We derive and examine some quadratic integral inequalities of first order of the form
\[
\int_I \left(r \dot{h}^2 + 2s \dot{h}h + uh^2 \right) dt \geq 0, \quad h \in H,
\]
where \(I = (\alpha, \beta) \), \(-\infty \leq \alpha < \beta \leq \infty\), \(r, s \) and \(u \) are given real functions of the variable \(t \), \(H \) is a given class of absolutely continuous functions and \(\dot{h} \equiv dh/dt \). The inequalities of the form (1) comprise as special cases integral inequalities of Sturm–Liouville type examined by Florkiewicz and Rybarski [10] and quadratic integral inequalities of Opial type examined by Kuchta [13]. The method used to obtain the integral inequalities of the form (1) is an extension of the uniform method of obtaining various types of integral inequalities involving a function and its derivative. The method we extend was used in [8]–[10], [13]. The method makes it possible, given a function \(r \) and an auxiliary function \(\varphi \), to determine the functions \(s \) and \(u \), and next the class \(H \) of the functions \(h \) for which (1) holds. In this paper \(s \) and \(u \) are solutions of a certain differential inequality which makes it possible to obtain a large set of functions \(s \) and \(u \) for which inequality (1) holds.

Inequalities of the form (1) have been considered by Beesack [2]–[5], Redheffer [16], Yang [18], Benson [6], Boyd [7] and others (for an extensive bibliography see [14]).

The positive definiteness of quadratic functionals of the form (1) is a basic problem of the theory of singular quadratic functionals introduced by Morse and Leighton [15] (cf. [17], [1]). This problem is of significant importance for the oscillation theory for second order linear differential equations on a non-compact interval (see [17]).

Let \(I = (\alpha, \beta) \), \(-\infty \leq \alpha < \beta \leq \infty\), be an arbitrary open interval. We denote by \(M(I) \) the class of real functions which are defined and Lebesgue

1991 Mathematics Subject Classification: Primary 26D10.
Key words and phrases: absolutely continuous function, integral inequality.
measurable on \(I \) and by \(AC(I) \) the class of real functions defined and absolutely continuous on \(I \). Let \(r \in AC(I) \) and \(\varphi \in AC(I) \) be given functions such that \(r > 0, \varphi > 0 \) on \(I \) and \(\varphi \in AC(I) \). Then \(r^{-1} = 1/r \in AC(I) \) and \(\varphi^{-1} = 1/\varphi \in AC(I) \). Let \(s \in AC(I) \) and \(u \in M(I) \) be arbitrary functions satisfying the differential inequality

\[
\dot{s} - u + (r\dot{\varphi})\varphi^{-1} \leq 0
\]

almost everywhere on \(I \).

Denote by \(\hat{H} \) the class of functions \(h \in AC(I) \) satisfying the following integral and limit conditions:

\[
\int_I \dot{r}h^2 \, dt < \infty, \quad \int_I sh\dot{h} \, dt < \infty, \quad \int_I uh^2 \, dt < \infty,
\]

\[
\liminf_{t \to \alpha} \dot{v}h^2 < \infty, \quad \limsup_{t \to \beta} \dot{v}h^2 > -\infty,
\]

where

\[
v = r\dot{\varphi}\varphi^{-1} + s.
\]

Theorem 1. For every \(h \in \hat{H} \) both limits in (4) are proper and finite, and

\[
\lim_{t \to \beta} \dot{v}h^2 - \lim_{t \to \alpha} \dot{v}h^2 \leq \int_I (\dot{r}h^2 + 2sh\dot{h} + uh^2) \, dt.
\]

If \(h \neq 0 \), then equality holds in (6) if and only if \(s \) and \(u \) satisfy the differential equation

\[
\dot{s} - u + (r\dot{\varphi})\varphi^{-1} = 0
\]

a.e. on \(I \), \(\varphi \in \hat{H} \) and \(h = c\varphi \) with \(c = \text{const} \neq 0 \).

Proof. Let \(h \in AC(I) \). By (5) and our assumptions we have \(\dot{v}h^2 \in AC(I) \) and \(\varphi^{-1}h \in AC(I) \) and we easily check that

\[
\dot{r}h^2 + 2sh\dot{h} + uh^2 = (\dot{v}h^2)^* + f + g \quad \text{a.e. on } I,
\]

where

\[
f = - (\dot{s} - u + (r\dot{\varphi})\varphi^{-1})h^2 \geq 0,
\]

\[
g = r\varphi^2[(\varphi^{-1}h)^*]^2 \geq 0.
\]

Now, let \(h \in \hat{H} \). By the first condition of (3) it follows that \(\dot{r}h^2 \) is summable on \(I \) because \(\dot{r}h^2 \geq 0 \) on \(I \). By the assumptions, all other functions appearing in (8) are summable on each compact interval \([a, b] \subset I \).

Thus, by (8),

\[
\int_a^b \dot{r}h^2 \, dt + 2\int_a^b sh\dot{h} \, dt + \int_a^b uh^2 \, dt = \dot{v}h^2|_a^b + \int_a^b f \, dt + \int_a^b g \, dt
\]
for all $\alpha < a < b < \beta$. By (4) there exist two sequences $\{a_n\}$ and $\{b_n\}$ such that $\alpha < a_n < b_n < \beta$, $a_n \to \alpha$, $b_n \to \beta$ and

$$\lim_{n \to \infty} (-vh^2)|_{a_n} > -\infty, \quad \lim_{n \to \infty} vh^2|_{b_n} > -\infty.$$

Thus there is a constant C such that

$$vh^2|_{a_n} \geq C > -\infty.$$

In view of (9) and (10), from (11) we infer that

$$\int_{a_n}^{b_n} (2shh + uh^2) dt \geq - \int_{a_n}^{b_n} r\dot{h}^2 dt + C \geq - \int_{\alpha}^{\beta} r\dot{h}^2 dt + C$$

and letting $n \to \infty$ gives

$$\int_I (2shh + uh^2) dt \geq - \int_I r\dot{h}^2 dt + C > -\infty.$$

By this estimate and by the second and third conditions of (3) we easily see that the functions $sh\dot{h}$ and uh^2 are summable on I. In the analogous way we show that f and g are summable on I. Thus all integrals in (11) have finite limits as $a \to \alpha$ or $b \to \beta$. It follows that both limits in (4) are proper and finite. Now, by (11), as $a \to \alpha$ and $b \to \beta$, we obtain

$$\int_I (r\dot{h}^2 + 2shh + uh^2) dt = \lim_{t \to \beta} vh^2 - \lim_{t \to \alpha} vh^2 + \int_I f dt + \int_I g dt$$

whence (6) follows, since $f \geq 0$ and $g \geq 0$ on I.

By (12), equality holds in (6) for a non-vanishing function $h \in \tilde{H}$ if and only if $\int_I f dt = 0$ and $\int_I g dt = 0$, i.e. $f = 0$ and $g = 0$ a.e. on I. In view of (10), $g = 0$ a.e. on I if and only if $(\varphi^{-1}h) = 0$ a.e. on I. Hence $h = c\varphi$, where $c = \text{const} \neq 0$, since $\varphi^{-1}h \in AC(I)$ by assumption. Thus $\varphi \in \tilde{H}$. Further, from (9), $f = 0$ a.e. on I if and only if s and u satisfy (7) a.e. on I, because $h^2 = c^2\varphi^2 > 0$ on I. □

Denote by \tilde{H} the class of functions $h \in \tilde{H}$ satisfying additionally the limit condition

$$\liminf_{t \to \alpha} vh^2 \leq \limsup_{t \to \beta} vh^2.$$

By Theorem 1 we can write it in the equivalent form

$$\lim_{t \to \alpha} vh^2 \leq \lim_{t \to \beta} vh^2.$$

Theorem 2. For every $h \in \tilde{H}$,

$$\int_I (r\dot{h}^2 + 2shh + uh^2) dt \geq 0.$$
If \(h \neq 0 \), then equality holds in (15) if and only if \(\varphi^{-1}h = \text{const} \neq 0 \) and the additional conditions (7) and
\[
\varphi \in \tilde{H}, \quad \lim_{t \to \alpha} v\varphi^2 = \lim_{t \to \beta} v\varphi^2
\]
are satisfied.

Proof. By (14) and Theorem 1, inequality (15) follows from (6). If equality occurs in (15) for some non-vanishing function \(h \in \tilde{H} \), then by (6) and (14) we have \(\lim_{t \to \alpha} vh^2 = \lim_{t \to \beta} vh^2 \). Using Theorem 1 once again we conclude that (7) holds, \(\varphi \in \tilde{H} \) and \(h = c\varphi \), where \(c = \text{const} \neq 0 \), whence we obtain (16).

Now we describe the class \(\tilde{H} \) in the cases that occur most frequently. If \(ru - s^2 \geq 0 \) a.e. on \(I \), then inequality (15) holds for all \(h \in AC(I) \). Thus it is natural to consider cases like \(ru - s^2 < 0 \) a.e. in some interval \((a, b) \subset I \).

Lemma 1. Let \(\alpha \leq a < b \leq \beta \). If \(ru - s^2 < 0 \) a.e. on \((a, b)\), then the function \(v \) satisfies the differential inequality
\[
rv < 2sv - v^2
\]
a.e. on \((a, b)\).

Proof. By (5) and (2) we have
\[
\dot{v} = (r\dot{\varphi})\varphi^{-1} + s - r\varphi^2\varphi^{-2} \leq u - r\varphi^2\varphi^{-2}
\]
a.e. on \((a, b)\). Thus from the assumptions we obtain
\[
rv \leq ru - r^2\varphi^2\varphi^{-2} < s^2 - (r\dot{\varphi}\varphi^{-1})^2,
\]
since \(r > 0 \) on \(I \). Further, by (5) we have \((r\dot{\varphi}\varphi^{-1})^2 = s^2 - 2sv + v^2 \) on \(I \), whence (17) follows.

We will denote by \(U_\alpha \) (resp. \(U_\beta \)) some right-hand (resp. left-hand) neighbourhood of the point \(\alpha \) (resp. \(\beta \)). By Lemma 1 it follows that if \(ru - s^2 < 0 \) a.e. on \(U_\alpha \) and \(sv \leq 0 \) on \(U_\alpha \), then \(\dot{v} < 0 \) a.e. on \(U_\alpha \) and consequently the function \(v \) is decreasing on \(U_\alpha \). Thus the limit \(v(\alpha) = \lim_{t \to \alpha} v \) exists and \(v < v(\alpha) \) on \(U_\alpha \). Analogously, if \(ru - s^2 < 0 \) a.e. on \(U_\beta \) and \(sv \leq 0 \) on \(U_\beta \), then \(v(\beta) = \lim_{t \to \beta} v \) exists and \(v > v(\beta) \) on \(U_\beta \).

Lemma 2. If \(ru - s^2 < 0 \) a.e. on \(U_\alpha \) (resp. \(U_\beta \)), \(sv \leq 0 \) on \(U_\alpha \) (resp. \(U_\beta \)) and \(v(\alpha) \neq 0 \) (resp. \(v(\beta) \neq 0 \)), then \(\int_{t}^{\alpha} r^{-1} d\tau < \infty \) (resp. \(\int_{t}^{\beta} r^{-1} d\tau < \infty \)) for some \(t \in I \). Moreover, if \(v(\alpha) = \infty \) (resp. \(v(\beta) = -\infty \)), then \(v(t)\int_{t}^{\alpha} r^{-1} d\tau = O(1) \) as \(t \to \alpha \) (resp. \(v(t)\int_{t}^{\beta} r^{-1} d\tau = O(1) \) as \(t \to \beta \)).

Proof. We prove the lemma only for the point \(\alpha \). The proof for \(\beta \) is analogous.
Let \(v(\alpha) \neq 0 \) and consider some right-hand neighbourhood \(U \subset U_\alpha \) of \(\alpha \) such that \(v \neq 0 \) on \(U \). By the assumptions and Lemma 1, from (17) we get \(\dot{r} \leq -v^2 \) a.e. on \(U \). Then \(r^{-1} \leq -v^{-2} \) a.e. on \(U \), because \(r > 0 \) on \(I \) and we have the estimate

\[
(19) \quad \int_a^t r^{-1} \, d\tau \leq - \int_a^t v^{-2} \, d\tau = v^{-1}(t) - v^{-1}(a)
\]

for \(\alpha < a < t < \beta \) on \(U \).

If \(v(\alpha) > 0 \) (i.e. \(v > 0 \) on \(U \)), then by (19) as \(a \to \alpha \) we obtain \(\int_\alpha^t r^{-1} \, d\tau < v^{-1}(t) < \infty \). Hence \(0 < v(t) \int_\alpha^t r^{-1} \, d\tau < 1 \) and thus \(v(t) \int_\alpha^t r^{-1} \, d\tau = O(1) \) as \(t \to \alpha \).

If \(v(\alpha) < 0 \) (i.e. \(v < 0 \) on \(U \)), then by (19) we obtain \(\int_\alpha^t r^{-1} \, d\tau < -v^{-1}(a) \), whence as \(a \to \alpha \) we get \(\int_\alpha^t r^{-1} \, d\tau < -v^{-1}(\alpha) < \infty \). ■

We introduce the following terminology:

- A boundary point \(\alpha \) (resp. \(\beta \)) of the interval \(I \) is of type I if \(v \leq 0 \) on \(U_\alpha \) (resp. \(v \geq 0 \) on \(U_\beta \));
- \(\alpha \) (resp. \(\beta \)) is of type II if \(ru - s^2 < 0 \) a.e. on \(U_\alpha \) (resp. \(U_\beta \)) and \(sv \leq 0 \) on \(U_\alpha \) (resp. \(U_\beta \)) and \(0 < v(\alpha) < \infty \) (resp. \(-\infty < v(\beta) < 0 \));
- \(\alpha \) (resp. \(\beta \)) is of type III if \(ru - s^2 < 0 \) a.e. on \(U_\alpha \) (resp. \(U_\beta \)) and \(sv \leq 0 \) on \(U_\alpha \) (resp. \(U_\beta \)) and \(v(\alpha) = \infty \) (resp. \(v(\beta) = -\infty \)).

We denote by \(H \) the class of functions \(h \in AC(I) \) satisfying the integral conditions (3), and by \(H_0 \) (resp. \(H^0 \)) the class of functions \(h \in H \) satisfying the limit condition

\[
(20) \quad \liminf_{t \to \alpha} |h| = 0 \quad (\text{resp.} \quad \liminf_{t \to \beta} |h| = 0).
\]

In the cases considered in the sequel the condition (20) is equivalent to

\[
(21) \quad \lim_{t \to \alpha} h \equiv h(\alpha) = 0 \quad (\text{resp.} \quad \lim_{t \to \beta} h \equiv h(\beta) = 0).
\]

Theorem 3. (i) If both \(\alpha \) and \(\beta \) are of type I, then \(\tilde{H} = H \).

(ii) If \(\alpha \) is of type II and \(\beta \) is of type I, then \(\tilde{H} \supset H_0 \).

(iii) If \(\alpha \) is of type III and \(\beta \) is of type I, then \(\tilde{H} = H_0 \).

(iv) If \(\alpha \) is of type I and \(\beta \) is of type II, then \(\tilde{H} \supset H^0 \).

(v) If \(\alpha \) is of type I and \(\beta \) is of type III, then \(\tilde{H} = H^0 \).

(vi) If both \(\alpha \) and \(\beta \) are of type II or III, then \(\tilde{H} = H_0 \cap H^0 \).

Proof. If \(\alpha \) is of type I and \(h \in AC(I) \), then \(vh^2 \leq 0 \) on \(U_\alpha \) and hence

\[\liminf_{t \to \alpha} vh^2 \leq 0. \]

Let \(\alpha \) be of type II or III. Then by Lemma 2 we have \(\int_\alpha^t r^{-1} \, d\tau < \infty \) for some \(t \in I \). Furthermore, if \(h \in AC(I) \) and \(\int_I rh^2 \, dt < \infty \), then using
Schwarz’s inequality we obtain the estimate
\[|h(b) - h(a)| \leq \int_a^b |h| \, dt \leq \left(\int_a^b r^{-1} \, dt \right)^{1/2} \left(\int_a^b r \hat{h}^2 \, dt \right)^{1/2}, \]
where \(\alpha < a < b \leq t \), and the Cauchy condition for the existence of the limit yields the existence of a finite limit \(h(\alpha) = \lim_{t \to \alpha} h \).

If \(\alpha \) is of type III and \(h \in \tilde{H} \), then \(v(\alpha) = \infty \) and a finite limit \(h(\alpha) \) exists. If \(h(\alpha) \neq 0 \), then \(\lim_{t \to \alpha} v h^2 = \infty \), which contradicts (4). Thus \(h(\alpha) = 0 \), i.e. \(h \in H_0 \).

If \(\alpha \) is of type II or III, then by Lemma 2 we have \(\int_\alpha^t r^{-1} \, d\tau < \infty \) for some \(t \in I \) and \(v(t) \int_\alpha^t r^{-1} \, d\tau = O(1) \) as \(t \to \alpha \). Furthermore, if \(h \in H_0 \), then from (22) as \(a \to \alpha \) and \(b = t \) we get the estimate
\[0 \leq |v h^2| \leq \left| v(t) \int_\alpha^t r^{-1} \, d\tau \right| r \hat{h}^2 \, d\tau \]
and hence \(\lim_{t \to \alpha} v h^2 = 0 \).

Similar symmetric conclusions are valid if \(\alpha \) is replaced by \(\beta \) and the class \(H_0 \) by \(H^0 \).

If both \(\alpha \) and \(\beta \) are of type II or III and \(h \in \tilde{H} \), then \(\lim_{t \to \alpha} v h^2 \geq 0 \) and \(\lim_{t \to \beta} v h^2 \leq 0 \) and by (14) we have
\[\lim_{t \to \alpha} v h^2 = \lim_{t \to \beta} v h^2 = 0. \]
Since \(v(\alpha) > 0, v(\beta) < 0 \) and the finite values \(h(\alpha) \) and \(h(\beta) \) exist, it follows from (23) that \(h(\alpha) = h(\beta) = 0 \), i.e. \(h \in H_0 \cap H^0 \).

Basing on these considerations we can easily derive the theorem.

Now we prove some new inequalities. According to these examples we see that all cases of Theorem 3 can hold.

Example 1. Take \(I = (0, 1) \), \(r = e^{at} \) and \(\varphi = e^{ct} \) where \(a \neq 0 \) and \(c \) are arbitrary constants. Then the functions
\[s = \frac{1 - ac - c^2}{a} e^{at} + k, \]
where \(k \) is an arbitrary constant and \(u = e^{at} \), satisfy equation (7) on \(I \), and inequality (15) takes the form
\[\int_0^1 \left(e^{at} \hat{h}^2 + 2 \left(\frac{1 - ac - c^2}{a} e^{at} + k \right) \hat{h} + e^{at} \hat{h}^2 \right) \, dt \geq 0. \]

Denote by \(\tilde{a} \) the root of the equation \(2 e^{a} - a = 2 \) such that \(-2 < \tilde{a} < -1 \) and by \(\hat{a} \) the root of \((2 - a) e^{a} = 2 \) such that \(1 < \hat{a} < 2 \). From Theorems 2 and 3(i), (ii), (iv) we obtain:
If either (i) or (ii) holds, where

(i) $\tilde{a} < a < 0$ or $a > 0,$

$$-1 + \frac{a}{e^a - 1} < c < 1,$$

$$\frac{c^2 - 1}{a} e^a < k < \frac{c^2 - 1}{a} + c - 1,$$

(ii) $a < 0$ or $0 < a < \tilde{a},$

$$-1 < c < 1 - \frac{ae^a}{e^a - 1},$$

$$\left(\frac{c^2 - 1}{a} + c + 1\right) e^a < k < \frac{c^2 - 1}{a},$$

then inequality (24) holds for every $h \in H,$ i.e. for h satisfying only the integral conditions (3).

If

(iii) $a < \tilde{a},$

$$1 < c < -1 + \frac{a}{e^a - 1},$$

$$\frac{c^2 - 1}{a} < k < \frac{c^2 - 1}{a} + c - 1,$$

then (24) holds for $h \in H_0.$

If

(iv) $a > \tilde{a},$

$$1 - \frac{ae^a}{e^a - 1} < c < -1,$$

$$\left(\frac{c^2 - 1}{a} + c + 1\right) e^a < k < \frac{c^2 - 1}{a},$$

then (24) holds for $h \in H^0.$

Inequality (24) is strict for $h \neq 0.$

The condition $ru - s^2 < 0$ is satisfied on the interval $(0, \tau_0)$ with

$$0 < \tau_0 = \frac{1}{a} \ln \frac{ak}{(c - 1)(c + a + 1)} < 1$$

in case (i), on $(\tau_1, 1)$ with

$$0 < \tau_1 = \frac{1}{a} \ln \frac{ak}{(c + 1)(c + a - 1)} < 1$$

in case (ii) and on $(0, 1)$ in cases (iii) and (iv).

Example 2. Let $I = (\alpha, \beta),$ where $0 \leq \alpha < \beta \leq \infty.$ Take $r = t^a$ and $\varphi = t^{(1-a)/2}$ on $I,$ where $a \neq 1$ is an arbitrary constant. Then the functions $s = At^{a-1}$ and $u = \frac{1}{2}(a - 1)(6A - a + 1)t^{a-2},$ where A is an arbitrary constant, satisfy equation (7) on $I.$ If (i) $a < 1$ and $(a - 1)/2 < A \leq 0$ or (ii) $a > 1$ and $0 \leq A < (a - 1)/2,$ then $ru - s^2 < 0$ on I and in case (i) the boundary point α is of type II if $\alpha > 0$ or of type III if $\alpha = 0$ and the boundary point β is of type I, and in case (ii) the point α is of type I and the point β is of type II if $\beta < \infty$ or of type III if $\beta = \infty.$

Applying Theorems 2 and 3(ii), (iii), (iv), (v) we get:
If \(0 \leq \alpha < \beta \leq \infty\) and either \(\alpha < 1\), \((\alpha - 1)/2 < A \leq 0\) or \(\alpha > 1\), \(0 \leq A < (\alpha - 1)/2\), and \(h \neq 0\), then

\[
\int_{-1}^{1} \left[t^\alpha h^2 + 2At^{\alpha-1}h \dot{h} + \frac{1}{4}(a-1)(6A-a+1)t^{a-2}h^2 \right] dt > 0
\]

for every \(h \in \tilde{H}\); and \(\tilde{H} = H_0\) if \(a < 1\) and \(\tilde{H} = H^0\) if \(a > 1\).

Inequality (25) for \(A = 0\) was considered in [3] (cf. [13]); if \(\alpha = 0\), \(\beta = \infty\) and \(a = 0\) we get the well-known Hardy integral inequality ([11, Th. 253]).

Example 3. We take \(I = (-1, 1)\) and \(r = (1 - t^2)^a\) on \(I\). We put \(\varphi = (1 - t^2)^b\) on \(I\) and \(k = 1 - a\) or \(k = 1/2 - a\), where \(a\) is an arbitrary constant such that \(k > 0\). Then the functions \(s = At(1 - t^2)^b\) and \(u = (B - Ct^2)(1 - t^2)^{b-1}\), where \(b = a, B = A + 2a - 2, C = A(2a + 1)\) if \(k = 1 - a\) or \(b = a - 1, B = A + 2a - 1, C = A(2a - 1)\) if \(k = 1/2 - a\) and \(A\) is an arbitrary constant, satisfy (7) on \(I\).

If \(a < -1/2, 0 \leq A < 1 - 1/a\) or \(-1/2 \leq a < 1, 0 \leq A < 2 - 2a\) in the case \(k = 1 - a\); or \(a < 0, 0 \leq A < 1\) or \(0 \leq a < 1/2, 0 \leq A < 1 - 2a\) in the case \(k = 1/2 - a\), then both boundary points are of type III.

Applying Theorems 2 and 3(vi) we infer the following:

Let \(h \in H_0 \cap H^0\).

(i) If \(a < -1/2, 0 \leq A < 1 - 1/a\) or \(-1/2 \leq a < 1, 0 \leq A < 2 - 2a\), then

\[
\int_{-1}^{1} \left[(1 - t^2)^a h^2 + 2At(1 - t^2)^a h \dot{h} + (B - Ct^2)(1 - t^2)^{a-1}h^2 \right] dt \geq 0,
\]

where \(B = A + 2a - 2\) and \(C = A(2a + 1)\). Equality holds in (26) if and only if \(h = c(1 - t^2)^{1-a}\), where \(c = \text{const} \neq 0\).

(ii) If \(a < 0, 0 \leq A < 1\) or \(0 \leq a < 1/2, 0 \leq A < 1 - 2a\), then

\[
\int_{-1}^{1} \left[(1 - t^2)^a h^2 + 2At(1 - t^2)^{a-1} h \dot{h} + (B - Ct^2)(1 - t^2)^{a-2}h^2 \right] dt \geq 0,
\]

where \(B = A + 2a - 1\) and \(C = A(2a - 1)\). If \(h \neq 0\), then for \(a < 0\) equality holds in (27) if and only if \(h = c(1 - t^2)^{1/2-a}\), where \(c = \text{const} \neq 0\), and for \(0 \leq a < 1/2\) inequality (27) is strict.

The condition \(ru - s^2 < 0\) is satisfied on \((-1, 1)\) in both cases.

Inequalities (26) and (27) for \(A = 0\) were discussed in [12] and [16] (cf. [10]).

Let \(s \in AC(I)\) and \(u \in M(I)\) be arbitrary functions satisfying the differential inequality (2) a.e. on \(I\) such that \(s = 0\) on \(I\) and \(u < 0\) a.e. on \(I\). Then
the second and third conditions of (3) are trivially satisfied and inequality (15) takes the form

$$\int_{I} |u| h^2 \, dt \leq \int_{I} r h^2 \, dt.$$

Inequalities of the form (28) are the integral inequalities of Sturm–Liouville type which were examined in [10].

In this case we have $ru - s^2 = ru < 0$ a.e. on I and $sv = 0$ on I. Thus the function v is decreasing on I and $v(\alpha) > v(\beta)$. Moreover, α (resp. β) is of type I if $v(\alpha) \leq 0$ (resp. $v(\beta) \geq 0$), of type II if $0 < v(\alpha) < \infty$ (resp. $-\infty < v(\beta) < 0$) and of type III if $v(\alpha) = \infty$ (resp. $v(\beta) = -\infty$). Hence α and β cannot be simultaneously of type I.

In this way from Theorems 2 and 3 we get Theorems 3 and 4 of [10].

Now, let $s \in AC(I)$ and $u \in M(I)$ be arbitrary functions satisfying the differential inequality (2) a.e. on I such that $u \leq 0$ a.e. on I. Then the third of the integral conditions (3) is trivially satisfied and if $s^2 + u^2 > 0$ a.e. on I, then $ru - s^2 < 0$ a.e. on I. Next by (18) we have $\dot{v} \leq u - r \varphi^2 \varphi^{-2} \leq 0$ a.e. on I. Thus v is nonincreasing on I and $v(\alpha) > v(\beta)$ except for the trivial case $s \equiv 0$ and $u \equiv 0$. Hence α and β cannot be simultaneously of type I.

Theorem 4. Let $u \leq 0$ a.e. on I and let $h \in AC(I)$ satisfy the integral condition $\int_I r h^2 \, dt < \infty$. If $s \leq 0$ on I, $v(\beta) \geq 0$ and $h(\alpha) = 0$, or $s \geq 0$ on I, $v(\alpha) \leq 0$ and $h(\beta) = 0$, then

$$2 \int_{I} |shh| \, dt + \int_{I} |u| h^2 \, dt \leq \int_{I} r h^2 \, dt.$$

If $h \not\equiv 0$, then equality holds in (29) if and only if s and u satisfy the differential equation (7) a.e. on I, $\varphi^{-1} h = \text{const} \not\equiv 0$,

$$\int_{I} r \varphi^2 \, dt < \infty, \quad \lim_{t \to -\alpha} v \varphi^2 = \lim_{t \to -\beta} v \varphi^2,$$

and $\varphi(\alpha) = 0$, $\dot{\varphi} \geq 0$ on I provided $s \leq 0$ on I, or $\varphi(\beta) = 0$, $\dot{\varphi} \leq 0$ on I provided $s \geq 0$ on I.

Proof. Let $s \leq 0$ on I and $v(\beta) \geq 0$. Then $v(\alpha) > 0$ and $v > 0$ on I, whence $sv \leq 0$ on I. Thus α is of the type II or III and β is of type I.

Further, let $h_+ \in AC(I)$ be such that $h_+(\alpha) = 0, h_+ \geq 0$ on I, $h_+ \geq 0$ a.e. on I and $\int_I r h_+^2 \, dt < \infty$. Then $\int_I s h_+ h_+ \, dt \leq 0$ and the second of the integral conditions (3) is satisfied. Thus $h_+ \in H_0$ and by Theorem 3(ii)–(iii) we have $h_+ \in H$. Next by Theorem 2 we get

$$2 \int_{I} |s|h_+ h_+ \, dt + \int_{I} |u| h_+^2 \, dt \leq \int_{I} r h_+^2 \, dt.$$

Now, let \(h \in AC(I) \) be such that \(h(\alpha) = 0 \) and \(\int_I r h^2 dt < \infty \). Put \(h_+ = \int_0^t |h| \, dt \). Then \(h_+ \in AC(I) \), \(h_+(\alpha) = 0 \), \(h_+ \geq 0 \) on \(I \), \(h_+ = |h| \geq 0 \) a.e. on \(I \) and

\[
\int_I r h^2_+ dt = \int_I r h^2 dt < \infty.
\]

Hence \(h_+ \) satisfies inequality (31). Notice that

\[
|h| = \left| \int_\alpha^t \dot{h} \, d\tau \right| \leq \int_\alpha^t |\dot{h}| \, d\tau = h_+
\]
on \(I \), and equality holds if and only if \(\dot{h} \) does not change sign on \(I \). Hence

\[
2 \int_I |sh h| \, dt + \int_I |u| h^2 \, dt \leq 2 \int_I |s| h_+ \dot{h} \, dt + \int_I |u| h^2_+ \, dt
\]

and by (31)–(33) we get inequality (29).

If both sides of (29) are equal for some non-vanishing function \(h \in AC(I) \) such that \(h(\alpha) = 0 \) and \(\int_I r h^2 dt < \infty \), then by (31)–(33) it follows that for \(h_+ = \int_0^t |h| \, d\tau \) equality holds in (31) and (33). It follows that \(|h| = h_+ \) and hence \(\dot{h} \) does not change sign on \(I \). Since \(h_+ \in \bar{H} \) and by Theorem 2, equality occurs in (31) if and only if \(s \) and \(u \) satisfy (7) a.e. on \(I \), \(\varphi^{-1} h_+ = \text{const} > 0 \) and conditions (16) are satisfied. Hence \(\varphi^{-1} h = \text{const} \neq 0 \), \(\varphi(\alpha) = 0 \) and \(\ddot{\varphi} \geq 0 \) on \(I \).

Let \(s \) and \(u \) satisfy (7) a.e. on \(I \) and \(\varphi \) be such that \(\varphi(\alpha) = 0 \), \(\dot{\varphi} \geq 0 \) and conditions (30) hold. Then we easily check that the function \(h = c \varphi \), where \(c = \text{const} \neq 0 \), satisfies \(h(\alpha) = 0 \) and \(\int_I r h^2 dt < \infty \) and for this function equality holds in (29).

The case when \(s \geq 0 \) on \(I \), \(v(\alpha) \leq 0 \), \(h(\beta) = 0 \) can be proved in a similar way considering the function \(h_- = \int_\beta^\alpha |h| \, d\tau \in \bar{H} \).

Inequalities (29) embrace, as a particular case (if \(u = 0 \) on \(I \)), the integral inequalities of Opial type which were examined in [13].

Example 4. Let \(I = (\alpha, \beta) \), \(-\infty \leq \alpha < \beta \leq \infty \). Let \(r > 0 \) and \(u \leq 0 \) be functions absolutely continuous on \(I \) such that \(\int_I r^{-1} dt < \infty \) and

\[
\int_I u \, dt \geq -\left(\int_I r^{-1} dt \right)^{-1}.
\]

If we put \(\varphi = \int_\alpha^t r^{-1} \, d\tau \), then the functions \(u \) and

\[
s = -\int_\alpha^\beta u \, dt - \left(\int_I r^{-1} dt \right)^{-1} \leq 0
\]
satisfy equation (7) on \(I \) and \(v(\beta) = 0 \). If we put \(\varphi = \frac{\beta}{t} r^{-1} d\tau \), then the functions \(u \) and
\[
(35) \quad s = \int_{\alpha}^{t} u d\tau + \left(\int_{I}^{t} r^{-1} d\tau \right)^{-1} \geq 0
\]
satisfy (7) on \(I \) and \(v(\alpha) = 0 \).

Now, applying Theorem 4 we get:

If \(h \in AC(I) \) satisfies \(\int_{I} r \dot{h}^2 \, dt < \infty \) and \(h(\alpha) = 0 \) or \(h(\beta) = 0 \), then the inequality of the form (29) with \(s \) defined by (34) if \(h(\alpha) = 0 \) or by (35) if \(h(\beta) = 0 \) is valid. In both cases equality holds only for \(h = c\varphi \), where \(c = \text{const} \).

If \(u \equiv 0 \), then we obtain the inequalities which were considered in [4] (cf. [13]).

In the case when \(0 = \alpha < \beta \leq 1, r = 1, u = -1 \) on \(I \) we obtain the inequality
\[
(36) \quad 2 \int_{0}^{\beta} \left(\frac{1 - \beta^2}{\beta} + t \right) |h\dot{h}| \, dt + \int_{0}^{\beta} h^2 \, dt \leq \int_{0}^{\beta} \dot{h}^2 \, dt,
\]
which holds for all \(h \in AC((0, \beta)) \) such that \(h(0) = 0 \) and \(\int_{0}^{\beta} \dot{h}^2 \, dt < \infty \), and the inequality
\[
(37) \quad 2 \int_{0}^{\beta} \left(\frac{1}{\beta} - t \right) |h\dot{h}| \, dt + \int_{0}^{\beta} h^2 \, dt \leq \int_{0}^{\beta} \dot{h}^2 \, dt,
\]
which holds for all \(h \in AC((0, \beta)) \) such that \(h(\beta) = 0 \) and \(\int_{0}^{\beta} \dot{h}^2 \, dt < \infty \).

Equality holds in (36) only for \(h = ct \), and in (37) only for \(h = c(\beta - t) \), where \(c = \text{const} \).

REFERENCES

B. FLORKIEWICZ AND M. KUCHTA

Institute of Mathematics
Technical University of Wroclaw
Wybrzeże Wyspiańskiego 27
50-370 Wroclaw, Poland

Received 23 April 1996; revised 28 February 1997