

So, we will build the Postnikov tower for this fibration.
The Stiefel manifold V8,4 is 3-connected and the next homotopy groups

are

π4(V8,4) ∼= Z, π5(V8,4) ∼= Z2 ⊕ Z2, π6(V8,4) ∼= Z2 ⊕ Z2,

π7(V8,4) ∼= Z⊕ Z⊕ Z3 ⊕ Z4 ⊕ Z4.

Moreover, we have

κ∗(q1) = q, κ∗(e) = 0, κ∗(p2) = (2s− q)2,
and hence

κ∗(q2) = s2 − sq.
The first invariant lies in H5(BSpin(8);Z) ∼= 0 and that is why it is

zero. So the first stage is BSpin(8)×K(Z, 4) and the mapping µ = (κ, β) :
BSpin(4) → BSpin(8) × K(Z, 4) can be chosen to be a fibration in such a
way that

β∗(ι4) = s.

The next invariants can be easily obtained from the Serre exact sequence
for the fibration µ. They are w6 ⊗ 1 and 1⊗ Sq2 %2ι4. So the first stage of
the Postnikov tower for the fibration µ is E1× Y1, where Y1 is the universal
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example for the operation Σ and E1
κ1−→ BSpin(8) is the fibration induced

from the path fibration K(Z2, 5)→ PK(Z2, 6)→ K(Z2, 6) by the mapping
w6 = Sq2 %2q1. We have the following commutative diagram:

K(Z2, 5)×K(Z2, 5) K(Z2, 5)2

BSpin(4) E1 × Y1 Y1 × Y1

BSpin(8)×K(Z, 4) BSpin(8)×K(Z, 4) K(Z, 4)2

K(Z2, 6)2

= +3_ _ _

��
j1×j1
��γ1 //

µ

��
κ1×π1

��

f1×id +3_ _ _ _ _ _

π1×π1

��
______
______

q1×id //

Sq2 %2ι4⊗ 11⊗Sq2 %2ι4
��

where f1 exists due to the fact that Sq2 %2κ
∗
1q1 = 0. The next invariants are

generators of H7(E1 × Y1;Z2) and these are f∗1 (σ) ⊗ 1 = Σ(κ∗1q1 ⊗ 1) and
1⊗σ = 1⊗Σ(π∗

1ι4). Consequently, the second stage of the Postnikov tower
has the form E2× Y2 where Y2 is the universal example for the operation Φ
and E2

κ2−→ E1 is the fibration induced from the path fibration K(Z2, 6)→
PK(Z2, 7)→ K(Z2, 7) by the mapping f∗1 (σ) : E1 → K(Z2, 7), which is the
same as the fibration induced from K(Z2, 6)→ Y2 → Y1 by the mapping f1.
We have

K(Z2, 6)×K(Z2, 6) K(Z2, 6)2

BSpin(4) E2 × Y2 Y2 × Y2

E1 × Y1 E1 × Y1 Y1 × Y1

K(Z2, 7)2

= +3_ _ _

��
j2×j2
��γ2 //

γ1

��
κ2×π2

��

f2×id +3_ _ _ _ _ _

π2×π2

��
___________
___________

f1×id //

σ⊗11⊗σ
��

The mapping f2 exists since Σ(κ∗2κ
∗
1q1) = 0.

Further invariants lie in H8(E2 × Y2;Z), H8(E2 × Y2;Z4) and H8(E2 ×
Y2;Z3). The cohomologies of E2 were computed in the proof of Theorem
4.1 of [CV3]. Hence, we have

H8(E2 × Y2;Z) ∼= Z5

with generators κ∗2κ
∗
1q

2
1⊗1, 1⊗π∗

2π
∗
1ι

2
4, κ∗2κ

∗
1q1⊗π∗

2π
∗
1ι4, κ∗2κ

∗
1q2⊗1, κ∗2κ

∗
1e⊗1.

Since H8(BSpin(4);Z) ∼= Z3 with generators q2, s2 and qs, the integral
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invariants are the generators of ker γ2:

A = κ∗2κ
∗
1e⊗ 1, B = κ∗2κ

∗
1q2 ⊗ 1− 1⊗ π∗

2π
∗
1ι

2
4 + κ∗2κ

∗
1q1 ⊗ π∗

2π
∗
1ι4.

Next,

H8(E2 × Y2;Z4) ∼= (Z4)7

with generators κ∗2κ
∗
1%4q

2
1 ⊗ 1, κ∗2κ

∗
1%4q2 ⊗ 1, κ∗2κ

∗
1%4e ⊗ 1, f∗2 (ϕ) ⊗ 1,

1⊗π∗
2π

∗
1%4ι

2
4, 1⊗ϕ, κ∗2κ

∗
1%4q1⊗π∗

2π
∗
1%4ι4. Further, H8(BSpin(4);Z4) ∼= (Z4)3

with generators %4q
2, %4s

2, %4qs. So using Lemma 2.3, we deduce that ker γ2
is generated by

%4A, %4B, 1⊗ ϕ, f∗2ϕ⊗ 1− 1⊗ π∗
2π

∗
1%4ι

2
4 + κ∗2κ

∗
1%4q1 ⊗ π∗

2π
∗
1%4ι4.

It remains to compute the Z3-invariant. We have

H8(E2 × Y2;Z3) ∼= (Z3)6

with generators κ∗2κ
∗
1%3q2⊗1, κ∗2κ

∗
1%3e⊗1, κ∗2κ

∗
1%3q

2
1⊗1, κ∗2κ

∗
1%3q1⊗π∗

2π
∗
1%3ι4,

1 ⊗ π∗
2π

∗
1%3ι

2
4, 1 ⊗ π∗

2π
∗
1P

1
3 %3ι4. So using Lemma 2.4, we find that ker γ2 is

generated by

%3A, %3B, 1⊗ π∗
2π

∗
1P

1
3 %3ι4 + 1⊗ π∗

2π
∗
1%3ι

2
4.

Now, because dimX ≤ 8, we can immediately see that the vector bundle
ξ : X → BSpin(8) has 4 linearly independent sections if and only if all the
conditions (1)–(7) of the theorem are satisfied.

Corollary 4.2. Let ξ be an oriented 8-dimensional vector bundle over
a closed connected smooth spin 8-manifold M with w2(ξ) = 0. Then ξ has 4
linearly independent sections if and only if there is S ∈ H4(M ;Z) and the
following conditions are satisfied :

(1) w6(ξ) = 0, Sq2 %2S = 0,

(2) e(ξ) = 0,

(3) 4p2(ξ)− p21(ξ) = 16S2 − 8p1(ξ)S,

(4) {2p1(M)p1(ξ)− p21(ξ)− 4p2(ξ)}[M ] ≡ 0 mod 64,

(5) {p1(M)S − 2S2}[M ] ≡ 0 mod 16,

(6) P 1
3 %3S + %3S

2 = 0.

P r o o f. It is easy to show that in the case X = M , conditions (1)–(7) of
Theorem 4.1 are equivalent to conditions (1)–(6) of the corollary. It suffices
to use the relations 0 ∈ Σ(z) for z ∈ Def(Σ,M) (see [CV3], Theorem 5.5),
p1(ξ) = 2q1(ξ), p2(ξ) = q21(ξ) + 2e(ξ) + 4q2(ξ), Φ(z) = %4 · 12{zq1(M)− z2}
for z ∈ Def(Φ,M) and the fact that H8(M ;Z) ∼= Z.

Now we shall formulate nontrivial sufficient conditions for the existence
of 4 linearly independent vector fields in tangent bundles without any refer-
ence to an element S.
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Corollary 4.3. Let M be a closed connected smooth spin manifold of
dimension 8. If

(i) w6(M) = 0,
(ii) e(M) = 0,

(iii) {4p2(M)− p21(M)}[M ] ≡ 0 mod 128,

and there is k ∈ Z such that

(iv) 4p2(M) = (2k − 1)2p21(M),
(v) k(k + 2)p2(M)[M ] ≡ 0 mod 3,

then M has 4 linearly independent vector fields.

P r o o f. We will prove that for S = kq1(M) conditions (1)–(6) of Corol-
lary 4.2 hold. Obviously, (1) and (2) are satisfied. As for (3),

4p2(M)− p21(M) = (2k − 1)2p21(M)− p21(M)

= (4k2 − 4k)p21 = 16S2 − 8p1(M)S.

Next, (4) follows from the fact that

4p2(M)− p21(M) = 16k(k − 1)q21(M)

and

%2q
2
1(M) = w2

4(M) = w8(M) = 0.

Because of

8(p1(M)S − 2S2) = −(2k − 1)2p21(M) + p21(M) = p21(M)− 4p2(M),

condition (iii) implies (5).
Finally, condition (6) follows from (v). On spin manifolds

Â[M ] =
1

27 · 45
{7p21(M)− 4p2(M)}[M ]

is an integer (see [H], Theorem 26.3.1) and that is why p21(M)[M ] ≡
p2(M)[M ] mod 3. So we have

4(P 1
3 %3S + %3S

2) = 2kP 1
3 %3p1(M) + k2%3p

2
1(M)

= 4k%3p2(M)− 2k%3p
2
1(M) + k2%3p

2
1(M)

and

{4kp2(M)− 2kp21(M) + k2p21(M)}[M ] ≡ (4k − 2k + k2)p2(M)[M ]

≡ k(k + 2)p2(M)[M ] mod 3.

Now, we will state and prove a result on the existence of 4-dimensional
subbundles (4-distributions) in an 8-dimensional spin vector bundle. Since
we want to avoid technical difficulties with the use of the Postnikov tower,
our assumptions are a little more restrictive than in the case of Theorem 4.1
or Corollary 4.2.
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Theorem 4.4. Let M be a closed connected smooth spin manifold of
dimension 8 such that H4(M ;Z) has no element of order 4. Let ξ be an
oriented 8-dimensional vector bundle over M with w2(ξ) = 0. Then ξ is the
sum of two 4-dimensional spin vector bundles if and only if there are S1, S2,
Q1, Q2 ∈ H4(M ;Z) and the following conditions are satisfied for n = 1, 2:

(1) p1(ξ) = 2(Q1 +Q2),

(2) e(ξ) = (2S1 −Q1)(2S2 −Q2),

(3) p2(ξ) = (2S1 −Q1)2 + (2S2 −Q2)2 + 4Q1Q2,

(4) Sq2 %2Qn = Sq2 %2Sn = 0,

(5) {Snp1(M)− 2S2
n}[M ] ≡ 0 mod 16,

(6) {4S2
n − 4QnSn}[M ] ≡ {Qnp1(M)− 2Q2

n}[M ] mod 16,

(7) P 1
3 %3Qn + %3Q

2
n = %3(S2

n −QnSn),

(8) P 1
3 %3Sn + %3S

2
n = 0.

P r o o f. First, we show that all the conditions are necessary. Let ξ = ξ1⊕
ξ2 where ξ1 and ξ2 are 4-dimensional spin vector bundles with the Euler and
the first Pontryagin classes 2S1 −Q1, 2Q1 and 2S2 −Q2, 2Q2, respectively.
According to Theorem 3.1 the classes Q1, Q2, S1, S2 ∈ H4(M ;Z) satisfy
conditions (4)–(8). (Notice that Φ(z) = %4 · 12 (zq1(M)− z2) on Def(Φ,M).)
Moreover,

p1(ξ) = p1(ξ1) + p1(ξ2), e(ξ) = e(ξ1) · e(ξ2),

p2(ξ) = p2(ξ1) + p2(ξ2) + p1(ξ1)p1(ξ2).

These conditions read as (1), (2) and (3).

Conversely, let conditions (1)–(8) be satisfied. Then according to The-
orem 3.1 there are two 4-dimensional vector bundles ξ1 and ξ2 over M .
Conditions (1)–(3) say that the bundles ξ and ξ1⊕ ξ2 have the same charac-
teristic classes. Hence, using Theorem 2 from [CV1] (and just here we need
the fact that H4(M ;Z) has no element of order 4), we find that the two
oriented vector bundles are isomorphic.

Example 4.5. The quaternionic projective space HP 2 does not admit
any 4-distribution in its tangent bundle. The characteristic classes are

p1(HP 2) = 2u, p2(HP 2) = 7u2, e(HP 2) = 3u2

where u ∈ H4(HP 2;Z) and H∗(HP 2;Z) = Z[u]/〈u3〉. There are no Q1, Q2,
S1, S2 ∈ H4(HP 2;Z) satisfying (2) and (3) of Theorem 4.4. From (2) it
follows that 2S1 − Q1 = ±3 and 2S2 − Q2 = ±1 or vice versa. Then from
(3) we get

4Q1Q2 = 7u2 − (2S1 −Q1)2 − (2S2 −Q2)2 = −3u2,

which is a contradiction.



226 M. ČADEK AND J. VANŽURA

Example 4.6. The GrassmannianG+
6,2(R)(the space of oriented 2-planes

in R6) does not admit any spin 4-distribution. We have H∗(G+
6,2(R);Z) =

Z[u]/〈u5〉 where u ∈ H2(G+
6,2(R);Z) and

p1(G+
6,2(R)) = 2u2, p2(G+

6,2(R)) = 7u4, e(G+
6,2(R)) = 5u4.

The same considerations as above show the nonexistence of Q1, Q2, S1, S2

satisfying (2) and (3) of Theorem 4.4. This implies that G6,2(R) (the space
of nonoriented 2-planes in R6) has no spin 4-distribution either.

Example 4.7. Now consider the tangent bundle of the complex Grass-
mannian G4,2(C). In this case the situation is more complicated since

H∗(G4,2(C);Z) = Z[u, v]/〈u3 − 2uv, v2 − u2v〉
where u ∈ H2(G4,2(C);Z) and v ∈ H4(G4,2(C);Z) and

p1(G4,2(C)) = 2u2, p2(G4,2(C)) = 14u2v, e(G4,2(C)) = 6u2v.

Nevertheless, neither in this case is there any spin 4-distribution in the
tangent bundle. To prove this we have to explore nontrivial conditions (6)
and (7) of Theorem 4.4 since for instance

Q1 = −2u2 − 2v, S1 = −5u2, Q2 = 3u2 + 2v, S2 = 4v

satisfy (1)–(5), (8) and (9) of Theorem 4.4. The proof that the system of
equations (1)–(7) has no solution can be carried out considering equations
(1)–(3) “modulo 8” and using a computer to go through all the possible
values.

Example 4.8. Using Theorem 3.1 and the characterization of 6-dimen-
sional vector bundles over 6-complexes from [W], it can be shown that
the tangent bundle of the complex projective space CP 3 has only spin 4-
distributions α with the characteristic classes

q(α) = 0, s(α) = ±y2, e(α) = ±2y2

where y ∈ H2(CP 3;Z) and H∗(CP 3;Z) = Z[y]/〈y4〉. So

τ(CP 3) = α⊕ β,
where β is a 2-distribution with e(β) = ±2y. Hence the tangent bundle of
S2 × CP 3 is a sum of two spin 4-distributions

τ(S2 × CP 3) = α⊕ (β ⊕ τ(S2))

with

q(β ⊕ τ(S2)) = 2y2, s(β ⊕ τ(S2)) = ±2xy + y2,

e(β ⊕ τ(S2)) = ±4xy

where x is a generator of H2(S2;Z).



4-FIELDS AND 4-DISTRIBUTIONS 227

However, the tangent bundle of S2 × CP 3 can also be written as a sum
γ⊕δ of spin 4-distributions with different characteristic classes, for instance

q(γ) = Q1 = −4xy − 6y2, s(γ) = S1 = −4xy + y2, e(γ) = −4xy + 8y2

and

q(δ) = Q2 = 4xy + 8y2, s(δ) = S2 = −2xy − 5y2, e(δ) = −8xy − 18y2.

It is easy to show that these Q1, S1, Q2, S2 satisfy the assumptions of The-
orem 4.4.
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