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ON THE PLANARITY OF PEANO GENERALIZED CONTINUA:
AN EXTENSION OF A THEOREM OF S. CLAYTOR

BY

R. AYALA, M. J. CHÁVEZ AND A. QUINTERO (SEVILLA)

We extend a theorem of S. Claytor in order to characterize the Peano
generalized continua which are embeddable into the 2-sphere. We also give
a characterization of the Peano generalized continua which admit closed
embeddings in the Euclidean plane.

1. Introduction. The celebrated Kuratowski Theorem [7] states that
a finite graph G is embeddable in the 2-sphere S2 if and only if G contains
no subgraph homeomorphic to the complete bipartite graph K3,3 or to the
complete graph with five vertices K5 (see Fig. 1).'
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Later S. Claytor [2] characterized Peano continua which are embeddable
in S2 by adding to K3,3 and K5 two further forbidden curves L1 and L2

which are non-polyhedral 1-dimensional Peano continua constructed from
K3,3 and K5 respectively (see Fig. 2).
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Actually, L1 and L2 are due to Kuratowski who already suggested a role
for them in his paper [7].

The Kuratowski Theorem was extended to any locally finite graph G by
Dirac and Schuster [3] by proving that G is planar if and only if all its finite
subgraphs are planar. In addition, R. Halin [6] characterized the locally
finite graphs which admit planar embeddings without vertex accumulation
points (VAP-free embedding) by six forbidden graphs. Namely K5, K3,3,
and the four infinite graphs in Fig. 3 below. Later C. Thomassen ([10]; Cor.
4.1) showed that for connected locally finite graphs VAP-free embeddings
are the same as closed embeddings.

Also two-dimensional finite complexes embeddable in S2 have been char-
acterized by Mardešić and Segal in [8]. The authors use Claytor’s Theorem
to show that K5,K3,3 and the space F ⊆ R3 called the “spiked disk” given
by F = {(x, y, 0) : x2 + y2 ≤ 1} ∪ {(0, 0, z) : 0 ≤ z ≤ 1} are the forbidden
subspaces for the planarity of finite 2-complexes.

In this paper we show that Claytor’s Theorem still holds for Peano gen-
eralized continua. See §2 for definitions. Namely we prove

Theorem 1.1. Let X be a Peano generalized continuum. Then the fol-
lowing statements are equivalent:

(1) X is embeddable in S2 (or equivalently in R2 if X 6= S2).
(2) Any subcontinuum K ⊆ X embeds in S2.
(3) X contains no set homeomorphic to K5,K3,3, L1, L2.
(4) The Freudenthal compactification X̂ of X is embeddable in S2.

We also characterize the Peano generalized continua which admit closed
embeddings in R2. More explicitly, a Peano generalized continuum P is
said to be properly planar if there exists a proper (or equivalently closed)
embedding of P into the Euclidean plane R2. See §2 for definitions.
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Theorem 1.2. Let X 6= S2 be a Peano generalized continuum. Then the
following statements are equivalent:
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(a) X is properly planar.
(b) The one-point compactification X+ is embeddable in S2.
(c) X contains no closed set homeomorphic to K5,K3,3, L1, L2 or any of

the four Halin graphs of Fig. 3.

These results are extensions to generalized continua of the quoted Dirac–
Schuster Theorem and Halin–Thomassen result respectively. Moreover, we
derive from Theorems 1.1 and 1.2 a characterization of (properly) planar lo-
cally compact 2-polyhedra. Actually the characterization of planar compact
polyhedra in [8] can now be extended to locally compact polyhedra with
small changes. Namely, if one uses 1.1 instead of Claytor’s Theorem in the
proof of (c)⇒(a) in ([8]; §3) one gets

Corollary 1.3. A locally compact two-dimensional polyhedron P is em-
beddable in S2 if and only if P contains no set homeomorphic to K3,3,K5

or the spiked disk F .

Similarly by using 1.2 one gets

Corollary 1.4. A locally compact two-dimensional polyhedron P 6= S2

is properly planar if and only if P contains no closed set homeomorphic to
K3,3,K5,K

∞
5 , L∞5 ,K∞

3,3, L
∞
3,3 or the spiked disk F .

Remark 1.5. Alternative proofs of Corollaries 1.3 and 1.4 can be found
in [1] among other characterizations of (properly) planar polyhedra.

2. Basic definitions and proofs of Theorems 1.1 and 1.2. We
recall that a Peano continuum X is a metrizable compact connected locally
connected space. When compactness is replaced by local compactness the
space X is called a Peano generalized continuum. Any Peano generalized
continuum is arc connected by ([9]; 4.2.5). Moreover, it follows from ([4];
4.4.F(c)) that any Peano generalized continuum is separable and hence sec-
ond countable and σ-compact (([4]; 4.1.16) and ([4]; 3.8.C(b))). The local
compactness together with the σ-compactness yield that X is a countable
union

⋃∞
n=1 Kn of compact subsets Kn ⊆ X with Kn ⊆ intKn+1. Actually,

we can assume without loss of generality that each Kn is connected and all
the components of X − Kn are unbounded. Indeed, each Kn is contained
in a finite union of open connected subsets of compact closure K ′

n. If K ′
n

is not connected we can consider a new K ′
n by adding to K ′

n compact and
connected subspaces joining its (finite) components. If some components of
X −Kn are bounded then we consider a new K ′′

n by adding to Kn all the
bounded components in X − Kn. The sequence {Kn}n≥1 with these two
properties will be called a decomposition of X.

Given a decomposition {Kn}n≥1 of X a Freudenthal end of X is a se-
quence ε = (Cn)n≥1 of components Cn ⊆ X−Kn with Cn+1 ⊆ Cn. Let F(X)
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be the set of Freudenthal ends of X and let e(X) denote the cardinal number
of F(X). The set X̂ = X∪F(X) admits a compact topology whose basis con-
sists of the open sets of X together with the sets Ĉn = Cn∪{ε ∈ F(X) : Cn

appears in ε} (n ≥ 1). This topology (which does not depend on the se-
quence {Kn}n≥1) is called the Freudenthal topology and X̂ is called the
Freudenthal compactification of X. Moreover, the subspace F(X) turns out
to be homeomorphic to a closed subset of the Cantor set (see [5] for details).

A proper map f : X → Y is a continuous map such that f−1(K) is
compact for any compact subset K ⊆ Y . If X and Y are Peano generalized
continua the proper map f is necessarily closed. Moreover, the properness
of f is equivalent to the continuity of the extension f+ : X+ → Y + with
f+(∞) = ∞ between the corresponding one-point compactifications. In fact,
f extends to a continuous map f̂ : X̂ → Ŷ which restricts to a continuous
map f∗ : F(X) → F(Y ). Namely if ε = (Cn)n≥1, then f̂(ε) = f∗(ε) =
(Dk)k≥1 where f(Cnk

) ⊂ Dk for some increasing subsequence (Cnk
)k≥1 of

ε. A proper map r : [0,∞) → X is called a ray, and ε ∈ F(X) is said to be
the end induced by r if r∗(∞) = ε. In fact one can find for any end ε a ray
r : [0,∞) → X which induces ε. Moreover, two rays induce the same end if
and only if they can be joined outside any compact subset K ⊆ X.

In order to apply Claytor’s Theorem [2] in the proofs of Theorems 1.1
and 1.2 we shall use the following lemma

Lemma 2.1. Let X be a Peano generalized continuum. Then its Freuden-
thal compactification X̂ as well as its one-point compactification X+ are
Peano continua.

Pro o f. As a consequence of the Hahn–Mazurkiewicz Theorem ([9];
4.2.7) continuous images of Peano continua are Peano continua. Hence the
map q : X̂ → X+ with q(F(X)) = ∞ shows that it will suffice to prove that
X̂ is a Peano continuum.

If X =
⋃∞

n=1 Kn is a decomposition of X, the compactness of Kn+1

implies that the number of components of X −Kn is finite. Hence the open
sets Ĉn form a countable neighbourhood basis of all ε ∈ F(X) in X̂. As
X is second countable, it follows that X̂ is second countable. Therefore
Urysohn’s Metrization Theorem ([4]; 4.2.8) yields that X̂ is a metrizable
space. Moreover, X̂ is connected since X is ([4]; 6.1.11). Finally, a ray r :
[0,∞) → Cn can be regarded as an arc r̂ : [0,∞] → Ĉn with r̂(∞) ∈ F(X).
Hence the open neighbourhoods Ĉn ⊆ X̂ are arc connected and so X̂ is
locally (arc) connected. This finishes the proof.

Now we are ready to prove Theorem 1.1.

Proof of 1.1. Only (3)⇒(4) needs to be checked. Assume that (4) does not
hold. Then by Lemma 2.1 we can apply Claytor’s Theorem to find a subspace
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A ⊆ X̂ homeomorphic to one of the spaces in S = {K5,K3,3, L1, L2}. Since
we assume (3), one necessarily has A∩F(X) 6= ∅. We now proceed to replace
A by a new A′ still homeomorphic to a space in S with A′∩F(X) = ∅, that
is, A′ ⊆ X, which will give a contradiction.
Case 1: A = K3,3 or K5 and no vertex of A is in F(X). In order to

obtain A′ from A we firstly observe that for each edge E ⊆ A the intersection
F = E∩F(X) is homeomorphic to a closed subset of the middle-third Cantor
set. Hence we can cover F by finitely many disjoint open sets W1, . . . ,Wk in
X̂ such that all W ′

i = Wi ∩X are connected components of the complement
X − K of a certain compact set K ⊆ X (depending on F ). Moreover, we
can assume without loss of generality that Wi ∩E′ = ∅ for any edge E′ 6= E
of A. Furthermore, the intersections Fi = F ∩Wi are also closed in F , and
hence compact subsets of E. Let xi and yi denote the first and last element
in Fi respectively. Here we identify E with [0, 1] by a linear homeomorphism.
Notice that xi and yi are not vertices of A. Let x′i ≤ xi and y′i ≥ yi be points
in Fi . Then we replace the segment < x′i, y

′
i >⊆ E by an arc Ci ⊆ W ′

i

joining x′i to y′i. By proceeding in this way for each edge of A we obtain a
new graph A′ ⊆ X̂ which is homeomorphic to A. We have a contradiction,
and hence Case 1 is finished.
Case 2: A = K3,3 or K5 and some vertex of A is in F(X). By definition

of the Freudenthal topology of X̂ we can find a basis of open neighbourhoods
{Un} of v in X̂ such that U ′

n = Un−F(X) ⊆ X is arc connected. Moreover,
we can assume that Un contains no vertex other than v. Since F(X) is
0-dimensional, any edge incident to v meets U ′

n. We now take an arc γ1

in U ′
n joining two of the edges containing v, say Γ1 and Γ2. If D1 ⊆ Γ1

is the open segment from v to q1 = γ1 ∩ Γ1 we consider the new graph
A1 = (A −D1) ∪ γ1. Let U2 ⊂ U1 be a new neighbourhood of v in X̂ with
γ1 ∩ U2 = ∅. Let γ2 ⊆ U ′

2 be an arc joining Γ2 ⊆ A1 to another edge of A
other than Γ1, say Γ3. Notice that Γ3 ⊆ A1. Let A2 = (A1−D2)∪ γ2 where
D2 ⊆ Γ2 is the open segment from v to q2 = γ2 ∩ Γ2. If A = K3,3 we finish
here, otherwise we still have to take a new neighbourhood U3 ⊆ U2 of v in
X̂. We can proceed in this way for each vertex in A ∩ F(X), and we get a
new graph A0 ⊆ X̂ for which A0∩F(X) does not contain vertices of A0 and
so we are in Case 1. Notice that A0 is homeomorphic to A if A = K3,3 and
it contains a subgraph homeomorphic to K3,3 if A = K5. See Fig. 4.
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Case 3: A = L1 or L2. Let Ni = Li − Σi be the complement of the
segment Σi in Li. If A ∩ F(X) contains the limit point pi = Σi ∩ N i, the
connectedness of X implies the existence of an arc γ ⊆ X from the segment
Σi to Ni. Here we use the 0-dimensionality of F(X) to ensure Ni ∩X 6= ∅
and Σi−{pi}∩X 6= ∅. Then the union A∪γ contains a copy of K5 if A = L2

or a copy of K3,3 if A = L1. That is, we are in the previous cases.
If pi 6∈ A ∩ F(X) then we can find a neighbourhood Ω of pi in X with

Ω ∩ F(X) = ∅. Moreover, Ω ∩ A ⊆ X contains a homeomorphic copy of Li

and hence we reach a contradiction with assumption (3). The proof is now
complete.

Remark 2.2. The equivalences (1)⇔(2)⇔(3) correspond to the exten-
sion of Dirac–Schuster Theorem [3] to Peano generalized continua.

We now proceed to prove Theorem 1.2.

Proof of 1.2. We shall show (a)⇒(c)⇒(b)⇒(a). In fact, only (c)⇒(b)
needs to be checked. We use the notation of the proof of 1.1.

Assume on the contrary that X+ is not embeddable in S2. According to
2.1 and Claytor’s Theorem we can find a closed subspace A ⊆ X+ homeo-
morphic to a continuum in the family {K5,K3,3, L1, L2}. Moreover, we can
assume ∞ ∈ A since otherwise A ⊆ X and this contradicts (c).

If A = K5 or K3,3 then it easily follows that A−{∞} is one of the Halin
graphs in Fig. 4. In case A = Li, we can also assume pi = ∞ since otherwise
we can always get a copy of Li in any neighbourhood Ω of pi with ∞ 6∈ Ω.
So assume pi = ∞. Since X is connected we can find an arc γ ⊆ X joining
the segment Σi−{pi} to Ni = Li−Σi. Then (A−{pi})∪ γ contains a copy
of L∞5 if A = L2 or L∞3,3 if A = L1. This contradicts (c) and the proof is
finished.

Remark 2.3. Notice that the one-point compactification of a Halin graph
is a Kuratowski graph. Moreover, if we join two vertices of different infinite
edges in K∞

5 we get a copy of K∞
3,3 embedded in the new graph. When

we proceed in the same way with K∞
3,3 we get an embedding of L∞3,3. And,

if we join three vertices of three different infinite edges of K∞
5 we get an

embedding of L∞3,3 in the new graph.

Corollary 2.4. Let P a planar Peano generalized continuum with e(P )
= k. Then P is not properly planar if and only if it contains a Halin graph
H with e(H) ≤ k.

Pro o f. If H ⊆ P is a Halin graph with e(H) > k then at least two ends
of H are the same in P . Since P is planar, Remark 2.3 yields a new Halin
graph H ′ with e(H ′) < e(H). The result follows after at most three steps.
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Corollary 2.5. Let P be a one-ended Peano generalized continuum.
Then P is planar if and only if P is properly planar.

Remark 2.6. The equivalence (a)⇔(c) in 1.2 is the extension to Peano
generalized continua of the characterization of Halin and Thomassen of prop-
erly planar locally finite connected graphs ([6] and ([10]; Cor 4.1)). In fact,
the proof of 1.2 shows that Claytor’s Theorem implies this characterization
since Li (i = 1, 2) cannot be embedded in any graph H (otherwise the points
of valence ≥ 3 define a set of vertices in H having pi as a cluster point in
the topology of H).

Acknowledgements. This work was partially supported by the project
DGICYT PB96-1374.

The authors thank the referee for his/her helpful suggestions.

REFERENCES

[1] R. Ayala, A. Márquez and A. Quintero, On the planarity of infinite 2-complexes,
Abh. Math. Sem. Hamburg 67 (1997), 137–148.

[2] S. Claytor, Peanian continua not imbeddable in a spherical surface, Ann. of Math.
38 (1937), 631–646.

[3] G. Dirac and S. Schuster, A theorem of Kuratowski , Indag. Math. 16 (1954), 343–
348.

[4] R. Engelking, General Topology , Heldermann, 1989.
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