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NORM ESTIMATES OF DISCRETE SCHRÖDINGER OPERATORS

BY

RYSZARD S Z W A R C (WROC LAW)

Harper’s operator is defined on ℓ2(Z) by

Hθξ(n) = ξ(n+ 1) + ξ(n− 1) + 2 cos nθ ξ(n),

where θ∈ [0, π]. We show that the norm of ‖Hθ‖ is less than or equal to 2
√
2

for π/2 ≤ θ ≤ π. This solves a conjecture stated in [1]. A general formula
for estimating the norm of self-adjoint tridiagonal infinite matrices is also
derived.

1. Introduction. This paper is an appendix to [1]. The authors consid-
ered there a random walk on the discrete Heisenberg group. They reduced
the problem of determining the spectrum of the corresponding transition op-
erator to estimating the norm of the Harper operator, well known in mathe-
matical physics (see the references in [1]). This is a discrete Schrödinger op-
erator which acts on square summable doubly infinite sequences {ξ(n)}∞n=−∞

according to the rule

(1) Hθξ(n) = ξ(n+ 1) + ξ(n − 1) + 2 cos nθ ξ(n),

where θ is a fixed angle from the interval [0, π]. The authors of [1] were
satisfied with the estimate

(2) ‖Hθ‖ ≤ 2(1 +
√
2 + cos θ).

This estimate is interesting only in the interval [π/2, π] because elsewhere
the obvious bound by 4 is sharper. The authors conjectured, supported by
numerical evidence, that in [π/2, π] the estimate 2

√
2 holds. In this note we

prove this conjecture by introducing a method of estimating the norms of
tridiagonal operators, which originates in the theory of orthogonal polyno-
mials.
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2. Norm estimates. We start with a general method of estimating the
norms of self-adjoint tridiagonal operators. The method goes back to the
theory of orthogonal polynomials, where it is used to localize the supports
of orthogonality measures (see [2, Theorem I.9.2]).

Let J be a linear operator defined on ℓ2(Z) by

(3) Jξ(n) = λn+1ξ(n+ 1) + βnξ(n) + λnξ(n− 1),

where βn ∈ R and λn > 0 are fixed bounded sequences.

Proposition 1. Let M > max βn and m < minβn. Assume also that

there exist sequences 0 < gn < 1 and 0 < hn < 1 such that

λ2
n

(M − βn−1)(M − βn)
≤ gn(1− gn−1),(4)

λ2
n

(m− βn−1)(m− βn)
≤ hn(1 − hn−1).(5)

Then mI ≤ J ≤ MI, i.e. the spectrum of J is contained in [m,M ].

P r o o f. Let ξ(0) = 1 and define ξ(n) recursively for n 6= 0 by

λnξ(n− 1)

(M − βn)ξ(n)
= gn.

Then ξ(n) > 0. By (3) and (4) we get

Jξ(n) ≤ Mξ(n).

Let β = −min βn. Then β + βn ≥ 0 for each n. We have

(J + βI)ξ(n) ≤ (M + β)ξ(n).

The matrix J+βI has nonnegative entries and the sequence ξ(n) is positive.
Thus by Schur’s test (see [3, Theorem 5.2]) we obtain

‖J + βI‖ ≤ M + β.

In particular, J + βI ≤ (M + β)I. This shows the upper estimate of the
spectrum of J .

The lower estimate can be obtained from the upper estimate of the
matrix −J . But this matrix has negative entries on the upper and lower
diagonals. So instead of −J we consider the unitarily equivalent matrix
J ′ = −UJU−1, where Uξ(n) = (−1)nξ(n). The operator J ′ acts as follows:

J ′ξ(n) = λn+1ξ(n+ 1)− βnξ(n) + λnξ(n− 1).

Observe that assumption (4) of Proposition 1 is satisfied for J ′ with M =
−m. Hence by the first part of the proof we get J ′ ≤ −mI. Since J is
similar to −J ′ we get J ≥ mI.

The converse of Proposition 1 also holds. In fact, we have the following.
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Proposition 2. Assume that the operator J in (3) satisfies mI ≤ J
≤ MI. Then M > maxβn and m < min βn and there exist sequences

0 < gn < 1 and 0 < hn < 1 such that (4) and (5) hold.

P r o o f. We focus on showing (4), since (5) can be proved analogously
by considering the operator J ′ introduced in the proof of Proposition 1. Let
en denote the sequence whose terms are all zero except the nth term which
is 1. From J ≤ MI we get

(6) βn = (Jen, en) ≤ M(en, en) = M.

We claim that the inequality in (6) is strict for each n. Otherwise we would
have Jen = Men. This is impossible, because Jen(n+1) = λn+1 6= 0. Thus
we have proved the first part of Proposition 2.

In the remaining part we will make use of the following lemma, whose
origins lie in the Frobenius–Perron method in the theory of finite stochastic
matrices (see [4, Lemma 9.2.2]).

Lemma 1. Le A = {a(i, j)} be an N×N symmetric matrix with nonneg-

ative entries such that a(i, i+1) > 0 and a(i+1, i) > 0 for i = 1, . . . , N−1.
Let M ≥ ‖A‖, where ‖A‖ denotes the operator norm with respect to the

ℓ2-norm on R
N . There exists a nonzero vector ξ ∈ R

N with positive coordi-

nates such that

Aξ(n) ≤ Mξ(n), 1 ≤ n ≤ N.

P r o o f. Assume M = ‖A‖. Then M or −M is an eigenvalue of A. Thus
there is ξ 6= 0 such that

Aξ = ±Mξ.

Taking absolute values of both sides gives

(7) A|ξ| ≥ M |ξ|.
We claim that equality holds in (7). If not, we would have

M(|ξ|, |ξ|) ≥ (A|ξ|, |ξ|) > M(|ξ|, |ξ|),
a contradiction. Thus

A|ξ| = M |ξ|.
We will show that the coordinates ξ(n) are all nonzero. Assume that
ξ(n)=0. Then

a(n− 1, n)|ξ(n − 1)| + a(n + 1, n)|ξ(n + 1)| ≤ M |ξ(n)| = 0.

Hence ξ(n ± 1) = 0. Repeating this reasoning we finally get ξ(m) = 0 for
all m = 1, . . . , N , which contradicts ξ 6= 0. This completes the proof of
Lemma 1.

Let us return to the proof of Proposition 2. Let β = −minβn. Then
the matrix A = J + βI has nonnegative entries and A ≤ (M + β)I. Let
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PN denote the projection onto a (2N + 1)-dimensional subspace of ℓ2(Z),
defined by

PN ξ =

N
∑

n=−N

ξ(n)en.

Let AN denote the truncated matrix PNAPN . It is clear that

AN ≤ A ≤ (M + β)I.

By Lemma 1 there exist sequences ξN ∈ R
2N+1 with positive entries such

that

(8) AN ξN(n) ≤ (M + β)ξN (n), −N ≤ n ≤ N.

Since the entries of ξN are positive we may assume, by multiplying by a
positive constant if necessary, that ξN (0) = 1. We may also assume that (8)
holds for all n ∈ Z upon extending ξN by 0 for |n| > N .

We show by induction that for any fixed n ∈ Z the sequence of values
N 7→ ξN (n) is bounded. For n = 0 it is constantly 1. Let n = ±1. Then by
(8) we have

ANξN (0) = λ1ξN (1) + (β0 + β)ξN (0) + λ0ξN (−1) ≤ MξN (0).

Since β1 + β ≥ 0 we get

λ1ξN (1) + λ0ξN(−1) ≤ M.

Since λ±1 6= 0, we conclude that ξN (±1) are bounded. Similarly the induc-
tion step follows from the inequalities

λn+1ξN (n+ 1) ≤ MξN (n), λnξN (n− 1) ≤ MξN (n).

Now, using Helly’s selection principle we can choose a subsequence Nk

of N ’s for which all sequences k 7→ ξNk
(n) are convergent. Let

ξ(n) = lim
k

ξNk
(n).

By (8) we get

Aξ(n) = (J + βI)ξ(n) ≤ (M + β)ξ(n).

We have ξ(n) ≥ 0 and ξ(0) = 1. As in the proof of Lemma 1 we can derive
that ξ(n) > 0 because the matrix J +βI has nonnegative entries. Hence we
have constructed a positive sequence ξ(n) such that

Jξ(n) ≤ Mξ(n), n ∈ Z.

Now by taking

gn =
λnξ(n− 1)

(M − βn)ξ(n)

we get (4).
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Let us turn to the Harper operator Hθ, i.e. λn ≡ 1 and βn = 2cos nθ. We
will focus on the upper estimate M . It will follow from the proof that the
lower estimate is −M in this case. This also follows from the fact that the
spectrum of Hθ is symmetric about the origin (see [1, comments before (2)]).

Let M > 2 be the smallest number such that

(9)
1

(M − 2 cos (n− 1)θ)(M − 2 cosnθ)
≤ 1

4
=

1

2

(

1− 1

2

)

.

By Proposition 1 we get Hθ≤MI. The condition (9) gives the same estimate
as in Proposition 4 of [1]. To get the sharper estimate 2

√
2 we need a better

choice of gn.

Theorem 1. Let π/2 ≤ θ ≤ π. Then ‖Hθ‖ ≤ 2
√
2.

P r o o f. We have to find an appropriate gn in order to satisfy (4) with
M = 2

√
2. First we look for gn in the form

gn =
1

2
− αn

2
√
2− 2 cos nθ

.

Now assumption (4) can be transformed into

(10) (
√
2− cosnθ − αn)(

√
2− cos (n− 1)θ + αn−1) ≥ 1.

So the problem reduces to finding αn such that (10) is satisfied and both
the factors are positive. We first look for αn in the form

(11) αn = γn − sinnθ cot
θ

2
.

Then

αn + cosnθ = γn − sin (2n − 1) θ
2

sin θ

2

,

αn−1 − cos (n− 1)θ = γn−1 +
sin (2n − 1) θ

2

sin θ

2

.

Let θ = π − 2ϕ. Then 0 ≤ ϕ ≤ π/4. Moreover,

αn + cosnθ = γn + sn,

αn − cos (n− 1)θ = γn−1 − sn,

where

(12) sn = (−1)n+1 cos (2n− 1)ϕ

cosϕ
.

Now (10) takes the form

(13) (
√
2− sn − γn)(

√
2 + sn + γn−1) ≥ 1.

The following fact, which follows obviously from (12), will be essential.

Fact 1. If |sn| > 1 then |sn±1| < 1 for 0 ≤ ϕ ≤ π/4.
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Now we are going to define the sequence γn. First we take care of those
n for which |sn| > 1 or |sn+1| > 1. If sn > 1 we put

γn =
1− s2n√
2 + sn

.

If sn+1 < −1 we put

γn =
1− s2

n+1√
2− sn+1

.

By Fact 1 we do not run into contradiction, because the indices with |sn| > 1
must be at least at distance 2 from one another if 0 ≤ ϕ ≤ π/4. Next we
put γn = 0 for all n for which γn has not been defined yet. Now we have to
check if (13) is satisfied. In doing this we will use another obvious fact.

Fact 2. Let |x| < 1 < y and x2 + y2 ≤ 2. Then

y2 − 1√
2 + y

≤ 1− x2

√
2 + x

.

Lemma 2. s2n + s2n+1 ≤ 2.

P r o o f. We have

s2
n
+ s2

n+1 =
cos2(2n− 1)ϕ

cos2 ϕ
+

cos2(2n + 1)ϕ

cos2 ϕ

=
2 + cos (2n− 1)2ϕ + cos (2n + 1)2ϕ

2 cos2 ϕ
=

1 + cos 2ϕ cos 4nϕ

cos2 ϕ

≤ 1 + cos 2ϕ

cos2 ϕ
= 2.

We return to the proof of (13). We consider four cases.

(i) γn−1 = γn = 0. Then |sn| ≤ 1. Therefore

(
√
2− sn − γn)(

√
2 + sn + γn−1) = 2− s2

n
≥ 1.

(ii) γn−1 = 0, γn 6= 0. This has two subcases.

(a) sn > 1. Then

(
√
2− sn − γn)(

√
2 + sn + γn−1) =

(√
2− sn − 1− s2

n√
2 + sn

)

(
√
2 + sn) = 1.

(b) sn+1 < −1. By Fact 1 we have |sn| < 1. Therefore

(
√
2− sn − γn)(

√
2 + sn + γn−1) =

(√
2− sn − 1− s2n+1√

2− sn+1

)

(
√
2 + sn)

≥ (
√
2− sn)(

√
2 + sn) = 2− s2

n
≥ 1.

(iii) γn−1 6= 0, γn = 0. This also splits in two subcases.
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(a) sn−1 > 1. Then |sn| < 1 and

(
√
2− sn − γn)(

√
2 + sn + γn−1) = (

√
2− sn)

(√
2 + sn +

1− s2n−1√
2 + sn−1

)

.

This is greater than 1 if

s2
n−1 − 1√
2 + sn−1

≤ 1− s2
n√

2− sn
.

The last inequality follows from Fact 2 and Lemma 1.
(b) sn < −1. Then

(
√
2− sn − γn)(

√
2 + sn + γn−1) = (

√
2− sn)

(√
2 + sn +

1− s2
n√

2− sn

)

= 1.

(iv) γn−1 6= 0, γn 6= 0. By Fact 1 this is possible only when sn−1 > 1,
|sn| < 1 and sn+1 < −1. By Fact 2 and Lemma 1 we have

s2n−1 − 1√
2 + sn−1

≤ 1− s2n√
2− sn

.

Hence

(
√
2− sn − γn)(

√
2 + sn + γn−1)

=

(√
2− sn +

s2
n+1 − 1√
2− sn+1

)(√
2 + sn +

1− s2
n−1√

2 + sn−1

)

≥
(√

2− sn +
s2
n+1 − 1√
2− sn+1

)(√
2 + sn − 1− s2

n√
2− sn

)

= 1 +
s2
n+1 − 1

(
√
2− sn)(

√
2− sn+1)

≥ 1.

Remark 1. Taking γn ≡ 0 in (13) gives

‖Hθ‖ ≤ 2

√

1 + sin−2 θ

2
.

Let us try to determine the smallest positive M such that (9) holds. By
solving the quadratic inequality generated by (9) we see that

M ≥ 2 cos
θ

2
cos (2n + 1)

θ

2
+ 2

√

1 + sin2
θ

2
sin2(2n + 1)

θ

2
.

Let a = sin2 θ

2
and x = sin2(2n+ 1) θ

2
. Then it suffices that

M = 2max{
√
1− a

√
1− x+

√
1 + ax | 0 ≤ x ≤ 1}.

By easy calculus the maximum is attained at x = 0 or at x = a − a−1 + 1
according to whether a ≤ (

√
5 − 1)/2 or a > (

√
5 − 1)/2. Summarizing we

get
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(14) ‖Hθ‖ ≤ M =

{

2 + 2 cos θ

2
if sin2 θ

2
≤ (

√
5− 1)/2,

2
√

1 + sin−2 θ

2
if sin2 θ

2
≥ (

√
5− 1)/2.

Now, combining this with Theorem 1 and the fact that θ = π/2 falls into
the first case of formula (14), gives

‖Hθ‖ ≤
{

2 + 2 cos θ

2
if 0 ≤ θ ≤ π/2,

2
√
2 if π/2 ≤ θ ≤ π.

Remark 2. Proposition 2 can be used to show that the estimate 2
√
2

is sharp for the endpoint π, which has also been proved in [1] by different
methods. Indeed, assume that ‖Hπ‖ ≤ M . Then there exist 0 < gn < 1
such that

1

(M − 2)(M + 2)
≤ gn(1− gn−1).

Assume for contradiction that M2 < 8. Then
1

4
<

1

(M − 2)(M + 2)
≤ gn(1− gn−1).

One can easily check that the sequence gn is increasing. Let g denote its
limit. Then

1

4
<

1

(M − 2)(M + 2)
≤ g(1 − g) ≤ 1

4
.

This is a contradiction. Hence M ≥ 2
√
2.
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