DEGENERATIONS FOR MODULES OVER REPRESENTATION-FINITE SELFINJECTIVE ALGEBRAS

BY

GRZEGORZ ZWARA (TORÚŃ)

1. Introduction and main result. Let \(A \) be a finite-dimensional associative \(K \)-algebra with identity over an algebraically closed field \(K \). If \(1 = a_1, \ldots, a_n \) is a basis of \(A \) over \(K \), we have the constant structures \(a_{ijk} \) defined by \(a_i a_j = \sum a_{ijk} a_k \). The affine variety \(\text{mod}_A(d) \) of \(d \)-dimensional unital left \(A \)-modules consists of \(n \)-tuples \(m = (m_1, \ldots, m_n) \) of \((d \times d)\)-matrices with coefficients in \(K \) such that \(m_1 \) is the identity matrix and \(m_i m_j = \sum a_{ijk} m_k \) holds for all indices \(i \) and \(j \). The general linear group \(\text{Gl}_d(K) \) acts on \(\text{mod}_A(d) \) by conjugation, and the orbits correspond to the isomorphism classes of \(d \)-dimensional modules (see [6]). We shall agree to identify a \(d \)-dimensional \(A \)-module \(M \) with the point of \(\text{mod}_A(d) \) corresponding to it. We denote by \(O(M) \) the \(\text{Gl}_d(K) \)-orbit of a module \(M \) in \(\text{mod}_A(d) \). Then one says that a module \(N \) in \(\text{mod}_A(d) \) is a degeneration of a module \(M \) in \(\text{mod}_A(d) \) if \(N \) belongs to the Zariski closure \(\overline{O(M)} \) of \(O(M) \) in \(\text{mod}_A(d) \), and we denote this fact by \(M \leq_{\text{deg}} N \). Thus \(\leq_{\text{deg}} \) is a partial order on the set of isomorphism classes of \(A \)-modules of a given dimension. It is not clear how to characterize \(\leq_{\text{deg}} \) in terms of representation theory.

There has been work by S. Abeasis and A. del Fra [1], K. Bongartz [4], [3], Ch. Riedtmann [9], and A. Skowroński and the author [11]–[14] connecting \(\leq_{\text{deg}} \) with other partial orders \(\leq_{\text{ext}} \) and \(\leq \) on the isomorphism classes in \(\text{mod}_A(d) \). They are defined in terms of representation theory as follows:

- \(M \leq_{\text{ext}} N \Leftrightarrow \) there are modules \(M_i, U_i, V_i \) and short exact sequences \(0 \rightarrow U_i \rightarrow M_i \rightarrow V_i \rightarrow 0 \) in \(\text{mod}_A(d) \) such that \(M = M_1, M_{i+1} = U_i \oplus V_i, 1 \leq i \leq s \), and \(N = M_{s+1} \) for some natural number \(s \).
- \(M \leq N \Leftrightarrow [M, X] \leq [N, X] \) holds for all modules \(X \).

Here and later on we abbreviate \(\dim_K \text{Hom}_A(X, Y) \) by \([X, Y]\). Then for modules \(M \) and \(N \) in \(\text{mod}_A(d) \) the following implications hold:

\[
M \leq_{\text{ext}} N \Rightarrow M \leq_{\text{deg}} N \Rightarrow M \leq N
\]

1991 Mathematics Subject Classification: 14L30, 16G10, 16G70.
Unfortunately, the reverse implications are not true in general, and it would be interesting to find out when they are. The author proved in [14] that the orders \(\leq_{\text{deg}} \) and \(\leq \) coincide for all modules over all representation-finite algebras. Moreover, in [3] K. Bongartz proved that these orders also coincide for all modules over tame concealed algebras. The orders \(\leq_{\text{deg}} \) and \(\leq_{\text{ext}} \) do not coincide even for very simple representation-finite algebras (see [9]). The author proved in [14] and [13] that \(\leq_{\text{deg}} \) and \(\leq_{\text{ext}} \) are equivalent for all modules over an algebra \(A \) with \(\text{Ext}_A^1(X,X) = 0 \) for any indecomposable \(A \)-module \(X \), and for all modules over tame concealed algebras.

In the representation theory of algebras an important role is played by selfinjective algebras, that is, algebras \(A \) such that \(AA \) is injective. We are concerned with the question of when the partial orders \(\leq_{\text{deg}} \) and \(\leq_{\text{ext}} \) coincide for modules over representation-finite selfinjective algebras. The main aim of this paper is to prove the following theorem, which gives a complete answer to this question.

Theorem. Let \(A \) be a connected representation-finite selfinjective algebra. Then the following conditions are equivalent:

(i) There exist \(A \)-modules \(M, N \) such that \(M \leq_{\text{deg}} N \) and \(M \nless_{\text{ext}} N \).

(ii) There exist \(A \)-modules \(M, N \) such that \(M <_{\text{deg}} N \) and \(N \) is indecomposable.

(iii) The stable Auslander–Reiten quiver \(\Gamma_A^s \) of \(A \) is isomorphic to \(\mathbb{Z} \mathbb{D}_{3m}/(\tau^{2m-1}) \) for some \(m \geq 2 \).

For basic background on the topics considered here we refer to [4], [6], [10], and for the representation theory of representation-finite selfinjective algebras to [5], [7], [8]. The results presented in this paper form a part of the author’s doctoral dissertation written under the supervision of Professor A. Skowroński. The author gratefully acknowledges support from the Polish Scientific Grant KBN No. 2 PO3A 020 08.

2. Proof of the main result

2.1. Recall that \(A \) denotes a fixed finite-dimensional associative \(K \)-algebra with identity over an algebraically closed field \(K \). We denote by \(\text{mod} \ A \) the category of finite-dimensional left \(A \)-modules. By an \(A \)-module mean an object from \(\text{mod} \ A \). Further, we denote by \(\Gamma_A \) the Auslander–Reiten quiver of \(A \) and by \(\tau = \tau_A \) and \(\tau^- = \tau^-_A \) the Auslander–Reiten translations \(D \text{Tr} \) and \(\text{Tr} D \), respectively. We shall agree to identify the vertices of \(\Gamma_A \) with the corresponding indecomposable modules. By \(\Gamma_A^s \) we denote the stable translation quiver obtained from \(\Gamma_A \) by removing all projective-injective vertices and arrows attached to them. For a noninjective indecom-
posable A-module U we denote by $\Sigma(U)$ the Auslander–Reiten sequence

$$\Sigma(U) : \quad 0 \to U \to E(U) \to \tau^{-}U \to 0,$$

and define πU to be the unique indecomposable projective-injective direct summand of $E(U)$ if such a summand exists, or 0 otherwise.

2.2. Let A be a connected representation-finite selfinjective algebra. Then $I^n_A \simeq Z\Delta/H$, where Δ is a Dynkin diagram of type \mathbb{A}_n with $n \geq 1$, \mathbb{D}_n with $n \geq 4$, or \mathbb{E}_n with $n \in \{6, 7, 8\}$, and H is an infinite cyclic group of automorphisms of $Z\Delta$ with finitely many orbits. Following [7] the vertices of $Z\Delta$ are denoted by (p, q), where $p \in \mathbb{Z}$ and $q \in \Delta$, and the translation τ on $Z\Delta$ is given by $\tau(p, q) = (p-1, q)$. For a vertex (p, q) of $Z\Delta$ we denote by $\overline{(p, q)}$ its orbit in I^n_A. Following O. Bretscher, C. Läser and C. Riedtmann (see [5, (1.1)]) we define m_Δ to be the smallest integer m such that the image π in the mesh category $K(Z\Delta)$ equals 0 for all paths v in $Z\Delta$ whose length is greater than or equal to m. Then $m_{\mathbb{A}_n} = n$, $m_{\mathbb{D}_n} = 2n - 3$, $m_{\mathbb{E}_6} = 11$, $m_{\mathbb{E}_7} = 17$ and $m_{\mathbb{E}_8} = 29$.

2.3. Lemma. Let A be a representation-finite selfinjective algebra of class \mathbb{D}_n or \mathbb{E}_n. If I^n_A is not isomorphic to $Z\mathbb{D}_m/(\tau^{2m-1})$ for $m \geq 2$, then $\text{Ext}^1_A(X, X) = 0$ for all indecomposable A-modules X.

Proof. Take any indecomposable A-module X. If X is projective-injective, then $\text{Ext}^1_A(X, X) = 0$. Thus, we may assume that $X \in I^n_A$. Following O. Bretscher, C. Läser and C. Riedtmann (see [5, (1.4)]), we write $I^n_A = Z\Delta/(\tau^r\Phi)$, where $r \geq 1$ and Φ is an automorphism of $Z\Delta$ which fixes at least one vertex. Moreover, we may assume that $\Phi^k = 1_{Z\Delta}$ for some $k \geq 1$, since $\Delta = \mathbb{D}_n$ or $\Delta = \mathbb{E}_n$. Hence, every path in $Z\Delta$ starting from Y_1 and ending in Y_2 with $\overline{Y}_1 = \overline{Y}_2$ has length $2rl$ for some $l \geq 1$. Take any W in $Z\Delta$ such that $\overline{W} = X$. Applying the Auslander–Reiten formula and Proposition 1.5 in [7], we obtain

$$\text{Ext}^1_A(X, X) \simeq D\text{Hom}_A(X, \tau X) \simeq \bigoplus_{\overline{v} \simeq X} \text{Hom}_{K(Z\Delta)}(Y, \tau W).$$

Then $\text{Ext}^1_A(X, X) \neq 0$ implies that there exists an integer $l \geq 1$ and a path v in $Z\Delta$ of length $2rl - 2$ such that its image \overline{v} in the mesh category $K(Z\Delta)$ is nonzero. By the definition of m_Δ, it remains to show that $2r - 2 \geq m_\Delta$. But this is done by (1.5) and (1.6) in [5], since $\tau^r\Phi \neq \tau^{2m-1}$.

2.4. Proof of the Theorem. Clearly, (ii) implies (i).

(i)⇒(iii). Assume that I^n_A is not isomorphic to $Z\mathbb{D}_m/(\tau^{2m-1})$ for any $m \geq 2$. We claim that then the orders \leq_{deg} and \leq_{ext} are equivalent. If A is a selfinjective algebra of class \mathbb{A}_n, then this is done by Theorem 2 in [12]. Thus, we may assume that A is of class \mathbb{D}_n with $n \geq 4$, or \mathbb{E}_n with
Then our claim follows from Lemma 2.3 above and Theorem 2 in [14].

(iii)⇒(ii). Assume $I^* = \mathbb{Z}D_{3m}/(\tau^{2m-1})$ for some $m \geq 2$ and D_{3m} of the form

\[1 \to 2 \to \ldots \to (3m - 2) \to (3m - 1) \to 3m \]

The quiver $\mathbb{Z}D_{3m}$ admits a mesh-complete subquiver of the form

\[\begin{array}{c}
(0,3m) \searrow \bullet \swarrow (0,3m-1) \\
(0,3m-2) \searrow \bullet \swarrow (0,3m-3) \\
\vdots \\
(0,m+1) \searrow \bullet \swarrow (1,m) \\
(1,m-1) \searrow \bullet \swarrow (1,3m) \\
(2,3m-2) \searrow \bullet \swarrow (2,3m-3) \\
\vdots \\
(2m-2,m+2) \searrow \bullet \swarrow (2m-1,m) \\
(2m-1,m-1) \searrow \bullet \swarrow (2m-1,3m) \\
\end{array} \]

Then there are the following short exact sequences in mod A:

\[\Sigma((0,k)) : 0 \to (0,k) \to (0,k+1) \oplus (1,k-1) \oplus \pi(0,k) \to (1,k) \to 0, \]

for any $m \leq k \leq 3m - 3$,

\[\Sigma((0,3m-2)) : 0 \to (0,3m-2) \to (0,3m-1) \oplus (0,3m) \oplus (1,3m-3) \oplus \pi(0,3m-2) \to (1,3m-2) \to 0, \]

\[\Sigma((0,3m-1)) \oplus \Sigma((0,3m)) : 0 \to (0,3m-1) \oplus (0,3m) \to (1,3m-2) \oplus (1,3m) \oplus (2,3m-3) \oplus \pi(0,3m-1) \oplus \pi(0,3m) \to (1,3m) \oplus (1,3m) \oplus (2,3m-3) \to 0, \]

\[\Sigma((1,3m-2)) : 0 \to (1,3m-2) \to (1,3m-1) \oplus (1,3m) \oplus (2,3m-3) \oplus (2,3m-2) \to (2,3m-2) \to 0, \]

\[\Sigma((l,3m-1-l)) : 0 \to (l,3m-1-l) \to (l,3m-l) \oplus (l+1,3m-2-l) \oplus \pi(l,3m-1-l) \to (l+1,3m-1-l) \to 0, \]

for any $2 \leq l \leq 2m - 2$.

Applying Lemma (3 + 3 + 2) from [2, (2.1)] to these sequences, we get a short exact sequence

\[0 \to (0,m) \to (1,m-1) \oplus (2m-1,m) \oplus \pi \to (2m-1,m+1) \to 0, \]
where
\[\pi = \bigoplus_{k=m}^{3m} \pi(0,k) \oplus \bigoplus_{l=1}^{2m-2} \pi(l,3m-1-l). \]

Of course, \((2m-1,m) = (0,m)\). Finally, applying [9, Proposition 3.4], we infer that \((1,m-1) \oplus \pi <_{\text{deg}} (2m-1,m+1)\). This finishes the proof.

REFERENCES

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: gzwara@mat.uni.torun.pl

Received 28 March 1997