COLLOQUIUM MATHEMATICUM

VOL. 75

1998

NO. 1

DEGENERATIONS FOR MODULES OVER REPRESENTATION-FINITE SELFINJECTIVE ALGEBRAS

by GRZEGORZ ZWARA (TORUŃ)

1. Introduction and main result. Let A be a finite-dimensional associative K-algebra with identity over an algebraically closed field K. If $1 = a_1, \ldots, a_n$ is a basis of A over K, we have the constant structures a_{ijk} defined by $a_i a_j = \sum a_{ijk} a_k$. The affine variety $\operatorname{mod}_A(d)$ of d-dimensional unital left A-modules consists of n-tuples $m = (m_1, \ldots, m_n)$ of $(d \times d)$ matrices with coefficients in K such that m_1 is the identity matrix and $m_i m_j = \sum a_{ijk} m_k$ holds for all indices i and j. The general linear group $\operatorname{Gl}_d(K)$ acts on $\operatorname{mod}_A(d)$ by conjugation, and the orbits correspond to the isomorphism classes of d-dimensional modules (see [6]). We shall agree to identify a d-dimensional A-module M with the point of $\text{mod}_A(d)$ corresponding to it. We denote by $\mathcal{O}(M)$ the $\mathrm{Gl}_d(K)$ -orbit of a module M in $\operatorname{mod}_A(d)$. Then one says that a module N in $\operatorname{mod}_A(d)$ is a degeneration of a module M in $\operatorname{mod}_A(d)$ if N belongs to the Zariski closure $\mathcal{O}(M)$ of $\mathcal{O}(M)$ in $\operatorname{mod}_A(d)$, and we denote this fact by $M \leq_{\operatorname{deg}} N$. Thus $\leq_{\operatorname{deg}}$ is a partial order on the set of isomorphism classes of A-modules of a given dimension. It is not clear how to characterize \leq_{deg} in terms of representation theory.

There has been work by S. Abeasis and A. del Fra [1], K. Bongartz [4], [3], Ch. Riedtmann [9], and A. Skowroński and the author [11]–[14] connecting \leq_{deg} with other partial orders \leq_{ext} and \leq on the isomorphism classes in $\text{mod}_A(d)$. They are defined in terms of representation theory as follows:

• $M \leq_{\text{ext}} N \Leftrightarrow$ there are modules M_i , U_i , V_i and short exact sequences $0 \to U_i \to M_i \to V_i \to 0$ in mod A such that $M = M_1$, $M_{i+1} = U_i \oplus V_i$, $1 \leq i \leq s$, and $N = M_{s+1}$ for some natural number s.

• $M \leq N \Leftrightarrow [M, X] \leq [N, X]$ holds for all modules X.

Here and later on we abbreviate $\dim_K \operatorname{Hom}_A(X, Y)$ by [X, Y]. Then for modules M and N in $\operatorname{mod}_A(d)$ the following implications hold:

$$M \leq_{\text{ext}} N \Rightarrow M \leq_{\text{deg}} N \Rightarrow M \leq N$$

[91]

¹⁹⁹¹ Mathematics Subject Classification: 14L30, 16G10, 16G70.

(see [4], [9]). Unfortunately, the reverse implications are not true in general, and it would be interesting to find out when they are. The author proved in [14] that the orders \leq_{deg} and \leq coincide for all modules over all representation-finite algebras. Moreover, in [3] K. Bongartz proved that these orders also coincide for all modules over tame concealed algebras. The orders \leq_{deg} and \leq_{ext} do not coincide even for very simple representation-finite algebras (see [9]). The author proved in [14] and [13] that \leq_{deg} and \leq_{ext} are equivalent for all modules over an algebra A with $\text{Ext}_A^1(X, X) = 0$ for any indecomposable A-module X, and for all modules over tame concealed algebras.

In the representation theory of algebras an important role is played by selfinjective algebras, that is, algebras A such that ${}_{A}A$ is injective. We are concerned with the question of when the partial orders \leq_{deg} and \leq_{ext} coincide for modules over representation-finite selfinjective algebras. The main aim of this paper is to prove the following theorem, which gives a complete answer to this question.

THEOREM. Let A be a connected representation-finite selfinjective algebra. Then the following conditions are equivalent:

(i) There exist A-modules M, N such that $M \leq_{\text{deg}} N$ and $M \not\leq_{\text{ext}} N$.

(ii) There exist A-modules M, N such that $M <_{\text{deg}} N$ and N is indecomposable.

(iii) The stable Auslander-Reiten quiver Γ_A^s of A is isomorphic to $\mathbb{ZD}_{3m}/(\tau^{2m-1})$ for some $m \geq 2$.

For basic background on the topics considered here we refer to [4], [6], [10], and for the representation theory of representation-finite selfinjective algebras to [5], [7], [8]. The results presented in this paper form a part of the author's doctoral dissertation written under the supervision of Professor A. Skowroński. The author gratefully acknowledges support from the Polish Scientific Grant KBN No. 2 PO3A 020 08.

2. Proof of the main result

2.1. Recall that A denotes a fixed finite-dimensional associative K-algebra with identity over an algebraically closed field K. We denote by mod A the category of finite-dimensional left A-modules. By an A-module mean an object from mod A. Further, we denote by Γ_A the Auslander–Reiten quiver of A and by $\tau = \tau_A$ and $\tau^- = \tau_A^-$ the Auslander–Reiten translations D Tr and TrD, respectively. We shall agree to identify the vertices of Γ_A with the corresponding indecomposable modules. By Γ_A^s we denote the stable translation quiver obtained from Γ_A by removing all projective-injective vertices and arrows attached to them. For a noninjective indecom-

posable A-module U we denote by $\Sigma(U)$ the Auslander-Reiten sequence

$$\Sigma(U): \quad 0 \to U \to E(U) \to \tau^- U \to 0,$$

and define πU to be the unique indecomposable projective-injective direct summand of E(U) if such a summand exists, or 0 otherwise.

2.2. Let A be a connected representation-finite selfinjective algebra. Then $\Gamma_A^s \simeq \mathbb{Z}\Delta/\Pi$, where Δ is a Dynkin diagram of type \mathbb{A}_n with $n \ge 1$, \mathbb{D}_n with $n \ge 4$, or \mathbb{E}_n with $n \in \{6, 7, 8\}$, and Π is an infinite cyclic group of automorphisms of $\mathbb{Z}\Delta$ with finitely many orbits. Following [7] the vertices of $\mathbb{Z}\Delta$ are denoted by (p,q), where $p \in \mathbb{Z}$ and $q \in \Delta$, and the translation τ on $\mathbb{Z}\Delta$ is given by $\tau(p,q) = (p-1,q)$. For a vertex (p,q) of $\mathbb{Z}\Delta$ we denote by (p,q) its orbit in Γ_A^s . Following O. Bretscher, C. Läser and C. Riedtmann (see [5, (1.1)]) we define m_Δ to be the smallest integer m such that the image \overline{v} in the mesh category $K(\mathbb{Z}\Delta)$ equals 0 for all paths v in $\mathbb{Z}\Delta$ whose length is greater than or equal to m. Then $m_{\mathbb{A}_n} = n$, $m_{\mathbb{D}_n} = 2n - 3$, $m_{\mathbb{E}_6} = 11$, $m_{\mathbb{E}_7} = 17$ and $m_{\mathbb{E}_8} = 29$.

2.3. LEMMA. Let A be a representation-finite selfinjective algebra of class \mathbb{D}_n or \mathbb{E}_n . If Γ_A^s is not isomorphic to $\mathbb{ZD}_{3m}/(\tau^{2m-1})$ for $m \geq 2$, then $\operatorname{Ext}_A^1(X, X) = 0$ for all indecomposable A-modules X.

Proof. Take any indecomposable A-module X. If X is projectiveinjective, then $\operatorname{Ext}_{A}^{1}(X, X) = 0$. Thus, we may assume that $X \in \Gamma_{A}^{s}$. Following O. Bretscher, C. Läser and C. Riedtmann (see [5, (1.4)]), we write $\Gamma_{A}^{s} = \mathbb{Z}\Delta/(\tau^{r}\Phi)$, where $r \geq 1$ and Φ is an automorphism of $\mathbb{Z}\Delta$ which fixes at least one vertex. Moreover, we may assume that $\Phi^{k} = 1_{\mathbb{Z}\Delta}$ for some $k \geq 1$, since $\Delta = \mathbb{D}_{n}$ or $\Delta = \mathbb{E}_{n}$. Hence, every path in $\mathbb{Z}\Delta$ starting from Y_{1} and ending in Y_{2} with $\overline{Y}_{1} = \overline{Y}_{2}$ has length 2rl for some $l \geq 1$. Take any W in $\mathbb{Z}\Delta$ such that $\overline{W} = X$. Applying the Auslander–Reiten formula and Proposition 1.5 in [7], we obtain

$$\operatorname{Ext}_{A}^{1}(X,X) \simeq D\underline{\operatorname{Hom}}_{A}(X,\tau X) \simeq \bigoplus_{\overline{Y} \simeq X} \operatorname{Hom}_{K(\mathbb{Z}\Delta)}(Y,\tau W).$$

Then $\operatorname{Ext}_{A}^{1}(X, X) \neq 0$ implies that there exists an integer $l \geq 1$ and a path v in $\mathbb{Z}\Delta$ of length 2rl-2 such that its image \overline{v} in the mesh category $K(\mathbb{Z}\Delta)$ is nonzero. By the definition of m_{Δ} , it remains to show that $2r-2 \geq m_{\Delta}$. But this is done by (1.5) and (1.6) in [5], since $\tau^{r} \Phi \neq \tau^{2m-1}$.

2.4. Proof of the Theorem. Clearly, (ii) implies (i).

(i) \Rightarrow (iii). Assume that Γ_A^s is not isomorphic to $\mathbb{ZD}_{3m}/(\tau^{2m-1})$ for any $m \geq 2$. We claim that then the orders \leq_{deg} and \leq_{ext} are equivalent. If A is a selfinjective algebra of class \mathbb{A}_n , then this is done by Theorem 2 in [12]. Thus, we may assume that A is of class \mathbb{D}_n with $n \geq 4$, or \mathbb{E}_n with

G. ZWARA

 $n \in \{6,7,8\}.$ Then our claim follows from Lemma 2.3 above and Theorem 2 in [14].

(iii) \Rightarrow (ii). Assume $\Gamma_A^s = \mathbb{ZD}_{3m}/(\tau^{2m-1})$ for some $m \ge 2$ and \mathbb{D}_{3m} of the form

$$1 \to 2 \to \ldots \to (3m-2) \swarrow 3m$$

The quiver \mathbb{ZD}_{3m} admits a mesh-complete subquiver of the form

Then there are the following short exact sequences in mod A:

Applying Lemma (3 + 3 + 2) from [2, (2.1)] to these sequences, we get a short exact sequence

$$0 \to \overline{(0,m)} \to \overline{(1,m-1)} \oplus \overline{(2m-1,m)} \oplus \pi \to \overline{(2m-1,m+1)} \to 0,$$

where

$$\pi = \bigoplus_{k=m}^{3m} (\pi \overline{(0,k)}) \oplus \bigoplus_{l=1}^{2m-2} (\pi \overline{(l,3m-1-l)})$$

Of course, (2m-1,m) = (0,m). Finally, applying [9, Proposition 3.4], we infer that $(1,m-1) \oplus \pi <_{\text{deg}} (2m-1,m+1)$. This finishes the proof.

REFERENCES

- [1] S. Abeasis and A. del Fra, Degenerations for the representations of a quiver of type \mathbb{A}_m , J. Algebra 93 (1985), 376-412.
- I. Assem and A. Skowroński, Minimal representation-infinite coil algebras, Manuscripta Math. 67 (1990), 305–331.
- K. Bongartz, Degenerations for representations of tame quivers, Ann. Sci. École Norm. Sup. 28 (1995), 647–668.
- [4] —, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996), 245–287.
- [5] O. Bretscher, C. Läser and C. Riedtmann, *Selfinjective and simply connected algebras*, Manuscripta Math. 36 (1981), 253–307.
- [6] H. Kraft, Geometric methods in representation theory, in: Representations of Algebras, Lecture Notes in Math. 944, Springer, 1982, 180–258.
- [7] C. Riedtmann, Representation-finite selfinjective algebras of class A_n , in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 449–520.
- [8] —, Representation-finite selfinjective algebras of class D_n , Compositio Math. 49 (1983), 231–282.
- [9] —, Degenerations for representations of quivers with relations, Ann. Sci. École Norm. Sup. 4 (1986), 275–301.
- [10] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [11] A. Skowroński and G. Zwara, On degenerations of modules with nondirecting indecomposable summands, Canad. J. Math. 48 (1996), 1091–1120.
- [12] G. Zwara, Degenerations for modules over representation-finite biserial algebras, preprint, Toruń, 1996.
- [13] —, Degenerations for representations of extended Dynkin quivers, preprint, Toruń, 1997.
- [14] —, Degenerations for modules over representation-finite algebras, preprint, Toruń, 1997.

Faculty of Mathematics and Informatics Nicholas Copernicus University Chopina 12/18 87-100 Toruń, Poland E-mail: gzwara@mat.uni.torun.pl

Received 28 March 1997