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HEREDITARILY WEAKLY CONFLUENT
INDUCED MAPPINGS ARE HOMEOMORPHISMS

BY

JANUSZ J. C H A R A T O N I K AND

W lODZIMIERZ J. C H A R A T O N I K (WROC lAW AND MÉXICO, D.F.)

For a given mapping f between continua we consider the induced map-
pings between the corresponding hyperspaces of closed subsets or of subcon-
tinua. It is shown that if either of the two induced mappings is hereditarily
weakly confluent (or hereditarily confluent, or hereditarily monotone, or
atomic), then f is a homeomorphism, and consequently so are both the in-
duced mappings. Similar results are obtained for mappings between cones
over the domain and over the range continua.

1. Introduction. For a compact metric space X we denote by 2X and
C(X) the hyperspaces of all nonempty closed and of all nonempty closed
connected subsets of X, respectively. Given a mapping f : X → Y between
continua, we let 2f : 2X → 2Y and C(f) : C(X) → C(Y ) denote the induced
mappings. Let Mi, where i ∈ {1, 2, 3}, be some three classes of mappings
between continua. A general problem is to find all interrelations between
the following three statements:

(1.1) f ∈ M1;
(1.2) C(f) ∈ M2;
(1.3) 2f ∈ M3.

For particular results concerning this problem for various classes Mi of map-
pings like open, monotone, confluent and some others, see [2], [3], [5]–[10],
[12]. In the present paper we prove that if either of the two induced mappings
is atomic, or hereditarily monotone, or hereditarily confluent, or hereditar-
ily weakly confluent, then f is a homeomorphism (and consequently the
induced mappings are also homeomorphisms). The final part of the paper
deals with mappings between cones over continua X and Y . Namely, if
(instead of the induced mappings between hyperspaces) a mapping between
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cones over the domain and over the range continua is considered, then the
same conclusion is true when the mapping is either hereditarily joining or
hereditarily atriodic.

2. Preliminaries. All spaces considered in this paper are assumed to
be metric. A mapping means a continuous function. A continuum means a
compact connected space. Given a continuum X with a metric d, we let 2X

denote the hyperspace of all nonempty closed subsets of X equipped with
the Hausdorff metric H defined by

H(A,B) = max{sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}}
(equivalently: with the Vietoris topology; see e.g. [12, (0.1), p. 1 and (0.12),
p. 10]). Further, we denote by C(X) the hyperspace of all subcontinua of
X, i.e., of all connected elements of 2X , and by F1(X) the hyperspace of the
singletons of X. The reader is referred to Nadler’s book [12] for information
on the structure of the hyperspaces. In particular, the following facts are
well known (see [12, Theorem (1.13), p. 65]).

2.1. Fact. For each continuum X the hyperspaces 2X and C(X) are
arcwise connected.

2.2. Fact. For each continuum X the hyperspace C(X) is a subcontin-
uum of 2X .

The next property of hyperspaces is a consequence of the definitions.

2.3. Proposition. Let K be a nonempty closed subset of a continuum
X. Then 2K ⊂ 2X and C(K) ⊂ C(X).

By an order arc in 2X we mean an arc Φ in 2X such that if A,B ∈ Φ,
then either A ⊂ B or B ⊂ A. The following facts are known (see [12,
Theorem (1.8), p. 59 and Lemma (1.11), p. 64]).

2.4. Fact. Let A,B ∈ 2X with A 6= B. Then there exists an order arc in
2X from A to B if and only if A ⊂ B and each component of B intersects A.

2.5. Fact. If an order arc Φ in 2X begins with A ∈ C(X), then Φ ⊂
C(X).

Given a mapping f : X → Y between continua, we consider the induced
mappings 2f : 2X → 2Y and C(f) : C(X) → C(Y ) defined by

2f (A) = f(A) for A ∈ 2X , C(f)(A) = f(A) for A ∈ C(X).

Thus, by Fact 2.2, the following is obvious.

2.6. Fact. For any continua X and Y and for every mapping f : X → Y
we have 2f |C(X) = C(f).

The proof of the following fact is straightforward.
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2.7. Fact. Let f : X → Y be a mapping between continua. If K is a
nonempty subcontinuum of X, then 2f |K =2f |2K and C(f |K)=C(f)|C(K).

3. Some hereditary classes of mappings. Given a class M of
mappings between continua, a mapping f : X → Y between continua is
said to be hereditarily M provided that for each subcontinuum K of X the
partial mapping f |K : K → f(K) ⊂ Y is in M.

Recall that a mapping f : X → Y between continua is said to be mono-
tone if the inverse image of each point of Y is connected. It is known that
if f is monotone, then so is C(f) (see [10, Theorem 1.1, p. 121]; compare
[6, Theorem 3.3, p. 4]). Therefore, as a consequence of Proposition 2.3 and
Fact 2.7 we have the following result.

3.1. Proposition. If a surjective mapping f : X → Y between continua
is hereditarily monotone, then for each subcontinuum K of X the partial
induced mapping

C(f)|C(K) : C(K) → C(f)(C(K)) ⊂ C(Y )

is monotone.

A natural question arises about possible inverse implications, that is,
about implications from the hereditary monotonicity of either 2f or C(f) to
properties of f . A partial answer to this question is known. Namely, under
an additional assumption that C(f) is atomic, it can be deduced that f
must be a homeomorphism (see [5, p. 2]). However, a much stronger result
can be obtained.

Recall that a mapping f : X → Y from a continuum X onto Y is
said to be atomic provided that, for each subcontinuum K of X, either
f(K) is degenerate, or f−1(f(K)) = K. This notion was introduced by
R. D. Anderson [1] to describe special decompositions of continua. Soon,
atomic mappings turned out to be important tools in continuum theory and
proved to be interesting in themselves; several properties of these mappings
have been discovered, e.g. in [4], [5] and [11]. The following two facts on
atomic mappings are known. The first is an immediate consequence of the
definitions; for the proof of the second, see [4, Theorem 1, p. 49] and [11,
(4.14), p. 17].

3.2. Fact. Every atomic mapping of a continuum is hereditarily atomic.

3.3. Fact. Every atomic mapping of a continuum is hereditarily mono-
tone.

The stronger result mentioned above consists in replacing the atomicity
or hereditary monotonicity of C(f) by a much weaker property, namely by
the hereditary weak confluence. Recall that a mapping f : X → Y between
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continua is said to be weakly confluent if for each subcontinuum Q of Y
there is a component K of f−1(Q) for which f(K) = Q. If the equality is
true for each component K of f−1(Q), then f is said to be confluent .

The following table illustrates inclusions between these and some other
classes of mappings used throughout the paper.

atomic ⇒ monotone
⇓

open ⇒ confluent ⇒ semi-conflluent ⇒ weakly confluent
⇓ ⇓

joining atriodic

3.4. Theorem. Let f : X → Y be a surjective mapping between con-
tinua. If the induced mapping C(f) : C(X) → C(Y ) is hereditarily weakly
confluent , then f is a homeomorphism.

P r o o f. Suppose that f is not a homeomorphism. Then there are points
a, b ∈ X such that f(a) = f(b). We claim that

(3.5) for any A,B ∈ C(X) with a ∈ A, b ∈ B and A ∩ B = ∅ we have
either f(A) ⊂ f(B) or f(B) ⊂ f(A).

Indeed, if (3.5) does not hold, then there are disjoint subcontinua A and B
of X with a ∈ A and b ∈ B for which neither of the two inclusions of (3.5)
is true. By Facts 2.4 and 2.5 there are four order arcs in C(X): A1 from
{a} to A, A2 from A to X, B1 from {b} to B, and B2 from B to X. Since
A∩B = ∅ we have A1∩B1 = A1∩B2 = A2∩B1 = ∅. By assumption we have
f(A) ∈ C(f)(A1) \ C(f)(B1), and similarly f(B) ∈ C(f)(B1) \ C(f)(A1).
Put, for shortness, L = A1 ∪A2 ∪ B1 ∪ B2. Striving for a contradiction, we
will show that

(3.6) the partial mapping C(f)|L is not weakly confluent.

In fact, let U be an open connected subset of the arc C(f)(B1) disjoint from
C(f)(A1 ∪A2). Then Q = C(f)(L) \ U is a subcontinuum of C(f)(L), and
no component of (C(f)|L)−1(Q) is mapped onto Q under C(f). This shows
(3.6), which is our required contradiction; thereby claim (3.5) is shown.

The following is a consequence of (3.5).

(3.7) Let P,Q ∈ C(X) with P ∩Q = ∅. If A and B are order arcs in C(X)
from {a} to P and from {b} to Q respectively, where f(a) = f(b),
then either C(f)(A) ⊂ C(f)(B) or C(f)(B) ⊂ C(f)(A).

Since the mapping f is not constant, there is a point c ∈ X such that
f(c) 6= f(a) = f(b). Denote by A, B and C order arcs in C(X) from the
singletons {a}, {b} and {c}, respectively, to X. By (3.7) the intersection
C(f)(A) ∩ C(f)(B) contains an order arc from {f(a)} to a continuum T ∈
C(Y ). Choose continua K and L in X such that K ∈ A \ B and L ∈ B \ A
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with K ∩ L = ∅ and f(K) ( f(L) ( T . Let U be an open neighborhood of
K in A and V be an open neighborhood of L in B such that

U ∩ B = ∅ = V ∩ A, C(f)(U) ∩ C(f)(V) = ∅,
and C(f)(V) ⊂ C(f)(A). Note that, since f(K) ( f(L), we have C(f)(U) ⊂
C(f)(B). Putting

P = F1(X) ∪ (A \ U) ∪ (B \ V) ∪ C
we see that P is a subcontinuum in C(X). Observe that by the definitions
of U and V we have

C(f)(P) = F1(Y ) ∪ C(f)(A ∪ B ∪ C).

We will show that C(f)|P is not weakly confluent. Let C be a subcontinuum
of X such that C ∈ C, f(C) is nondegenerate, and f(C) ∩ {f(a)} = ∅. Put
S = {S ∈ C(f)(C) : {f(c)} ( S ( f(C)}. Thus S is an open connected
subset of the arc C(f)(C) and S ∩ C(f)(A ∩ B) = ∅. Define

Q = F1(Y ) ∪ C(f)((A ∪ B ∪ C) \ S).

Then Q is a subcontinuum of C(f)(P) and (C(f)|P)−1(Q) has two compo-
nents: one, K1, containing F1(X), and the other, K2, containing X. Observe
that Y 6∈ C(f)(K1), and {f(a)} 6∈ C(f)(K2), so C(f)|P is not weakly con-
fluent indeed. The proof is thus finished.

3.8. Corollary. Let f : X → Y be a surjective mapping between con-
tinua. If the induced mapping 2f : 2X → 2Y is hereditarily weakly confluent ,
then f is a homeomorphism.

P r o o f. This is a consequence of Theorem 3.4 and Fact 2.6.

Recall one more definition. A mapping f : X → Y between continua is
said to be semi-confluent if for each subcontinuum Q of Y and for any two
components K1 and K2 of f−1(Q) either f(K1) ⊂ f(K2) or f(K2) ⊂ f(K1).
The following two facts on this class of mappings will be needed. The first
is a consequence of the definitions. For the proof of the second, see [11,
Theorem 3.8, p. 13].

3.9. Fact. Each confluent mapping is semi-confluent.

3.10. Fact. Each semi-confluent mapping is weakly confluent.

3.11. Theorem. Let f : X → Y be a surjective mapping between con-
tinua. Then the following conditions are equivalent.

(1) f is a homeomorphism;
(2) 2f is a homeomorphism;
(3) 2f is atomic;
(4) 2f is hereditarily monotone;
(5) 2f is hereditarily confluent ;
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(6) 2f is hereditarily semi-confluent ;
(7) 2f is hereditarily weakly confluent ;
(8) C(f) is a homeomorphism;
(9) C(f) is atomic;

(10) C(f) is hereditarily monotone;
(11) C(f) is hereditarily confluent ;
(12) C(f) is hereditarily semi-confluent ;
(13) C(f) is hereditarily weakly confluent.

P r o o f. Conditions (1), (2) and (8) are well known to be equivalent
(see [12, Theorem (0.52), p. 29]). Consider the following two circles of
implications:

(1)⇒(3)⇒(4)⇒(5)⇒(6)⇒(7)⇒(1),
(1)⇒(9)⇒(10)⇒(11)⇒(12)⇒(13)⇒(1).

Since each homeomorphism is obviously an atomic mapping, the implica-
tions (1)⇒(3) and (1)⇒(9) follow from the above mentioned equivalence of
(1), (2) and (8). The implications (3)⇒(4) and (9)⇒(10) are consequences
of Fact 3.3. Since each monotone mapping is obviously confluent, (4)⇒(5)
and (10) ⇒(11) hold. (5)⇒(6) and (11)⇒(12) are consequences of Fact 3.9,
and (6) ⇒(7) and (12)⇒(13) follow from Fact 3.10. Finally, (7)⇒(1) and
(13)⇒(1) are just Corollary 3.8 and Theorem 3.4, respectively. The proof
is complete.

As a consequence of Theorem 3.11 and of the equivalence of the mono-
tonicity of f , 2f and C(f) (see [6, Theorem 3.3, p. 4]) we get the following
result.

3.12. Corollary. Let f : X → Y be a surjective mapping between con-
tinua. If f is atomic but not a homeomorphism, then the induced mappings
2f and C(f) are monotone but not hereditarily monotone, thus not atomic.

A mapping f : X → Y between continua is said to be joining if for each
subcontinuum Q of Y and for any two components K1 and K2 of f−1(Q)
we have f(K1) ∩ f(K2) 6= ∅. Then we have the following fact ([11, (3.4),
p. 13]).

3.13. Fact. Each semi-confluent mapping is joining.

However, the mapping sin : [−3π/4, 3π/4] → [−1, 1] is weakly confluent
but not joining.

Further, f is said to be atriodic if for each subcontinuum Q of Y there
are two components K1 and K2 of f−1(Q) such that f(K1) ∪ f(K2) = Q
and for each component K of f−1(Q) either f(K) = Q, or f(K) ⊂ f(K1),
or f(K) ⊂ f(K2). So, by the definitions, the next fact follows (compare [11,
(3.5), p. 13]).
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3.14. Fact. Each weakly confluent mapping is atriodic.

3.15. Theorem. Let X be a continuum and let p, q ∈ X. Put Y =
X/{p, q}, and define f : X → Y to be the quotient mapping. Then f is both
joining and atriodic.

P r o o f. Take Q ∈ C(Y ) and note that f−1(Q) has at most two compo-
nents: the one containing p and the one containing q. Their images have
the point {p, q} of Y in common, and the union of the images is Q. Thus f
is joining and atriodic.

3.16. Corollary. Let X be a continuum and let p, q ∈ X. Put Y =
X/{p, q}, and define f : X → Y to be the quotient mapping. Then f is
hereditarily joining and hereditarily atriodic.

Let f be a mapping as in Theorem 3.15. Since the induced mapping C(f)
identifies the singletons {p} and {q} only, applying the previous corollary
to C(f), we get the next one.

3.17. Corollary. Let X be a continuum and let p, q ∈ X. Put Y =
X/{p, q}, and define f : X → Y to be the quotient mapping. Then C(f) is
hereditarily joining and hereditarily atriodic.

Consequently, we see that Theorems 3.4 and 3.11 cannot be extended to
hereditarily joining or to hereditarily atriodic induced mappings.

4. Cones. For a continuum X we define cone(X) = (X × [0, 1])/(X ×
{0}). Points of cone(X) are denoted by (x, t) for x ∈ X and t ∈ [0, 1]; in
particular, (x, 0) = (y, 0) for every x, y ∈ X. For a mapping f : X → Y
between continua, we consider the mapping cone(f) : cone(X) → cone(Y )
defined by cone(f)(x, t) = (f(x), t).

Reading a previous version of the paper, the referee asked if an analog
of Theorem 3.4 is true if the hyperspaces are replaced by cones. In The-
orem 4.1 below we prove a more general result; namely the assumption of
the hereditary weak confluence of the induced mapping can be replaced by
its being hereditarily joining or hereditarily atriodic. Corollary 3.17 shows
that one cannot go so far with the hyperspaces.

4.1. Theorem. Let f : X → Y be a surjective mapping between continua.
If the mapping cone(f) : cone(X) → cone(Y ) is either hereditarily joining
or hereditarily atriodic, then f is a homeomorphism.

P r o o f. Suppose that f is not a homeomorphism. Then there are points
a, b ∈ X such that f(a) = f(b). Choose points c, d ∈ X such that f(a), f(c)
and f(d) are three distinct points in Y . Let

C = (X × {0, 1/2, 1}) ∪ ({c, d} × [0, 1])
∪ ({a} × ([0, 1/4] ∪ [3/4, 1])) ∪ ({b} × [1/4, 3/4]).
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Thus C is a subcontinuum of cone(X). We shall show that cone(f)|C is
neither joining nor atriodic. To this end consider the continuum

Q = ({f(a)} × [1/8, 7/8]) ∪ (X × {1/2}),
and note that (cone(f)|C)−1(Q) has three components:

C1 = {a} × [1/8, 1/4], C2 = {a} × [3/4, 7/8],

and
C3 = ({b} × [1/4, 3/4]) ∪ (X × {1/2}).

The images of no two of them cover Q, so cone(f)|C is not atriodic. More-
over, cone(f)(C1) ∩ cone(f)(C2) = ∅, so cone(f)|C is not joining. The proof
is finished.

As an application of Theorem 4.1 we have the following analog of The-
orem 3.11.

4.2. Theorem. Let f : X → Y be a surjective mapping between continua.
Then the following conditions are equivalent.

(1) f is a homeomorphism;
(2) cone(f) is a homeomorphism;
(3) cone(f) is atomic;
(4) cone(f) is hereditarily monotone;
(5) cone(f) is hereditarily confluent ;
(6) cone(f) is hereditarily semi-confluent ;
(7) cone(f) is hereditarily weakly confluent ;
(8) cone(f) is hereditarily joining ;
(9) cone(f) is hereditarily atriodic.

P r o o f. The implications (1)⇒(2)⇒(3) are obvious; (3)⇒(4) follows
from Fact 3.3; (4)⇒(5)⇒(6) are consequences of the definitions of the corre-
sponding classes of mappings; (6)⇒(7) results from Fact 3.10, (7)⇒(9) from
Fact 3.14, and (9) implies (1) by Theorem 4.1. Thus conditions (1)–(7) and
(9) are equivalent. Finally, (6)⇒(8) follows from Fact 3.13, and (8) implies
(1) again by Theorem 4.1. The proof is complete.
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E-mail: wjcharat@lya.fciencias.unam.mx

Received 9 October 1996;
revised 25 April 1997


