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L2 ESTIMATES FOR OSCILLATORY INTEGRALS

BY

G. SAMPSON (AUBURN, ALABAMA)

0. Introduction. In earlier papers, [1], [2], we obtained the complete
Lp-mapping properties for a class of operators that includes

Tf(x) =

∞\
0

eix
bya

|x− y|r
f(y) dy, x ∈ R,

with the phase function g(x, y) = xbya, b, a ≥ 1 and 0 ≤ r < 1. Included
among these operators is the Fourier transform.

In [1] and [2] (Theorem 3.1 of [1]) we showed

Theorem A. Let a, b ≥ 1 and 0 ≤ r < 1. Then

‖Tf‖pp ≤ C‖f‖pp

if and only if

b+ a

b+ ar
≤ p ≤

b+ a

b(1− r)
.

The driving force behind proving Theorem A is to solve the (L2, L2)
mapping problem in the case r = (b− a)/(2b) + iα for α ∈ R.

In this article we wish to obtain L2-estimates for similar non-convolution
operators with more general phase functions. To be more precise, we consider
the operator

(0.1) Tf(x) =

∞\
0

k(x, y)f(y) dy, x ∈ R,

with

k(x, y) = ϕ(x, y)eig(x,y)

where g(x, y) is real-valued. In Theorem 0.1, we study the cases where

(0.2) g(x, y) = xbγ1(y) + xmγ2(y), b > a ≥ 1.

The previous case was when γ1(y) = ya and m = 0. In Theorem 2.4 for
1 ≤ a < 2 we obtain a more general result.
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Furthermore, we suppose throughout this paper that for |x− y| > 0,

(0.3)
(a) |ϕ(x, y)| ≤ C|x− y|−(b−a)/(2b),

(b) |∂xϕ(x, y)| ≤ C|x− y|−(b−a)/(2b)−1.

The cases where b ≥ a are considered in [1]. Note that without any loss
we can suppose in (0.3) that ϕ(x, y) and ∂xϕ(x, y) are both bounded, since
for some cut-off function λ(x) we get

Tf(x) =

∞\
0

k(x, y)λ(x − y)f(y) dy +

∞\
0

k(x, y)(1 − λ(x− y))f(y) dy

= T1f(x) + T2f(x).

But T1 maps L2 into L2 since its integrand is in L1 and we are left with T2.

In our first result we show that

Theorem 0.1. Let b > a ≥ 1, and suppose k(x, y) satisfies (0.2) and

(0.3). If b ≥ 2, b > m > 0, 1 ≤ m1 ≤ a, and for u, v ≥ 0,

(0.4)
(a) |γ1(u)− γ1(v)| ≥ C|u− v|(ua−1 + va−1),

(b) |γ2(u)− γ2(v)| ≤ C|u− v|(um1−1 + vm1−1),

then ‖Tf‖2 ≤ C‖f‖2.

Our second result appears in Theorem 2.4.

We find it convenient to let Ψ(x, y, y′) = g(x, y) − g(x, y′) throughout
this paper. The letter C stands for a positive constant that may change
line-by-line.

1. Preliminaries. Here we wish to show that

I =

∞\
−∞

|Tf(x)|2 dx ≤ C
\
|f |2 dy = C‖f‖22

for the operators defined in (0.1). For some constant A that still needs to
be determined, we consider

(1.1) I = I1 + I2 =
\

|x|≤A

|Tf(x)|2 dx+
\

|x|≥A

|Tf(x)|2 dx

and we wish to show that

I1 ≤ C‖f‖22 and I2 ≤ C‖f‖22.
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Begin with the term I1 and note that

I1 ≤ C
\

|x|≤A

∣

∣

∣

∞\
0

eig(x,y)f(y)(ϕ(x, y) − ϕ(0, y)) dy
∣

∣

∣

2

dx

+ C
\

|x|≤A

∣

∣

∣

∞\
0

eig(x,y)ϕ(0, y)f(y) dy
∣

∣

∣

2

dx = A1 +A2.

By (0.3)(b) it follows that

A1 ≤ C‖f‖22,

since the integrand is in L1. We are left with the A2-piece, namely,

A2 = C

∞\
0

dy f(y)

∞\
0

dy′ f(y′)
\

|x|≤A

eiΨ(x,y,y′)ϕ(0, y′)ϕ(0, y) dx.

Consider the condition

(1.2)
∣

∣

∣

\
|x|≤A

eiΨ(x,y,y′) dx
∣

∣

∣
≤

C

|ya − y′a|1/b
.

Proposition 1.1. Let b > a ≥ 1. If ϕ(x, y) satisfies (0.3) and (1.2)
holds, then I1 ≤ C‖f‖22.

P r o o f. Since I1 ≤ A1 + A2 and by (0.3)(b) we get A1 ≤ C‖f‖22, it
suffices to estimate A2. But by (0.3) and (1.2) we get

A2 ≤ C

∞\
0

dy |f(y)|

∞\
0

dy′ |f(y′)|A(y, y′)

where

A(y, y′) =
1

|ya − y′a|1/b(y · y′)(b−a)/(2b)
.

But by Schur’s lemma [4], A(y, y′) is the kernel of an operator that maps
L2 into L2.

We point out the following useful but elementary result.

Lemma 1.2. Let Φ(x, y, y′) be a real-valued function and suppose that

(1.3) A(y, y′) =

d\
c

|∂xK(x, y, y′)|
∣

∣

∣

x\
c

eiΦ(v,y,y′) dv
∣

∣

∣
dx
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is defined for almost all y, y′ ≥ 0. Then

J =
∣

∣

∣

b\
a

dy f(y)

b\
a

dy′ f(y′)

d\
c

dx eiΦ(x,y,y′)K(x, y, y′)
∣

∣

∣

≤
(

b\
a

|f |2 dy
)1/2(

b\
a

dy′ |f(y′)|2
b\
a

dy A(y, y′)
)1/2(

b\
a

A(y, y′) dy′
)1/2

.

P r o o f. Set B =
Td
c
eiΦ(x,y,y′)K(x, y, y′) dx. Using integration by parts

we see that

|B| ≤

d\
c

|∂xK(x, y, y′)|
∣

∣

∣

x\
c

eiΦ(v,y,y′) dv
∣

∣

∣
dx = A(y, y′).

We get our result by repeated application of Schwarz’s inequality.

We now consider the term I2 (we bounded I1 in Proposition 1.1). Let

η(y) +

∞
∑

l=0

ψl(y) = 1, η, ψ ∈ C∞, ψl(y) = ψ(y/2l),

and ψ(y) is supported in 1/2 ≤ |y| ≤ 2 and η(y) in |y| ≤ 1. We get

I2 ≤ C
\

|x|≥A

∣

∣

∣

∞\
0

k(x, y)η(x − y)f(y) dy
∣

∣

∣

2

dx(1.4)

+ C
\

|x|≥A

∣

∣

∣

∞
∑

l=0

∞\
0

k(x, y)ψl(x− y)f(y) dy
∣

∣

∣

2

dx

= I21 + I22.

The term I21 is estimated in a straightforward manner, and we shall do that
below; the bounds for I22 will be done later in Propositions 1.4 and 1.5.
Notice that

I21 =

∞\
0

dy f(y)

∞\
0

dy′ f(y′)
\

|x|≥A

dx eiΨ(x,y,y′)η(x−y)η(x−y′)ϕ(x, y)ϕ(x, y′).

Note A(y, y′) is defined by (1.3) and is supported in |y − y′| ≤ 2. From
Lemma 1.2 it follows that we need only show the L1 conditions,

(1.5)

(a)

∞\
0

A(y, y′) dy ≤ C,

(b)

∞\
0

A(y, y′) dy′ ≤ C.
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The next result follows immediately from Lemma 1.2, where A(y, y′)
is defined by (1.3). From here on we use a parameter λ and the relevant
constants A and C do not depend on λ.

Proposition 1.3. If (1.5) holds, then I21 ≤ C‖f‖22.

In order to obtain bounds for I22, we utilize the following condition. Let
λ > 0. Then there exists a constant A so that for x ≥ A/λ, where A does
not depend upon λ,

(1.6)
∣

∣

∣

x\
A/λ

eiΨ(λv,λy,λy′) dv
∣

∣

∣
≤

C

λ(b+a)/b|ya − y′a|1/b
for y, y′ ≥ 0.

Next let

Ĩ2l =
\

|x|≥A

∣

∣

∣

∞\
0

k(x, y)ψl(x− y)f(y) dy
∣

∣

∣

2

dx,

then set Ĩ2l = I2l,1 + I2l,2 with

I2l,1 = λ3
λ−1\
0

dy f(λy)

∞\
0

dy′ f(λy′)

×
\

|x|≥A/λ

dxψ(x− y)ψ(x− y′)ϕ(λx, λy)ϕ(λx, λy′)eiΨ(λx,λy,λy′),

with λ = 2−l.

From (1.4) we get

I
1/2
22 ≤

∞
∑

l=0

Ĩ
1/2
2l

and so in estimating I22 our problem is reduced to seeing that the terms
I2l,1 and I2l,2 sum.

Proposition 1.4. Let b > a ≥ 1. If (0.3) and (1.6) hold , then

I2l,1 ≤
C

λ(1−a/b)/2
‖f‖22.

P r o o f. By (0.3), (1.6) and Lemma 1.2, it follows that

I2l,1 ≤ Cλ3
λ−1\
0

dy |f(λy)|

∞\
0

dy′ |f(λy′)|A(y, y′)

where

A(y, y′) =
χ(|y − y′| ≤ 4)

λ2|y − y′|1/b(ya−1 + y′(a−1))1/b
.
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We can easily see that

(1.7)

(a)

∞\
0

A(y, y′) dy′ ≤ Cλ−2 for 0 ≤ y ≤ λ−1,

(b)

λ−1\
0

A(y, y′) dy ≤ Cλ−(1−a/b)λ−2.

Now by Lemma 1.2 and (1.7) we get

I2l,1 ≤
Cλ3

λ2
· λ−(1−a/b)/2

∞\
0

|f(λy)|2 dy

≤ Cλ−(1−a/b)/2‖f‖22

after changing variables.

We still need another estimate for the left-hand term that appears in
(1.6). It will be used to bound I2l,2.

Let λ > 0. Then there exists a constant A (independent of λ) and an
α > 0 so that for x ≥ A/λ and y, y′ ≥ 0,

(1.8)
∣

∣

∣

x\
A/λ

eiΨ(λv,λy,λy′) dv
∣

∣

∣
≤

C

λα|ya − y′a|
for y + y′ ≥ λ−1.

Proposition 1.5. Let b > a ≥ 1. If (0.3) and (1.8) hold then

I2l,2 ≤
C log(1 + λ)

λ(b−a)/bλα−a−1
‖f‖22.

P r o o f. Here we have

I2l,2 ≤ λ3
∞\
λ−1

dy |f(λy)|

∞\
0

dy′ |f(λy′)|

×
∣

∣

∣

\
|x|≥A/λ

dxψ(x − y)ψ(x− y′)ϕ(λx, λy)ϕ(λx, λy′)eiΨ(λx,λy,λy′)
∣

∣

∣
.

But by Lemma 1.2, (0.3) and (1.8) it follows that

A(y, y′) =
Cχ(|y − y′| ≤ 4)

λ(b−a)/b[1 + λα|ya − y′a|]
.

We easily see that for a ≥ 1,

(1.9)

(a)

∞\
0

A(y, y′) dy′ ≤ C log(1 + λ)λ−(b−a)/bλa−1−α if y ≥ λ−1,

(b)

∞\
λ−1

A(y, y′) dy ≤ C log(1 + λ)λ−(b−a)/bλa−1−α.
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Thus by Lemma 1.2, from (1.9) we get

I2l,2 ≤
C log(1 + λ)λ3

λ(b−a)/bλα−a+1

∞\
0

|f(λy)|2 dy,

and after changing variables we get our result.

Now we put all these results together to obtain

Theorem 1.6. Let b > a ≥ 1. If (0.3), (1.2), (1.5), (1.6) all hold and

(1.8) holds with α > a+ a/b, then

‖Tf‖2 ≤ C‖f‖2.

P r o o f. We note that by (1.1) and (1.4), I = I1 + I2 and I2 ≤ I21 + I22,
and we need to show that I ≤ C‖f‖22.

By Propositions 1.1 and 1.3 it follows that

(1.10) I1 + I21 ≤ C‖f‖22.

Also since Ĩ2l = I2l,1 + I2l,2 we see by Propositions 1.4 and 1.5 (λ = 2−l)
with α > a+ a/b that I2l,1 and I2l,2 sum, and thus

(1.11) I22 ≤ C‖f‖22.

Now our result follows from (1.10) and (1.11).

2. Proof of Theorem 0.1. We prove Theorem 0.1 by showing that
the kernel k(x, y) defined there satisfies the conditions of Theorem 1.6. We
begin with the following result which is an easy consequence of Lemmas
7– 9 of [3].

Lemma 2.1. Assume that b 6= m, α(t) = tbξ + tmη, and ξ, η ∈ R. If

m > 0 and b ≥ 2, then

∣

∣

∣

T\
0

eiα(t) dt
∣

∣

∣
≤ C|ξ|−1/b for T ≥ 0,

and C does not depend upon ξ, η or T .

P r o o f. Without any loss, we can suppose that ξ > 0 and T ′ = Tmξm/b

≥ 1. Then
∣

∣

∣

T\
0

eiα(t) dt
∣

∣

∣
=

1

ξ1/b

∣

∣

∣

∣

T ′\
0

eitb/meitλ

t1−1/m
dt

∣

∣

∣

∣

and λ = η/ξm/b. But since m > 0, it suffices to bound

∣

∣

∣

∣

T ′\
1

eitb/meitλ

t1−1/m
dt

∣

∣

∣

∣

=

∣

∣

∣

∣

T ′\
1

eitb/meitλ

t1−b/(2m)t(1/m)(b/2−1)
dt

∣

∣

∣

∣

≤ C,

which follows from Lemmas 7–9 of [3], since b ≥ 2 and m > 0.
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Remark. If for the term I21, we suppose (0.4)(a), b 6= m, m > 0, b ≥ 2,
then by using (1.3) we see from Lemma 2.1 that

A(y, y′) =
χ(|y − y′| ≤ 2)

|y − y′|1/b(ya−1 + y′(a−1))1/b
.

Note that in (1.3), Φ(x, y, y′) = xb(γ1(y)− γ1(y
′)) + xm(γ2(y)− γ2(y

′)).

We also employ and prove here the following result.

Lemma 2.2. Let y, y′ ≥ 0. Suppose that

g(x, y) = xbγ1(y) + xmγ2(y), 1 ≤ m1 ≤ a, b > m.

If (0.4) holds, then for any λ > 0 there exists an A large enough so that if

x ≥ A/λ then

(2.1) |∂xΨ(λx, λy, λy
′)|

≥ Cλa+1|y − y′|(ya−1 + y′
(a−1)

) for y + y′ ≥ λ−1.

P r o o f. We have

∂vΨ(λv, λy, λy
′) = bλbvb−1(γ1(λy)−γ1(λy

′))+mλmvm−1(γ2(λy)−γ2(λy
′)).

Thus

|∂vΨ(λv, λy, λy
′)| ≥ vm−1λm+m1 |y − y′|[C1λ

b+a−m−m1vb−m(2.2)

× (ya−1 + y′(a−1))−mC2(y
m1−1 + y′(m1−1))]

where we used (0.4). Since v ≥ A/λ we get

C1A
b−mλa−m1(ya−1 + y′(a−1)) ≥ mC2(y

m1−1 + y′(m1−1)).

But since 1 ≤ m1 ≤ a and b > m, we can choose A large enough to obtain
the above inequality.

In Lemma 2.2 we have determined the value of A from the beginning
of the article. Also notice that if m1 = a in Lemma 2.2, the restriction
y + y′ ≥ λ−1 could be dropped.

The next result follows from Lemmas 2.1 and 2.2.

Proposition 2.3. Let g(x, y) = xbγ1(y) + xmγ2(y).

(a) If b ≥ 2, b 6= m and m > 0, then

∣

∣

∣

x\
0

eiΨ(λv,λy,λy′) dv
∣

∣

∣
≤

C

λ|γ1(λy)− γ1(λy′)|1/b
.

(b) If 1 ≤ m1 ≤ a, b > m, y + y′ ≥ λ−1, y, y′ ≥ 0 and (0.4) holds, then
for x ≥ A/λ,

∣

∣

∣

x\
A/λ

eiΨ(λv,λy,λy′) dv
∣

∣

∣
≤

C

λa+1|y − y′|(ya−1 + y′(a−1))
.
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P r o o f. Part (a) follows from Lemma 2.1, while part (b) follows from
Lemma 2.2.

It follows from Proposition 2.3 that the operator in (0.1) with g(x, y) =
xbγ1(y)+xmγ2(y) satisfies estimates like (1.2), (1.6) and (1.8). We are now
in a position to prove Theorem 0.1.

Proof of Theorem 0.1. According to Theorem 1.6, we need to see that
(1.2), (1.5), (1.6) and (1.8) hold, with α > a+a/b. We notice that (1.2) and
(1.6) follow from Proposition 2.3(a) and (0.4)(a). Next (1.8) follows from
Proposition 2.3(b) and (0.4), with α = a + 1 > a + a/b, since here b > a.
We are finished once we show (1.5).

To see (1.5), we use the remark following Lemma 2.1 and get

A(y, y′) =
χ(|y − y′| ≤ 2)

|y − y′|1/b(ya−1 + y′(a−1))1/b
.

Since b > a we see that (1.5) holds, and this now completes our argument.

We say that a function h(x, y, y′) is “monotonic” in x for each y, y′ ≥ 0
if there exists a numberM independent of x, y, y′ so that h(x, y, y′) is mono-
tonic in x for x ∈ [aj−1, aj ] with 1 ≤ j ≤ N + 1, a0 = 0, aN+1 = ∞ and
N ≤M . Note that these intervals may depend upon y or y′.

We are able to show that

Theorem 2.4. Let α > a + 2a/b with b > a ≥ 1 and a < 2. Suppose

there exists an A large enough so that

(2.3)
(a) Ψ(x, y, y′) is “monotonic” in x,

(b) |∂xΨ(λy, λy, λy
′)| ≥ Cλα|y − y′|(ya−1 + y′(a−1)),

for each y, y′ ≥ 0, λ > 0 and x ≥ A/λ. If , furthermore (1.2), (1.5) both

hold with A(y, y′) taken from (1.3), then

‖Tf‖2 ≤ C‖f‖2.

P r o o f. From (1.3) and (2.3) it follows that

A(y, y′) =
Cχ(|y − y′| ≤ 4)

λ(b−a)/b(1 + λα|y − y′|(ya−1 + y′(a−1))

just as in the proof of Proposition 1.5. Next,

Ĩ2l ≤ λ3
(

λ−1\
0

+

∞\
λ−1

)

dy |f(λy)|

∞\
0

dy′ |f(λy′)|A(y, y′)

= I2l,1 + I2l,2.
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In order to estimate I2l,1 we can easily see that with λ = 2l and a ≥ 1,

(2.4)

(a)

∞\
0

A(y, y′) dy′ ≤ Cy(1− a)
l

λ(b−a)/b+α
,

(b)

λ−1\
0

A(y, y′)

ya−1
dy ≤

C

λ(b−a)/b+2−a
.

It follows from (2.4) and Lemma 1.2 that

I2l,1 ≤
Cl1/2‖f‖22
λα/2−a/b−a/2

.

For the term I2l,2 we can easily see that for y ≥ λ−1 and a ≥ 1,

(2.5)

(a)

∞\
0

A(y, y′) dy′ ≤
Cl

λ(b−a)/b+α+1−a
,

(b)

∞\
λ−1

A(y, y′) dy ≤
Cl

λ(b−a)/b+α+1−a
.

Thus from Lemma 1.2 and (2.5) we get

I2l,2 ≤
Cl‖f‖22

λ(b−a)/b+α−1−a
.

But

Ĩ2l = I2l,1 + I2l,2 ≤ C‖f‖22

(

l1/2

λα/2−a/b−a/2
+

l

λα−a/b−a

)

and α > a+ 2a/b (λ = 2l), therefore I
1/2
22 ≤

∑

l Ĩ
1/2
2l sums and we get

(2.6) I22 ≤ C‖f‖22.

Our proof rests on showing (1.1), that is,

(2.7) I1 + I2 ≤ C‖f‖22.

Because of (1.2) we see by Proposition 1.1 that

(2.8) I1 ≤ C‖f‖22.

By (1.4) and (2.6) it suffices to estimate I21. But by (1.5) and Proposition
1.3 we get

(2.9) I21 ≤ C‖f‖22.

Putting the estimates (2.6), (2.8) and (2.9) together, we get our result.

We obtain dual results to both Theorems 0.1 and 2.4. We shall work
through the case of Theorem 0.1 here. This time we consider the operator
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T ∗f(x) =

∞\
0

ϕ(y, x)ei(y
bγ1(x)+ymγ2(x))f(y) dy

and show that it maps L2 into itself. In fact, we get

Theorem 2.5. Let b > a ≥ 1, and assume that k(x, y) satisfies (0.2)–
(0.4). If b ≥ 2, b > m > 0, 1 ≤ m1 ≤ a, then

‖T ∗f‖2 ≤ C‖f‖2.

P r o o f. Just employ duality with Theorem 0.1, i.e., consider
∞\
0

g(x)Tf(x) dx =

∞\
0

dy f(y)

∞\
0

ϕ(x, y)ei(x
bγ1(y)+xmγ2(y))g(x) dx.

Then
∣

∣

∣

∞\
0

gTf dx
∣

∣

∣
=

∣

∣

∣

∞\
0

fT ∗g dy
∣

∣

∣
≤ ‖g‖2‖Tf‖2 ≤ C‖g‖2‖f‖2,

where we used Theorem 0.1 in the last step.
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