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ON Ȟn-BUBBLES IN N -DIMENSIONAL COMPACTA

BY

UMED H. KAR IMOV (DUŠANBE) AND DUŠAN REPOV Š (LJUBLJANA)

A topological space X is called an Ȟn-bubble (n is a natural number,
Ȟn is Čech cohomology with integer coefficients) if its n-dimensional co-
homology Ȟn(X) is nontrivial and the n-dimensional cohomology of every
proper subspace is trivial. The main results of our paper are: (1) Any

compact metrizable Ȟn-bubble is locally connected ; (2) There exists a 2-
dimensional 2-acyclic compact metrizable ANR which does not contain any

Ȟ2-bubbles; and (3) Every n-acyclic finite-dimensional LȞn-trivial metriz-

able compactum contains an Ȟn-bubble.

1. Introduction. Kuperberg [9] introduced the concept of an n-bubble,
i.e. an n-dimensional compactum X such that Ȟn(X) 6= 0 and Ȟn(F ) = 0
for all its closed proper subspaces F ⊂ X. A natural development of this
concept are Ȟn-bubbles. Let n be a fixed natural number. A topological
space X is said to be an Ȟn-bubble if its n-dimensional Čech cohomology
group with integer coefficients Ȟn(X) is nontrivial and the cohomologies
Ȟn(A) of all its proper subsets A are trivial.

Every connected compact metrizable n-dimensional homology or equiva-
lently (for integer coefficients), every cohomology manifold is an Ȟn-bubble
[3, 7, 12]. This follows by the Poincaré duality and from the fact that the
cohomology group of any subspace of a metrizable space is isomorphic to
the direct limit of cohomology groups of all its open neighborhoods [3, 6].

If we glue two points of the n-dimensional sphere Sn, n > 1, we obtain an
Ȟn-bubble which is not a homology manifold. Any n-dimensional compact
Ȟn-bubble is an n-bubble. The Warsaw circle is a 1-bubble, but not an Ȟ1-
bubble, because there exists a locally compact subspace with a nontrivial
1-dimensional cohomology [8]. Another difference between n-bubbles and
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Ȟn-bubbles is the following: by a theorem of Kuperberg, every n-dimen-
sional n-acyclic compactum without small cycles contains an n-bubble. In
particular, every n-dimensional n-acyclic compact ANR contains one. We
prove that there exists a 2-dimensional 2-acyclic compact ANR which does
not contain any Ȟ2-bubbles.

Terminology of the paper agrees in general with [2–5]. The authors wish
to thank the referee for several important comments and suggestions.

2. General properties of Ȟn-bubbles. First of all we remark that
the cohomological dimension dimZX of every Ȟn-bubble X is n and if X
is a finite-dimensional metrizable space then IndX = n. It follows by the
Mayer–Vietoris sequence that ifX = X1∪X2 andX1,X2 are both nonempty
closed or both nonempty open subsets of X then dimZ(X1 ∩X2) ≥ n − 1.
In particular, every Ȟn-bubble is a connected space.

Theorem 2.1. Any compact metrizable Ȟn-bubble X is locally con-

nected.

To prove this theorem we need some lemmas.

Lemma 2.2. Let X be a compact metrizable not locally connected space.

Then for some point x and its neighborhood V , the intersection V ∩ C of

the set V with the component C of the point x in the closure V is not open

in V .

P r o o f. Since the space X is not locally connected, there is a point
x ∈ X and its neighborhood U such that no neighborhood of x in U is
connected. Consider a countable system {Vi}

∞

i=1 of neighborhoods of the
point x in U for which V i ⊂ Vi+1. Suppose that all intersections Ci ∩ Vi of
the components Ci of the point x in the space V i with Vi are open. Then
we have Ci ⊂ Ci+1 ∩ Vi+1 ⊂ Ci+1 and therefore

⋃

∞

i=1(Ci ∩ Vi) =
⋃

∞

i=1Ci.
The left side of this equality is an open set and the right side is connected,
so the point x has a connected neighborhood in U . But this contradicts our
assumptions.

Lemma 2.3. Let V be the same neighborhood as in Lemma 2.2 and let

C be the corresponding component of the point x. Then:

(i) There exists a countable disjoint system of clopen sets {Oi}
∞

i=1 in V
for which C ∪

⋃

∞

i=1Oi is compact ;
(ii) There exists a countable system of open balls {Ei}

∞

i=1 in V with

centers at the point y ∈ C∩V for which
⋂

∞

i=1Ei = {y} and the intersections

Oi ∩ Ej are nonempty if and only if i > j.

P r o o f. Since V is compact, there exists a countable decreasing system
{Ui}

∞

i=1 of sets, clopen in V , for which
⋂

∞

i=1 Ui=C. Then Vi=Ui\Ui+1 are



Ȟn
-BUBBLES IN COMPACTA 41

clopen sets in V . By Lemma 2.2, we can choose any non-interior point y of
the set V ∩ C.

Construct inductively the systems {Oi}
∞

i=1 and {Ei}
∞

i=1. Let E1 be any
open ball in V of radius smaller than 1, with center at y and such that
E1 ∩ V1 = ∅. Let k1 be the maximal index for which V1, V2, . . . , Vk1

do not
intersect E1 (such an index exists because y is not an interior point of C).

Let O1 =
⋃k1

i=1 Vi. Now suppose that the systems {Oi}
m
i=1 and {Ei}

m
i=1 have

been constructed for some m. Let Em+1 be the open ball, not intersecting
Vk1+1 with center at y and of radius smaller than 1/(m + 1). Let km+1

be the maximal index for which V1, V2, . . . , Vkm+1
do not intersect Em+1

and let Om+1 =
⋃km+1

i=1 Vi. Then by induction, we may assume that the
systems {Oi}

∞

i=1 and {Ei}
∞

i=1 have been constructed which satisfy conditions
of Lemma 2.3.

The following lemma is a well-known result from the theory of inverse
limits (see, e.g. [7]).

Lemma 2.4. Let {Gi}
∞

i=1 be an inverse system of countable groups.

Then the group lim←−
(1)Gi is either trivial or has the power of continuum. It is

trivial if and only if the inverse system satisfies the Mittag-Leffler condition.

P r o o f o f T h e o r e m 2.1. Suppose that X is not locally connected.
Then there exist subsets C, {Oi}

∞

i=1, {Ei}
∞

i=1 of X and a point y as in
Lemmas 2.2 and 2.3. We shall prove that then Ȟn((C\y) ∪

⋃

∞

i=1Oi) 6= ∅.
There is an obvious equality (C\y) ∪

⋃

∞

i=1Oi =
⋃

∞

j=1((C ∪
⋃

∞

i=1Oi)\Ej).
Therefore, from the Milnor generalized exact sequences (see e.g. [7; p. 354])
we have the monomorphism

lim←−
(1)

{

Ȟn−1
((

C ∪
∞
⋃

i=1

Oi

)

\Ej
)}

j
→ Ȟn

(

(C\y) ∪
∞
⋃

i=1

Oi

)

.

Čech cohomology groups of compact metrizable spaces are countable.
Therefore it suffices by Lemma 2.4 to establish that the inverse spectrum
{Ȟn−1((C ∪

⋃

∞

i=1Oi)\Ej)}j does not satisfy the Mittag-Leffler condition.
Consider the following commutative diagram in which the horizontal lines
are parts of the Mayer–Vietoris sequences:

Ȟn−1(Oj+1)⊕Ȟ
n−1(X\(Oj+1 ∩E1)) Ȟn−1(Oj+1\E1) Ȟn(X)

Ȟn−1(Oj+1)⊕Ȟ
n−1(X\(Oj+1 ∩ Ej)) Ȟn−1(Oj+1\Ej) Ȟn(X)

ϕ1 // ϕ2 //

ϕ3

OO

ϕ6 //

ϕ4

OO

ϕ7 //

ϕ5

OO

Obviously the homomorphisms ϕ2 and ϕ7 are epimorphisms.
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As ϕ7 is nontrivial there exists α′ ∈ Ȟn−1(Oj+1\Ej) for which ϕ7(α
′)

6= 0. Since ϕ5 is an isomorphism, the element ϕ4(α
′) does not belong to

ϕ1(Ȟ
n−1(Oj+1)).

Now consider the following diagram:

Ȟn−1((C ∪
⋃

∞

i=1Oi)\E1) Ȟn−1(Oj+1\E1)

Ȟn−1((C ∪
⋃

∞

i=1Oi)\Ej) Ȟn−1(Oj+1\Ej)

Ȟn−1((C ∪
⋃

∞

i=1Oi)\Ej+1) Ȟn−1(Oj+1)

ψ1 //

ψ2

OO

ψ4 //

ψ3

OO

ψ5

OO

ψ7 //

ψ6

OO

The sets Oj+1\E1, Oj+1\Ej , Oj+1 are clopen in (C ∪
⋃

∞

i=1Oi)\E1, (C ∪
⋃

∞

i=1Oi)\Ej , (C ∪
⋃

∞

i=1Oi)\Ej+1 respectively, therefore ψ1, ψ4, ψ7 are epi-
morphisms. Let ψ4(α) = α′. Then since ψ3(α

′) = ϕ4(α
′) does not belong

to the group ϕ1(Ȟ
n−1(Oj+1)) = ψ3ψ6(Ȟ

n−1(Oj+1)), the element ψ2(α)
does not belong to the image of Ȟn−1((C ∪

⋃

∞

i=1Oi)\Ej+1) in the group
Ȟn−1((C∪

⋃

∞

i=1Oi)\E1). Thus it follows that the condition of Mittag-Leffler
is not fulfiled and X is a locally connected space.

R e m a r k 2.5. It follows by Theorem 2.1 that every compact metrizable
Ȟ1-bubble is homeomorphic to S1 [10]. But if we glue the endpoints of the
“long line” [4] we obtain a compact nonmetrizable Ȟ1-bubble.

R e m a r k 2.6. An Ȟn-bubble need not be cohomologically locally con-
nected; e.g. the one-point compactification of the plane R

2 to which a
countable number of orientable 1-handles have been attached is obviously
an Ȟ2-bubble but not a clc space.

Question 2.7. Is it true that every compact metrizable Ȟn-bubble with

Ȟ∗(X) finitely generated is a clc space?

Question 2.8. There exists a compact metrizable Ȟ2-bubble with trivial

fundamental group not homeomorphic to S2 (S. Ferry). Is every such space

homotopically equivalent to S2?

R e m a r k 2.9. The compactness condition in the formulation of Theo-
rem 2.1 is a consequence of some general conditions. Indeed:

Proposition 2.10. Let X be a paracompact Ȟn-bubble and Ȟn(X)
be a slender group (for example the group of integers Z) [13]. Then X is a

compact space.

Lemma 2.11. Let X be a paracompact noncompact space. Then there

exists a countable discrete system {Ui}
∞

i=1 of open nonempty sets in X.
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P r o o f. Since X is a noncompact space there exists an open cover U
which does not contain a finite subcover. Let F be a closed locally finite
cover which is a refinement of U .

Let x1 be any point of X, St(x1,F) be the union of all members of F
which contain x1. Let Ux1

be a neighborhood of x1 which lies in St(x1,F).

Suppose that the points x1, . . . , xn and their neighborhoods Ux1
, . . . , Uxn

have been chosen for some n. Then let xn+1 be any point which belongs to
X\

⋃n
i=1 St(xi,F) and let Uxn+1

be a neighborhood of xn+1 such that

Uxn+1
⊂ St(xi+1,F) and Uxn+1

∩
n
⋃

i=1

St(xi,F) = ∅.

In this way we can construct a sequence of points {xi}
∞

i=1 and their neigh-
borhoods {Ui}

∞

i=1. It is easy to see that this countable system {Ui}
∞

i=1 is
discrete.

P r o o f o f P r o p o s i t i o n 2.10. Suppose thatX is not compact. Then
by Lemma 2.11 there exists a countable discrete system of open subsets
{Ui}

∞

i=1 of X. For every k, we have the following commutative diagram:

Ȟn(Uk,FrUk) Ȟn(X,X\Uk) Ȟn(X)

Ȟn(
⋃

∞

i=1 Ui,
⋃

∞

i=1 FrUi) Ȟn(X,X\
⋃

∞

i=1 Ui) Ȟn(X)

ϕkoo

τk

��

ψk //
OO

ϕoo ψ //

OO

in which all homomorphisms are induced by inclusions. The homomor-
phisms ϕk and ϕ are the excision isomorphisms. The homomorphisms ψk
and ψ are epimorphisms, because the n-dimensional cohomology of a proper
subspace of X is trivial and the cohomology sequences of pairs are exact.

There is a natural homomorphism

θ : Ȟn
(

∞
⋃

i=1

Ui,

∞
⋃

i=1

FrUi

)

→
∞
∏

i=1

Ȟn(Ui,FrUi)

which is induced by the inclusion of the pairs (Ui,FrUi) in (
⋃

∞

i=1 Ui,
⋃

∞

i=1 FrUi). This homomorphism is an isomorphism [3].

For every k, let ηk be any homomorphism of the infinite cyclic group Z

into the group Ȟn(Uk,FrUk) for which the composition ψkϕ
−1
k ηk is nontriv-

ial.

Let γ be a homomorphism
∏

∞

i=1 Z →
∏

∞

i=1 Ȟ
n(Ui,FrUi) which asso-

ciates with every (a1, a2, . . .) the element (η1(a1), η2(a2), . . .). Let η be the
mapping θ−1γ :

∏

∞

i=1 Z → Ȟn(
⋃

∞

i=1 Ui,
⋃

∞

i=1 FrUi). Consider the mapping
ψϕ−1η :

∏

∞

i=1 Z → Ȟn(X) and any element ek = (0, . . . , 0, 1, 0, . . . , 0) of
∏

∞

i=1 Z. Then η(ek) is an element of Ȟn(
⋃

∞

i=1 Ui,
⋃

∞

i=1 FrUi) such that its
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projections

Ȟn(

∞
⋃

i=1

Ui,

∞
⋃

i=1

FrUi)→ Ȟn(Uj ,FrUj)

are trivial if j 6= k and are equal to ηk(1) 6= 0 if j = k.
Furthermore, it follows for k 6= j, by the commutative diagram below,

Ȟn(X,X\
⋃

∞

i=1 Ui) Ȟn(X,X\Uk) Ȟn(Uj , Uj) = 0

Ȟn(Uj ,FrUj)

RRRRRRRRRRRRR ))

τkoo

��

//

vvmmmmmmmmmmmm
that for k 6= j all projections Ȟn(X,X\Uk)→ (Uj ,FrUj) are trivial.

Therefore, θϕτkϕ
−1
k ηk(1) = γ(ek) and ϕ−1η(ek) = τkϕ

−1
k ηk(1). So we

may assume that ψϕ−1η(ek) = ψτkϕ
−1
k ηk(1) = ψkϕ

−1
k ηk(1) and by our

choice of the homomorphisms ηk, this element is non-trivial.

Consequently, for every k the homomorphism ψϕ−1η :
∏

∞

i=1 Z→ Ȟn(X)
maps the elements ek to nontrivial elements of the group Ȟn(X). But this
is impossible since by hypothesis the group Ȟn(X) is slender [13].

Proposition 2.12. Let X be a metrizable locally compact Ȟn-bubble and

let Ȟn(X) be a countable group. Then X is compact.

P r o o f. Suppose that X is noncompact. Then, because Ȟn-bubbles
are connected it follows that X =

⋃

∞

i=1Ki, where Ki, i ∈ N, are compact
spaces and Ki ⊂ intKi+1, Ki 6= Ki+1. Consider the generalized Milnor
exact sequence

0→ lim←−
(1){Ȟn−1(Ki)}i → Ȟn(X)→ lim←− Ȟ

n(Ki)→ 0.

For every compact metrizable space Ki, the group Ȟn−1(Ki) is countable.
The group Ȟn(X) is countable by hypothesis. Next, Ȟn(Ki) = 0 because
X is an Ȟn-bubble. By Lemma 2.4, lim←−

(1){Ȟn−1(Ki)}i = 0. It follows that
Ȟn(X) = 0. However, X is an Ȟn-bubble. Contradiction.

Question 2.13. Is every paracompact Ȟn-bubble compact?

Question 2.14. Let X be an Ȟn-bubble. To which group can Ȟn(X)
be isomorphic?

Definition 2.15. A topological space is said to be hereditarily Ȟn-

trivial (n is a fixed number) if the cohomology Ȟn of every subspace is trivial.
It is said to be hereditarily locally cohomologically n-trivial (LȞn-trivial) if
every point has a hereditarily Ȟn-trivial neighborhood.

Lemma 2.16. Let X be a compact metrizable LȞn-trivial space. Then

for every open subspace U , the cohomology Ȟn(U) is at most countable.
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P r o o f. Let {Ui}
k
i=1 be any finite open cover of X. Since X is compact

and Ȟn(X) is isomorphic to the direct limit of the n-dimensional cohomol-

ogy groups of the nerves of finite covers, the group Ȟn(X) = Ȟn(
⋃k
i=1 Ui)

is at most countable. Since X is an LȞn-trivial space we may assume
that all subspaces Ui are Ȟn-trivial and that for some index m (m ≤ k)
the group Ȟn(

⋃m
i=1 Ui) is at most countable. Then we prove that the group

Ȟn(
⋃m−1
i=1 Ui) is at most countable. For this we consider the Mayer–Vietoris

sequence

Ȟn
(

m
⋃

i=1

Ui

)

→ Ȟn
(

m−1
⋃

i=1

Ui

)

⊕ Ȟn(Um)→ Ȟn
((

m−1
⋃

i=1

Ui

)

∩ Um
)

.

The groups Ȟn(Um) and Ȟn((
⋃m−1
i=1 Ui) ∩ Um) are trivial and hence the

homomorphism Ȟn(
⋃m
i=1 Ui) → Ȟn(

⋃m−1
i=1 Ui) is an epimorphism. By in-

duction, we may conclude that the n-dimensional Čech cohomology of the
union of any number of elements of the family {Ui}

n
i=1 is at most count-

able (because we can renumber this family). Now let U be any open sub-
space of X. Then add the family {Ui ∩ U}

k
i=1 to {Ui}

k
i=1 to conclude that

Ȟn(U) = Ȟn(
⋃k
i=1(Ui ∩ U)) is at most countable.

Lemma 2.17. Let A be any subspace of a metrizable space X. Then

Ȟn(A) = lim−→ Ȟn(U) (the direct limit is taken over a directed family of all

open neighborhoods of A).

A proof of this lemma can be found in [3, 6].

Lemma 2.18. Let L be an LȞn-trivial compact metrizable space and

suppose that Ȟn(L) = 0. Then L is hereditarily Ȟn-trivial.

P r o o f. For every open subspace U of L there exist the following gener-
alized Milnor exact sequences:

0→ lim←−
(1)Ȟn−1(Ki)→ Ȟn(U)→ lim←− Ȟ

n(Ki)→ 0,

where {Ki}
∞

i=1 are compact subspaces, Ki ⊂ intKi+1,
⋃

∞

i=1Ki = U . It
follows by Lemmas 2.4 and 2.16 that lim←−

(1)Ȟn−1(Ki) = 0. By the n-
dimensionality of L (since L is LȞn-trivial, dimZ L ≤ n) and its acyclicity it
follows that Ȟn(Ki) = 0. Thus Ȟn(U) = 0 and by Lemma 2.17, Ȟn(A) = 0
for any subspace A of L.

Lemma 2.19. Every compact metrizable LȞn-trivial n-bubble C is an

Ȟn-bubble.

P r o o f. For every open proper subspace U of an n-bubble C there exist
exact sequences

0→ lim←−
(1)Ȟn−1(Ci)→ Ȟn(U)→ lim←− Ȟ

n(Ci)→ 0
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in which {Ci}
∞

i=1 is an increasing system of compact subspaces (Ci ⊂
intCi+1) and

⋃

∞

i=1Ci = U . By Lemmas 2.4 and 2.16 it follows that
lim←−

(1)Ȟn−1(Ci) = 0. The groups Ȟn(Ci) are trivial because C is a q-bubble.
Therefore Ȟn(U) = 0 and according to Lemma 2.17, C is an Ȟn-bubble.

3. A 2-dimensional 2-acyclic ANR compactum without

Ȟn-bubbles

Theorem 3.1. There exists a 2-dimensional 2-acyclic compact metriz-

able ANR which does not contain any Ȟ2-bubbles.

P r o o f. Let p and q be two relatively prime integers. Let f and g be
natural mappings of degree p and q of S1 to S1, respectively. Let Pi, i ∈ N,
be CW-complexes homeomorphic to the cylinder of the mapping f . Let P
be a 2-dimensional polyhedron which is obtained from the topological sum
⊕

Pi (i ∈ N) by attaching for every i, the upper base of Pi to the lower base
Pi+1 [5]. Let Q be a polyhedron constructed similarly to P , except that Qi
are CW-complexes homeomorphic to the cylinder of the mapping g.

Let X1 = P ∗ and X2 = Q∗ be the one-point compactifications of P and
Q, respectively. Let X be a compact space constructed from X1 and X2 by
attaching the lower base of P1 ⊂ X1 to the lower base Q1 ⊂ X2. Because X1

and X2 are contractible compact spaces (the upper base of every cylinder
is its strong deformation retract) it follows by the Mayer–Vietoris sequence
that Ȟ2(X) = Z. Since X is locally contractible and finite-dimensional, it
is an ANR [2].

Let us prove that X does not contain any Ȟ2-bubbles. Indeed, let M be
an Ȟ2-bubble of X. Then there are two possibilities:

(1) There exists a natural number n0 such that either
⋃

∞

i=n0
Pi or

⋃

∞

i=n0
Qi lies in M ;

(2) There exist sequences {pk}
∞

k=1, {qk}
∞

k=1 of points in X and increasing
index sequences {ik}

∞

k=1 and {jk}
∞

k=1 such that pk ∈ Pik\M , qk ∈ Qjk\M .

Case 1. Let
⋃

∞

i=n0
Pi be a proper subset of M . Then obviously

H2
(

∞
⋃

i=n0

Pi

)

= lim←−
(1)(Z

p
←Z

p
←Z

p
← . . .)

where all projections are multiplications by p. Since these sequences do not
satisfy the ML condition, H2(

⋃

∞

i=n0
Pi) 6= ∅ and M is not an Ȟ2-bubble.

C a s e 2. Consider X as the union of the following subsets:

X =
(

∞
⋃

k=1

A−

k

)

∪
(

∞
⋃

k=1

B−

k

)

∪A0 ∪
(

∞
⋃

k=1

A+
k

)

∪
(

∞
⋃

k=1

B+
k

)

∪ {t−, t+}
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where all subsets are closed in X, the systems {A−

k , A
+
k , A0}

∞

k=1 and {B−

k ,
B+
k }

∞

k=1 are disjoint, and the points t−, t+ are the compactification points
of P and Q, respectively. All intersections A−

k ∩B
−

k , A−

k ∩B
−

k+1, A
+
k ∩B

+
k ,

A+
k ∩B

+
k+1, A0 ∩B

−

1 , A0 ∩B
+
1 are homeomorphic to S1 and no one of them

lies in M because each contains some of the points pk or qk. Each of those
subsets (apart from the points t− and t+) lies in some finite polyhedron
⋃m
i=1(Pi∪Qi). Applying the Mayer–Vietoris sequence we can conclude that

Ȟ2(M) is isomorphic to the direct sum

Ȟ2
(

M ∩
(

∞
⋃

i=1

A−

k ∪
∞
⋃

i=1

A+
k ∪A0 ∪ {t

−, t+}
))

⊕ Ȟ2
(

M ∩
(

∞
⋃

i=1

B−

k ∪
∞
⋃

i=1

B+
k ∪ {t

−, t+}
))

.

By the Mayer–Vietoris formula

Ȟ1
(

m
⋃

i=1

Pi

)

⊕ Ȟ1
(

m
⋃

i=1

Qi

)

→ Ȟ1(S1)→ Ȟ2
(

m
⋃

i=1

(Pi ∪Qi)
)

→ 0

and because p and q are relatively prime it follows that
⋃m
i=1(Pi ∪ Qi) is

acyclic in dimension 2. By Lemma 2.18, all of the groups Ȟ2(M ∩ A−

k ),
Ȟ2(M ∩A+

k ), Ȟ2(M ∩B−

k ), Ȟ2(M ∩B+
k ) are trivial. It follows that Ȟ2(M)

= 0 (see [3]) and M is not an Ȟ2-bubble.

The following problems are interesting in connection with this theorem:

Question 3.2 (Kuperberg [9]). Does every (n+ 1)-dimensional com-

pactum contain an n-bubble?

Question 3.3. Does there exist an (n+ 1)-dimensional compact ANR

without Ȟn-bubbles?

4. A sufficient condition for existence of Ȟn-bubbles in

n-dimensional compacta

Theorem 4.1. Every n-acyclic finited̄imensional LȞn-trivial metriz-

able compactum X contains an Ȟn-bubble.

Lemma 4.2. Let X be an LȞn-trivial space. Let C =
⋂

∞

i=1 Ui, X ⊃
Ui ⊃ Ui+1, dimFrUi ≤ n− 1 and each Ui is open. Then there exists k such

that Ȟn(Ui\Uj) is trivial for every j > i > k.

P r o o f. It follows from the exact sequence

0→ lim←−
(1)Ȟn−1(X\Ui)→ Ȟn(X\C)→ lim←− Ȟ

n(X\Ui)→ 0,
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and the countability of Ȟn(X\C) (Lemma 2.16) and Lemma 2.4 that
lim←−

(1)Ȟn−1(X\Ui) = 0. Therefore, Ȟn(X\C) = lim←− Ȟ
n(X\Ui). In the

spectrum Ȟn(X\U1)← Ȟn(X\U2)← Ȟn(X\U3)← . . . only a finite num-
ber of projections can be non-monomorphisms. (It follows from dimen-
sion theory that all these homomorphisms are epimorphisms; if an infinite
number of projections were not monomorphisms then lim←− would not be
countable, but this would contradict the countability of Ȟn(X\C).) Con-
sequently, for some k all homomorphisms Ȟq(X\Ui) ← Ȟq(X\Uj) where
j > i > k are isomorphisms. It follows from this and from the exact sequence

Ȟn(X\Uj)→ Ȟn(X\Ui)⊕ Ȟ
n(Ui\Uj)→ Ȟn(FrUi)

in which Ȟn(FrUi) = 0 (dim FrUi ≤ n− 1) that Ȟn(Ui\Uj) = 0.

Lemma 4.3. Suppose that in the commutative diagram with exact hori-

zontal lines

A1 A2 A3 0

B1 B2 B3 0

ϕ1 // ϕ2 // //

ϕ3

OO

ϕ6 //

ϕ4

OO

ϕ7 //

ϕ5

OO

//

the homomorphism ϕ4 is a monomorphism and ϕ5 is not. Then Imϕ1 6=
Im(ϕ4ϕ6).

P r o o f. Let α ∈ B3, α 6= 0 and ϕ5(α) = 0. Let β ∈ B2 and ϕ7(β) = α.
Then ϕ4(β) ∈ Imϕ1. If Imϕ1 = Im(ϕ4ϕ6) then there exists γ such that
ϕ4ϕ6(γ) = ϕ4(β). Since ϕ4 is monomorphism, it follows that ϕ6(γ) = β
and ϕ7ϕ6(γ) = ϕ7(β) = α. But by the exactness condition ϕ7ϕ6 = 0, hence
α = 0, which contradicts the choice of α.

Lemma 4.4. In the commutative diagram

A1 A2

B1 B2

ψ1oo

ψ3

��
ψ2

OO

ψ4oo

let ψ1 be an epimorphism, ψ4 a monomorphism and ψ3 not an epimorphism.

Then ψ2 is not a monomorphism.

P r o o f. Let ψ2 be a monomorphism, α ∈ B2 and α 6∈ Imψ3. Then for
some β, ψ2ψ4(α) = ψ1(β). From this and by commutativity of the diagram
it follows that ψ2ψ4ψ3(β) = ψ1(β) = ψ2ψ4(α) and ψ3(β) = α but this
contradicts the choice of α.

Let a ∈ Ȟn(X). By a support of a we mean any closed subspace F of X
such that the restriction of a to F is not trivial. The support F2 is less than
F1 if F2 ⊂ F1. This relation is obviously a partial ordering on the set of
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all supports of the element a. It follows by the continuity property of Čech
cohomology that for any linearly ordered set of supports their intersection is
a support of a. By the Kuratowski–Zorn Lemma there is a minimal support

of a.

P r o o f o f T h e o r e m 4.1. SinceX is compact, the group Ȟn(X) must
be countable. Let {ai} be a countable set of generators of Ȟn(X) and S0

be a minimal support of a1. Let i1 be the smallest index such that i1 > 1
and the restriction of ai1 to S0 is nontrivial. If such an index does not exist
then obviously S0 is an n-bubble. Let S1 be a minimal support of ai1 which
is contained in S0. Suppose that a minimal support Sj of some element aij
has been constructed. Let ij+1 be the smallest index such that ij+1 > ij
and the restriction of aij+1

to Sj is not trivial. If such an index does not
exist then Sj is an n-bubble. Let Sj+1 be a minimal support of aij+1

which
is contained in Sj . By induction we get a chain S0 ⊃ S1 ⊃ S2 ⊃ . . . of
minimal supports of the elements a1, ai1 , ai2 , . . .

We will prove that this chain is finite and Ȟn(X) is finitely generated,
i.e. for some m, Sk = Sk+1 when k > m. Indeed, otherwise we have a
decreasing sequence of closed sets S0 ⊃ S1 ⊃ S2 ⊃ . . . and so a countable
number of nontrivial elements aij ∈ Ȟn(Sj) such that the restrictions of

aij to Ȟn(Sj+1) are trivial. By the continuity property of Čech cohomol-

ogy it follows that for every aij , there exists bj ∈ Ȟn(Uj), where Uj is a
neighborhood of Sj , such that:

(1) bj |Sj
= aij and thus is not trivial;

(2) Uj ⊃ Uj+1;

(3) bj |Uj+1
= 0; and

(4) IndFrUj ≤ n− 1.

According to Lemma 4.2, Ȟn(Uk\Ui) = 0 for some k and all i > k.
For simplicity, we can pass to subchains and suppose that k = 0, U0 = U ,
IndFrUi ≤ n − 1, and the homomorphisms Ȟn(Ui) → Ȟn(Ui+1) are not
monomorphisms. Then we prove that the inverse sequences

Ȟn−1(U\U1)← Ȟn−1(U\U2)← Ȟn−1(U\U3)← . . .

do not satisfy the Mittag-Leffler condition. It is sufficient to prove that for
every i the images of the homomorphisms

Ȟn−1(U\U1)← Ȟn−1(U\Ui) and Ȟn−1(U\U1)← Ȟn−1(U\Ui+1)

do not coincide.

Since Ȟn(U\U1) = 0 we get for every i the commutative diagram with
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exact horizontal lines:

Ȟn−1(U\Ui) Ȟn−1(U\U1) Ȟn(U\Ui, U\U1) 0

Ȟn−1(U\Ui+1) Ȟn−1(U\U1) Ȟn(U\Ui+1, U\U1) 0

ϕ1 // ϕ2 // //

ϕ3

OO

ϕ6 //

ϕ4

OO

ϕ7 //

ϕ5

OO

//

To prove that Imϕ1 6= Imϕ4ϕ6 it is sufficient by Lemma 4.3 to prove that
ϕ5 is not a monomorphism.

Consider another diagram in which all homomorphisms are induced by
inclusions:

Ȟn(U\Ui, U\U1) Ȟn(U, (U\U1) ∪ Ui)

Ȟn(U\Ui+1, U\U1) Ȟn(U, (U\U1) ∪ U i+1)

ψ1oo

ψ3

��
ψ2

OO

ψ4oo

The homomorphisms ψ1 and ψ4 are excision isomorphisms. To prove that
ϕ5 = ψ2 is not a monomorphism it suffices by Lemma 4.4 to prove that ψ3

is not an epimorphism.

It follows from the LȞn-triviality that Ȟn+1(U, (U\U1) ∪ Ui) = 0 for
every i. So we have a commutative diagram with exact lines:

Ȟn(U, (U\U1) ∪ U i) Ȟn(U) Ȟn((U\U1) ∪ Ui) 0

Ȟn(U, (U\U1) ∪ U i+1) Ȟn(U) Ȟn((U\U1) ∪ U i+1) 0

ψ3

��

//

��

//

ψ5

��

//

// // //

To prove that ψ3 is not an epimorphism it suffices by Lemma 4.3 to prove
that ψ5 is not a monomorphism. But this follows by the choice of the
decreasing sequences of sets {Ui} (recall that Ȟn(Ui)→ Ȟn(U i+1) is not a
monomorphism).

Hence in the spectrum

Ȟn−1(U\U1)← Ȟn−1(U\U2)← Ȟn−1(U\U3)← . . .

the Mittag-Leffler condition is not satisfied.

By Lemma 2.4, the lim←−
(1) of this spectrum has the power of continuum

and by the exactness of

0→ lim←−
(1)Ȟn−1(U\Ui)→ Ȟn

(

U\
∞
⋂

i=1

Ui

)

it follows that Ȟn(U\
⋂

∞

i=1 Ui) has the power of continuum. But this con-
tradicts Lemma 2.16, because U is obviously an LHn-trivial compact space.
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Therefore there exists m such that the chain S0 ⊃ S1 ⊃ S2 ⊃ . . . of the min-
imal supports consists of m elements S0 ⊃ S1 ⊃ . . . ⊃ Sm, i.e. for all k ≥ m,
Sk = Sk+1. Then Sm is an n-bubble. (It follows from dimension theory that
for every closed subset F of X, Ȟn(X)→ Ȟn(F ) is an epimorphism and by
construction—if F is a proper subset of Sm—this homomorphism is trivial.)
By Lemma 2.19, Sm is an Ȟn-bubble.

Problem 4.5. Can one omit the condition of finited̄imensionality from

Theorem 4.1?
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