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1. Introduction. Let k be a field, and A be a connected finite-dimen-
sional hereditary k-algebra of tame representation type. For a description
of finite-dimensional hereditary k-algebras we refer to [DR2]. Let ModA
denote the category of all A-modules and modA the full subcategory of
A-modules of finite length. The global structure of the category of all A-
modules is well-known (see [DR1] and [R1]).

Let ComA be a set of indecomposable algebraically compact A-modules,
one from each isomorphism class. Let indA be the subset of elements of
ComA of finite length (since any finite length module is algebraically com-
pact, indA is just a complete set of indecomposable A-modules of finite
length).

If H is a class of maps in modA, let I(H) be the full subcategory of
all A-modules I with the following property: For any map h : M → M ′ in
H and any map f : M → I, there is f ′ : M ′ → I with f ′h = f . A full
subcategory of ModA is said to be definable provided it is of the form I(H)
for some class H of maps in modA; a full subcategory of ModA is definable
if and only if it is closed under products, direct limits and pure submodules
(see [CB], 2.3 and Lemma 1 of 2.1; we will use the Trondheim survey of
Crawley-Boevey [CB] as a general reference).

The subsets of ComA of the form I(H)∩ComA are said to be closed (or
Ziegler closed). It is obvious that the intersections of closed sets are again
closed, thus any subset X of ComA has a closure, which we will denote by
X (it is the intersection of all closed sets containing X ). The set ComA
together with its closed subsets is called the Ziegler spectrum of A.

The aim of this note is to provide a direct approach for determining all
closed subsets of ComA. The question has been investigated before by sev-
eral authors. The case D̃4 was considered by Baur [B]. Parts of the answer
can be found in an unpublished preprint of Prest [P1] and in the books
of Prest [P2] and Jensen–Lenzing [JL]. The recent work of Geisler [G] has
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solved the problem in the case of a quiver algebra; his (rather tedious) proof
is based on the inductive procedure of Donovan–Freislich [DF]. Prest [P3]
has announced an independent approach dealing with the general case. The
presentation given below was inspired by [G]; but to reduce the computations
presented there, we use the structure theory of the category of A-modules.

The elements of ComA are known (see for example [CB], Theorem 3.1).
First of all, there are the elements of indA, they are either preprojective,
regular, or preinjective. There are countably many preprojectives and count-
ably many preinjectives in indA. There is a set Ω which parametrizes the
so-called simple regular modules (these are modules which are not necessar-
ily simple, but they are simple objects in the subcategory of all “regular”
modules— note that this is an abelian category, so that the notion of “sim-
plicity” is defined). If k is finite, then Ω is countable, otherwise the cardinal-
ity of Ω is the same as the cardinality of k. For any simple regular module
S and any n ∈ N1, there is a unique indecomposable module S[n] which has
a filtration of length n such that all the factors are simple regular and such
that S = S[1] occurs as a submodule of S[n]; in this way, one obtains all the
regular modules in indA. The indecomposable regular modules may also be
labelled dually: For any simple regular module S and any n∈N1, we denote
by [n]S the unique indecomposable regular module which has a filtration of
length n with simple regular factors and which has S as a factor module.

For any simple regular module S, there is a chain of inclusions

S[1] ⊂ S[2] ⊂ S[3] ⊂ . . . ,

the union is indecomposable and is denoted by S[∞]. Similarly, there is a
chain of epimorphisms

[1]S ← [2]S ← [3]S ← . . . ,

the inverse limit is indecomposable and is denoted by Ŝ. A module of the
form S[∞] is called a Prüfer module, a module of the form Ŝ is called an adic

module (the module Ŝ itself is called the S-adic module, in the same way as
one speaks of the p-adic integers). All the Prüfer modules and all the adic
modules belong to ComA. There is just one additional module in ComA,
the so-called generic module G. In the terminology of [R1], G is the unique
indecomposable module which is torsionfree and divisible (a module X is
said to be torsionfree provided that Hom(S,X) = 0, and divisible provided
that Hom(X,S) = 0, for all S ∈ Ω).

Theorem. A subset X of ComA is closed if and only if the following

conditions are satisfied :

(i) If S is a simple regular A-module and if there are infinitely many

finite length modules X ∈ X with Hom(S,X) 6= 0, then S[∞] belongs to X .
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(i*) If S is a simple regular A-module and if there are infinitely many

finite length modules X ∈ X with Hom(X,S) 6= 0, then Ŝ belongs to X .
(ii) If there are infinitely many finite length modules in X or if there

exists at least one module in X which is not of finite length, then the generic

module belongs to X .

We see that the Ziegler closed subsets of ComA are related to the support
of the functors Hom(S,−) and Hom(−, S), where S is simple regular. These
functors have been considered before; in particular, we refer to the investiga-
tions of Geigle [Gg]. In [R2], the support q(S) of the functor Hom(S,−) was
studied in detail, in order to deal with one-point extensions. If one wants to
combine similar cases, it was proposed in [R2] to consider equivalence classes
called “patterns”, and some of these patterns have been exhibited there. All
the information needed in order to describe these patterns is contained in
the tables of [DR1]; this will be recalled in Section 6.

In Section 2, we will construct Prüfer modules in the closure of a given
subset X of ComA. The dual situation of dealing with adic modules will be
considered in Section 3; of course, one could also just refer to the so-called
elementary duality introduced by Herzog [H] (see also [K]) in order to obtain
dual assertions. Section 4 will show that a closed subset of ComA which does
not contain the generic module has to be a finite subset of indA. Again, these
arguments could be replaced by references to well-known facts: here one may
use the compactness of the Ziegler spectrum. The three Sections 2–4 show
that closed subsets of ComA have the properties (i), (i*) and (ii) stated in
the Theorem. Section 5 will show that also the converse is true: subsets of
ComA which have the properties (i), (i*) and (ii) are closed. Throughout
the paper, X will be a subset of ComA.

2. Which Prüfer modules belong to X? IfM is a set of modules,
we will denote the product

∏
M∈M M just by

∏
M; similarly,

⊕
M =⊕

M∈M M .

Proposition 1. Let X be an infinite subset of indA. Let S be a simple

regular A-module and assume that Hom(S,X) 6= 0 for all X ∈ X .

(a) If all modules in X are regular , then S[∞] is the union of a chain of

monomorphisms X1 → X2 → X3 → . . . with Xi ∈ X .
(b) If all modules in X are preinjective, then S[∞] is a direct summand

of the product
∏
X .

P r o o f o f (a). The only indecomposable regular modules X with
Hom(S,X) 6= 0 are (up to isomorphism) the modules S[n] with n ∈ N.
There are the inclusion maps

S[1] ⊂ S[2] ⊂ S[3] ⊂ . . . ,
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and the union is S[∞]. The modules Xi in X are of the form Xi = S[ti] and
we may assume that i < j implies ti < tj . It follows that the direct limit of
these modules Xi with respect to the inclusion maps is S[∞].

For the proof of (b), we will need the following lemma:

Lemma. Let S be simple regular , and n ∈ N. Almost all preinjective

modules X in indA have the following property : The kernel of any non-

injective map f : S[n]→ X contains S[1].

P r o o f. We denote the length of a module M by |M |. Let b = |S[n]|.
There are only finitely many preinjective modules X in indA with |X| ≤ b.
Any such module X has only finitely many successors. Let Q′ be the set
of all preinjective modules X in indA which have the following property:
if Y is an indecomposable preinjective module with Hom(Y,X) 6= 0, then
|Y | > b. Then almost all preinjective modules in indA belong toQ′. Assume
now that a module X ∈ Q′ is given and let f : S[n] → X be a map which
is not injective. Let Y be an indecomposable direct summand of the image
of f . Then |Y | ≤ b shows that Y cannot be preinjective, thus Y has to be
regular. This shows that the image of f is regular. Consequently, the kernel
of f is regular. But S[n] has just one regular submodule of regular length
1, namely S[1]. Thus, either S[1] is contained in the kernel of f or else f is
injective.

P r o o f o f (b). For every module X in X we choose a non-zero map

fX : S → X. Inductively, we obtain maps f
(n)
X : S[n] → X such that the

restriction of f
(n)
X to S[n−1] is f

(n−1)
X . Namely, assume that f

(n−1)
X has been

constructed. Note that the cokernel C of the inclusion map S[n− 1]→ S[n]
is regular, thus Ext1(C,X) = 0 due to the fact that X is preinjective. But

the vanishing of Ext1(C,X) implies that the map f
(n−1)
X can be extended to

S[n]. This yields the desired map f (n) : S[n]→ X with restriction to S[n−1]

being equal to f
(n−1)
X . We obtain in this way a map f

(∞)
X : S[∞]→ X such

that the restriction to S[1] is fX . Since fX is non-zero, we see in particular

that the restriction of f
(∞)
X to S[1] is non-zero.

Consider now the map g = (f
(∞)
X )X : S[∞] →

∏
X . We claim that g

is injective and that the image of g intersects
⊕
X in zero. Indeed, assume

that some element x∈S[∞] is mapped under g to
⊕
X . Note that x belongs

to some S[n] with n ∈ N. It follows that f
(∞)
X (x) = 0 for almost all X. But

f
(∞)
X (x) = f

(n)
X (x), and f

(n)
X is injective for almost all n (since the kernel of

f
(n)
X does not contain S[1]). This yields a contradiction.

According to [R1, 3.7], the submodule
⊕
X of

∏
X is a direct summand

and the corresponding complement Y has no non-zero preinjective direct
summand. As we have seen, S[∞] embeds into Y . But S[∞] is injective in
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the category of all modules without non-zero preinjective direct summands
[R1, 4.7]. This shows that S[∞] is a direct summand of Y and therefore of∏
X . This completes the proof.

3. Which adic modules belong to X?

Proposition 2. Let X be an infinite subset of indA. Let S be a simple

regular A-module and assume that Hom(X,S) 6= 0 for all X ∈ X .

(a) If all modules in X are regular , then Ŝ is the inverse image of a

chain of epimorphisms . . .→ X3 → X2 → X1 with Xi ∈ X .

(b) If all modules in X are preprojective, then Ŝ belongs to the closure X .

Remark. In (b) one may show that Ŝ is actually the direct limit of a
filtered set of homomorphisms between modules in X . Since the k-dimension
of Ŝ is uncountable, one cannot obtain Ŝ as the direct limit of a chain of
maps in X .

P r o o f o f (a). The regular modules X with Hom(X,S) 6= 0 are (up to
isomorphism) the modules [n]S with n ∈ N. There is a chain of epimorphisms

[1]S ← [2]S ← [3]S ← . . . ,

and its inverse limit is Ŝ. The modules Xi in X are of the form Xi = [ti]S
and we may assume that i < j implies ti < tj . Thus we have inside X a
chain of epimorphisms

[t1]S ← [t2]S ← [t3]S ← . . . ,

with inverse limit Ŝ.

Before we start with the proof of (b), let us introduce the following
notation: Given any k-space V , let DV = Hom(V, k) be the dual space.
Of course, if V is a left A-module, then DV is a right A-module, or what
is the same, a left Ao-module, where Ao is the opposite algebra. With A
also Ao is a finite-dimensional hereditary k-algebra of tame representation
type. If M is a finite-dimensional indecomposable A-module, then DM is an
indecomposable Ao-module of the same dimension, and M is preprojective,
or regular, or preinjective if and only if DM is preinjective, or regular, or
preprojective, respectively. Also, if S is a simple regular A-module, then

DS is a simple regular Ao-module, and D(S[∞]) = D̂S.

P r o o f o f (b). By assumption, there is given an infinite set X of pre-
projective A-modules X with Hom(X,S) 6= 0. Thus Y = {DX | X ∈ X}
is an infinite set of preinjective Ao-modules Y with Hom(DS, Y ) 6= 0. Ac-
cording to Section 2, the module (DS)[∞] is a direct summand of

∏
Y.

Dualizing, we see that Ŝ = D((DS)[∞]) is a direct summand of D(
∏
Y).
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The following lemma shows that the latter module belongs to X , thus also
Ŝ belongs to X .

Lemma. Let H be a class of maps in modA. Let X be a set of finite-

dimensional A-modules in I(H). Let DX be the set of all modules DX with

X ∈ X . Then D(
∏

DX ) belongs to I(H).

P r o o f. Let Y be an Ao-module. The adjunction formula shows that the
A-module DY belongs to I(H) if and only if all the k-linear maps 1Y ⊗A h
with h ∈ H are injective.

Let h : M → M ′ be a map in H. If X belongs to X , we can apply this
remark to Y = DX and see that the map 1DX ⊗A h is injective. Since a
product of injective maps is injective, it follows that the map

∏

X∈X

1DX ⊗A h :
∏

X∈X

DX ⊗A M →
∏

X∈X

DX ⊗A M ′

is injective. Since the modulesM,M ′ are finite-dimensional, the tensor prod-
ucts −⊗AM and −⊗AM ′ commute with products, thus the displayed map
is just

(∏
DX

)
⊗A h. Now we use the starting remark again, this time for

Y =
∏

DX . It follows that DY belongs to I(H).

4. When does the generic module belong to X?

Proposition 3. Let S be simple regular. The generic module is a direct

summand of any infinite power of S[∞].

The proof is easy; see [R4]. There, it is shown that any infinite power of
S[∞] is a direct sum of copies of S[∞] and of copies of the generic module.

Note that any non-zero endomorphism of an adic module is injective,
and there are such endomorphisms which are not surjective.

Proposition 4. Let S be simple regular. Let φ : Ŝ → Ŝ be any homo-

morphism which is injective but not surjective. The direct limit L of the

chain of maps

Ŝ
φ
→ Ŝ

φ
→ Ŝ

φ
→ . . .

is a direct sum of copies of the generic module.

P r o o f. We show that L is torsionfree and divisible and use [R1, 5.4].
As a union of torsionfree modules, L is torsionfree. There is precisely one
simple regular module T with Ext1(T, Ŝ) 6= 0, namely T = τ−1S, where τ
is the Auslander–Reiten translation, and the induced map Ext1(T, φ) is the
zero map (note that T is isomorphic to a submodule of the cokernel of φ).

If X is a regular module in indA, then X = S[n] for some simple reg-
ular module S and some n ≥ 1. The module S = S[1] is called the regular

socle of X.



THE ZIEGLER SPECTRUM 111

Proposition 5. Let X be an infinite set of regular modules of indA,
with pairwise different regular socles. Then the module

∏
X/

⊕
X is a direct

sum of copies of G.

P r o o f. We consider Z(X ) =
∏
X/

⊕
X . Note that for any cofinite

subset X ′ of X , the modules Z(X ) and Z(X ′) are isomorphic. Namely, if
X1, . . . ,Xn are the modules of X which do not belong to X ′, then

∏
X =∏

X ′ ⊕
⊕n

i=1Xi, and similarly,
⊕
X =

⊕
X ′ ⊕

⊕n

i=1 Xi.

Let S be simple regular. There are only finitely many modules X ∈ X
with Hom(T,X) 6= 0, where T is in the τ -orbit of S. Let X ′ be obtained
from X by removing these modules. Then all the groups Hom(S,

∏
X ′),

Ext1(S,
⊕
X ′) and Ext1(S,

∏
X ′) are zero. The vanishing of these groups

implies that Hom(S,Z(X ′)) = 0 = Ext1(S,
∏
X ′) (using the long exact

sequence 0→
⊕
X ′ →

∏
X ′ → Z(X ′)→ 0).

Thus Z(X ) is torsionfree and divisible, and therefore a direct sum of
copies of the generic module G (see [R1, 5.4]).

Corollary. Let X be an infinite subset of ComA. Then the generic

module G belongs to X .

P r o o f. If X contains infinitely many preinjectives, then it contains al-
most all Prüfer modules. Dually, if it contains infinitely many preprojectives,
then it contains almost all adic modules. If it contains infinitely many regu-
lar modules of the form S[n] with fixed S, then it contains the Prüfer module

S[∞] (as well as the adic module Ŝ). Propositions 3 and 4 show that in all
these cases, X contains the generic module G. Thus, we may assume that
X contains infinitely many regular modules S[nS] with pairwise different
modules S. According to Proposition 5, the module G is a direct summand
of the module L =

∏
X/

⊕
X . However, L can be written as the direct

limit of a chain of maps
Y1 → Y2 → Y3 → . . . ,

where the modules Yi are products of elements in X (see the following
lemma). Since any definable subcategory is closed under products, direct
limits and direct summands, we conclude that G belongs to X .

Here is the missing argument, its proof is straightforward:

Lemma. Let X = {X1,X2, . . .} be an infinite sequence of modules. For

t ∈ N, let Xt = {Xi | i ≥ t}. Then there are canonical epimorphisms
∏
X1 →

∏
X2 →

∏
X3 → . . . ,

and the direct limit is
∏
X/

⊕
X .

Remark. Proposition 5 has the following consequence: Let X be an

infinite set of regular modules of indA, with pairwise different regular socles.
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Then
⊕
X is not a direct summand of

∏
X . Namely, the generic module

G does not embed into
∏
X , since Hom(G,X) = 0 for all modules X ∈ X .

5. Proof of the Theorem. Consider a subset X of ComA. First, let us
assume that X is closed. If X is an infinite set, then we have seen in Section 4
that the generic module G belongs to X . If X contains at least one Prüfer
module or an adic module, then G is contained in X by Propositions 3
and 4. This shows that the condition (ii) is satisfied. Now, let S be a simple
regular module. If there are infinitely many finite length modules X ∈ X
with Hom(S,X) 6= 0, then S[∞] belongs to X by Proposition 1. If there are

infinitely many finite length modules X ∈ X with Hom(X,S) 6= 0, then Ŝ
belongs to X by Proposition 2. This shows that the conditions (i) and (i*)
are satisfied.

Conversely, assume that X satisfies the conditions (i), (i*) and (ii). We
have to show that X is closed. We will use the following assertion: if Y is a
closed subset of ComA and X is an element of indA, then Y ∪{X} is closed
(this follows from the fact that the closed sets are those of a topology [CB,
2.5] and that for any element X ∈ indA, the set {X} is closed [CB, 2.5]).
In particular, if X is a finite subset of indA, then X is closed.

Thus, we may assume that X is not a finite subset of indA. Note that
condition (ii) shows that the generic module belongs to X . Also, one knows
that the closure X does not contain any additional finite-dimensional inde-
composables [CB, Proposition 2.3]. Thus, it remains to consider the Prüfer
modules and the adic modules. We show the following: if such a module
belongs to X , then it belongs already to X .

First, assume that the Prüfer module S[∞] does not belong to X . Ac-
cording to condition (i), we see that there are only finitely many modules
X1, . . . ,Xn in X with Hom(S,Xi) 6= 0. Let X ′ be obtained from X by delet-
ing these modules X1, . . . ,Xn. The set C of all modules C in ComA such
that Hom(S,C) = 0 is a closed subset of ComA, and by assumption, X ′ is
contained in C. We have

X = X ′ ∪ {X1, . . . ,Xn} ⊆ C ∪ {X1, . . . ,Xn}.

The latter set is closed, but does not contain S[∞]. Therefore, S[∞] is not
contained in the closure of X .

We argue in the same way for the adic module Ŝ. We assume that Ŝ
does not belong to X . Then, according to condition (i*), there are only
finitely many modules X1, . . . ,Xn in X with Hom(Xi, S) 6= 0. Again, let X ′

be obtained from X by deleting these modules. The set C of all modules
C in ComA such that Hom(C,S) = 0 is a closed subset of ComA, and

by assumption, X ′ is contained in C, whereas Ŝ is not contained in C ∪
{X1, . . . ,Xn}. This shows that Ŝ is not contained in the closure of X .
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6. The patterns. Our description of the Ziegler spectrum refers to the
support of the functors Hom(S,−) and Hom(−, S), where S is simple reg-
ular. In this final section, we are going to collect known results concerning
these functors and to derive consequences for the Ziegler spectrum. We de-
note by q(S) the set of modules X ∈ indA with Hom(S,X) 6= 0; similarly,
let p(S) be the set of modules X ∈ indA with Hom(X,S) 6= 0.

Proposition 6. Let S be a simple regular A-module. Let X be a closed

subset of ComA. If X contains infinitely many preinjective modules, then
there is t ∈ N such that X contains the Prüfer module T [∞], where T = τ tS.
If X contains infinitely many preprojective modules, then there is t ∈ N such

that X contains the adic module T̂ , where T = τ tS.

P r o o f. The module S is τ -periodic, say with period m = m(S). Let
Si = τ i(S). Then

⋃
1≤i≤m q(Si) contains all preinjective modules in indA.

If X contains infinitely many preinjective modules, then one of the sets
X ∩ q(Si) has to be infinite and then Si[∞] has to belong to X . The second
assertion follows by duality.

Corollary. Let n(A) be the number of isomorphism classes of simple

A-modules. Let X be a closed subset of ComA. If X contains infinitely

many preinjective modules, then all but at most n(A) − 2 Prüfer modules

belong to X . If X contains infinitely many preprojective modules, then all

but at most n(A)− 2 adic modules belong to X .

P r o o f. This is an immediate consequence of Proposition 6, using [DR1],
Theorem 4.1.

Let S be a simple regular A-module. The set q(S) may be considered as
the set of vertices of a quiver: given two modules X,Y in q(S), we draw an
arrow X → Y provided there is an irreducible map f : X → Y such that
Hom(S, f) 6= 0. These quivers (or more precisely, the equivalence classes of
related vector space categories under a suitable equivalence relation) have
been considered in [R2] since they are of interest when dealing with one-point
extensions; they have been called “patterns”. Actually, in the setting of [R2],
it was necessary to mark also the dimension of the k-space Hom(S,X). On
the other hand, only those patterns which yield tame one-point extensions
have been exhibited there. As the Theorem shows, here we are only inter-
ested in the support of the patterns, thus we only have to keep track whether
Hom(S,X) is zero or not.

The calculation of patterns has been described in Section 3.3 of [R2] in
detail. We recall the main ideas: Let X belong to q(S). Then X is either
regular or preinjective. The regular modules in q(S) always form a “ray”:
we deal with the modules S[n], where n ∈ N1, and the corresponding part of
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the quiver q(S) is a linearly oriented quiver of type A∞, it looks as follows:

◦ → ◦ → ◦ → . . .

Now assume that X is preinjective, say X = τ tI(E), where t ≥ 0 is an
integer, and I(E) is the injective envelope of the simple A-module E. Note
that

Hom(S,X) = Hom(S, τ tI(E)) ≃ Hom(τ−tS, I(E)).

Of course, given any A-module Y , we have Hom(Y, I(E)) 6= 0 if and only
if E occurs as a composition factor of Y . Thus, in order to decide whether
Hom(S,X) is non-zero or zero, we only have to check whether E is a com-
position factor of τ−tS or not. Thus, for a fixed simple regular module S,
we have to display the composition factors of the τ -translates of S.

In case τS is isomorphic to S, all simple A-modules occur as composition

factors of S, thus Hom(S,X) 6= 0 for any indecomposable preinjective mod-
ule X. Consider now the case where τS is not isomorphic to S; in this case S
is said to be non-homogeneous. There are at most n(A)+1 non-homogeneous
simple regular modules. Of course, these modules are τ -periodic (with pe-
riod bounded by n(A)− 1). Note that we deal with the composition factors
of just a finite number of modules. The tables in [DR1] provide all the com-
position factors of the non-homogeneous simple regular modules, thus they
provide all the necessary information. For k an algebraically closed field, the
same information is presented in the appendix of [R3], pages 363 and 364,
and some of the corresponding quivers can be found in [R2], pages 253–255.

For example, consider the representations of the quiver of type Ẽ8 with
the so-called subspace orientation:

and the simple regular module S with dimension vector

1
0 1 1 1 0 0 0 0

The corresponding pattern q(S) looks as follows (with arrows pointing from
left to right):
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