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ON NILPOTENT LIE GROUPS
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AND ADAM S IKORA (CANBERRA)

We consider pure mth order subcoercive operators with complex coeffi-
cients acting on a connected nilpotent Lie group.We derive Gaussian bounds
with the correct small time singularity and the optimal large time asymp-
totic behaviour on the heat kernel and all its derivatives, both right and left.
Further we prove that the Riesz transforms of all orders are bounded on the
Lp-spaces with p ∈ (1,∞). Finally, for second-order operators with real
coefficients we derive matching Gaussian lower bounds and deduce Harnack
inequalities valid for all times.

1. Introduction. The heat kernel plays a significant role in classical
harmonic analysis since it encapsulates the most important analytic infor-
mation. It is consequently crucial in the study of analytic properties of Lie
groups to have efficient estimates on the semigroup kernels associated with
elliptic or subelliptic operators. There are three distinct characteristics of
these estimates: the Gaussian decay on the group, the short time singularity
and the long time decay. The first two features are of universal nature and
are well understood (see, for example, [Rob], Chapter III, or [EIR6]) but
the asymptotic behaviour with time is a more specific feature. If the group
volume grows polynomially, the asymptotic decrease of the heat kernel is
expected to be dictated by the available volume. In this paper we demon-
strate that this expectation is realized for the heat kernels of pure mth order
complex subelliptic operators on a general connected nilpotent group. Our
estimates, which are valid for the kernel and all its derivatives, then allow us
to analyze various aspects which are sensitive to global growth. In particular,
we are able to define and analyze the Riesz transforms of all orders.

Let G be a connected nilpotent Lie group with (bi-invariant) Haar mea-
sure dg and Lie algebra g. The exponential map is surjective by [Var], The-
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orem 3.6.1. One can associate a subelliptic distance (g, h) 7→ d′(g ;h) with
each fixed algebraic basis a1, . . . , ad′ of g. This distance has the characteri-
zation

d′(g ;h) = sup
{
|ψ(g) − ψ(h)| : ψ ∈ C∞

b (G),

d′∑

i=1

|(Aiψ)|2 ≤ 1, ψ real
}

where we emphasize that the ψ are real-valued ([Rob], Lemma IV.2.3, or
[EIR5], Lemma 4.2). Let g 7→ |g|′ = d′(g ; e), where e is the identity element
of G, denote the corresponding modulus. Then the Haar measure |B′(g ; ̺)|
of the subelliptic ball B′(g ; ̺) = {h ∈ G : |gh−1|′ < ̺} is independent of
g. Set V (̺) = |B′(g ; ̺)|. Next, for all i ∈ {1, . . . , d′} let Ai = dL(ai) and
Bi = dR(ai) denote the generators of left L, and right R, translations acting
on the classical function spaces in the direction ai, respectively. Multiple
derivatives are denoted with multi-index notation, e.g., if α = (i1, . . . , in)
with ij ∈ {1, . . . , d′} then Aα = Ai1 . . . Ain

and |α| = n. (In general, we
adopt the notation of [Rob].)

We consider right-invariant subelliptic operators of all orders. Since the
notion of subellipticity for operators of order greater than two is slightly in-
direct we initially summarize our main results for the second-order case. The
general case is covered in the body of the paper. Consider the homogeneous
second-order operators

(1) H = −

d′∑

i,j=1

cijAiAj

acting on the Lp-spaces, Lp(G ; dg), with cij ∈ C satisfying the ellipticity
condition

(2) Re

d′∑

i,j=1

cijξiξj ≥ µ|ξ|2

for some µ > 0 and all ξ ∈ C
d′

. ThenH is closed on L2(G ; dg) and generates
a holomorphic contraction semigroup S with a C∞-kernel K with Gaussian
decay (see [EIR4]). In particular, S extends to a continuous semigroup,
which we also denote by S, on each of the Lp-spaces, Lp(G ; dg), or on
related Banach spaces such as Cb(G).

The first result of this paper is the following set of optimal kernel bounds.

Theorem 1.1. There exists a b > 0 and for all multi-indices α, β an

aα,β > 0 such that

|(AαBβKt)(g)| ≤ aα,βt
−(|α|+|β|)/2V (t1/2)−1e−b(|g|′)2t−1

for all t > 0 and all g ∈ G.
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Although we have only stated this result for second-order operators,
an analogous statement is derived in Section 3 for homogeneous operators
of higher order. Moreover, the kernel bounds for real t readily extend to
complex t, in a suitable sector, by rotation. There is a θ ∈ (0, π/2) such
that eiφH is a subelliptic operator of the type under consideration for all
φ ∈ (0, θ). Then the holomorphy sector of the semigroup S automatically
contains the sector Λ(θ) = {z ∈ C \ {0} : |arg z| < θ} and the kernel
bounds extend to z 7→ Kz for z ∈ Λ(φ), with t replaced by |z|, for all
φ < θ.

Various special cases of this theorem are already known. If the coeffi-
cients cij of H are real-valued and the matrix C = (cij) is symmetric then
bounds of the type stated in the theorem are known for Kt and its left
derivatives AiKt for all groups of polynomial growth [Sal] (see also [Rob],
Corollary IV.4.19). In addition, in the real case, one can obtain good esti-
mates on the exponent b of the Gaussian. But the techniques used to obtain
the large time estimates do not extend to complex coefficients, or to more
general derivatives of the kernel. Alternatively, if the group is stratified, and
the operator H is homogeneous with respect to the dilations on the group,
then bounds analogous to those of the theorem, but slightly weaker, have
been given in [EIR3]. The derivation of these bounds relies heavily on the
dilation properties of the group. The current results are much stronger as
they are valid for all connected nilpotent Lie groups and no dilation structure
is necessary. They are derived by transference from a related homogeneous
group G̃ with d′ generators and the same rank as G. This group is defined
in Section 2 together with a version of the transference result of [CoW2]
adapted to the current situation.

The transference procedure which we use differs conceptually from the
method developed in [CoW2]. The latter reference examines two different
representations of a fixed group and transfers estimates on integral opera-
tors from one representation to the other. In our analysis we examine two
different groups but one fixed representation, the left regular representa-
tion, and transfer estimates from one group to the other. More significantly,
the standard transference procedures are restricted to Lp-estimates but we
develop a technique to transfer pointwise estimates.

The transfer of Lp-estimates is, however, relevant to the discussion of
Riesz transforms. The natural Lie group analogues of the classical Riesz
transforms are the operators Rα = AαH−|α|/2 but it is initially unclear
whether these operators have a useful domain of definition on the Lp-spaces.
The transforms are products of unbounded operators and viewed as inte-
gral operators they are highly singular. These problems are discussed in
detail in Section 4 where we prove a precise version of the following state-
ment.
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Theorem 1.2. The Riesz transforms Rα extend to bounded operators on

each of the spaces Lp(G ; dg), p ∈ (1,∞).

In fact, we bound the norms of the Riesz transforms by multiples of the
norms of the analogous transforms on the auxiliary homogeneous group. In
addition we deduce that the Rα are of weak type (1, 1).

The simplest Riesz transforms AiH
−1/2, with H = −

∑d′

i=1A
2
i the sub-

laplacian, have been shown to be bounded on Lp(G ; dg), p ∈ (1,∞), for
various types of Lie groups. The result was established by Folland [Fol] for
stratified groups, by Lohoué and Varopoulos [LoV] for nilpotent groups and
by Alexopoulos [Ale] for groups of polynomial growth (see also [Sal]). But
the properties of the higher-order transforms are less well understood. If
the group is stratified then these transforms are bounded [Fol], or if the
group is compact [BER]. But Alexopoulos [Ale] has given an example of
a group of polynomial growth for which A2

iH
−1 can be unbounded (see

also [GQS] for an example with a group of exponential growth). In the
light of such examples Theorem 1.2 is possibly unexpected. In fact, we
prove boundedness of all operators Aα1H−n1/2Aα2H−n2/2 . . . AαkH−nk/2

with |α1| + . . . + |αk| = n1 + . . . + nk and the analogues for higher-order
operators.

Finally, the kernel estimates can be applied in various ways. We discuss
applications to Lipschitz spaces and holomorphic functional calculus in Sec-
tion 5. Moreover, for second-order operators with real coefficients we apply
our techniques to the derivation of Gaussian lower bounds and Harnack
inequalities valid for all t > 0.

2. Free groups and transference. In this section we examine convo-
lution operators acting on the Lp-spaces over the connected nilpotent Lie
group G formed with respect to the Haar measure dg. We estimate bounds
on these operators by transference from a homogeneous group G̃ constructed
from G and an algebraic basis a1, . . . , ad′ of the Lie algebra g of G.

Let r be the rank of the nilpotent Lie algebra g. Then the rank of the basis
a1, . . . , ad′ is at most r. Next let g(d′, r) denote the nilpotent Lie algebra with
d′ generators which is free of step r. Thus g(d′, r) is the quotient of the free
Lie algebra with d′ generators by the ideal generated by the commutators of
order at least r+ 1. Further let G(d′, r) be the connected simply connected
Lie group with Lie algebra g(d′, r). It is automatically a non-compact group.
We call G(d′, r) the nilpotent Lie group on d′ generators free of step r and use

the notation g̃ = g(d′, r), G̃ = G(d′, r) for brevity. Generally, we add a tilde

to distinguish between quantities associated with G̃ and those associated
with G. For example, we denote the generators of g̃ by ã1, . . . , ãd′ . We also
set Lp = Lp(G ; dg) and Lp̃ = Lp(G̃ ; dg̃) and denote the corresponding
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norms by ‖ ·‖p and ‖ ·‖p̃. Then the norm of an operator X on Lp is denoted

by ‖X‖p→p and the norm of an operator X̃ on Lp̃ by ‖X̃‖p̃→p̃. One simple
example of this construction is for the Abelian nilpotent group G = T

n.
Then G̃ = R

n.
Now we compare G and G̃. There exists a unique Lie algebra homomor-

phism Λ : g̃ → g such that Λ(ãi) = ai for all i ∈ {1, . . . , d′} and this lifts to

a surjective homomorphism π : G̃→ G by the exponential map. Explicitly,

π = exp ◦Λ ◦ ẽxp
−1

where ẽxp : g̃ → G̃ and exp : g → G. For any function ϕ : G → C define
π∗ϕ : G̃→ C by π∗ϕ = ϕ ◦ π. The map π∗ is contractive,

‖π∗ϕ‖∞̃ = sup
g̃∈G̃

|ϕ(π(g̃))| ≤ sup
g∈G

|ϕ(g)| = ‖ϕ‖∞

for all ϕ ∈ L∞. Next, for any finite measure µ̃ on G̃ let π∗(µ̃) denote the
image measure on G. Then\

G

dπ∗(µ̃)(g)ϕ(g) =
\̃
G

dµ̃(g̃) (π∗ϕ)(g̃)

for all ϕ ∈ L1(G ;π∗(µ̃)). Note that the image measure is again a finite

measure. If µ̃ is a complex measure on G̃ then we also use the notation
π∗(µ̃) to denote the complex image measure on G. If M(G) and M(G̃)

denote the Banach spaces of all complex measures on G and G̃, respectively,
then

‖π∗(µ̃)‖M(G) = sup
ϕ∈Cc(G), ‖ϕ‖∞≤1

∣∣∣
\
G

dπ∗(µ̃)(g)ϕ(g)
∣∣∣

≤ sup
ϕ∈Cc(G), ‖ϕ‖∞≤1

\̃
G

d|µ̃|(g̃) |(π∗ϕ)(g̃)| ≤ ‖µ̃‖M(G̃).

Thus the map π∗ : M(G̃) →M(G) is also contractive.
The space L1̃ is naturally isomorphic to the space of all absolutely con-

tinuous measures on G̃. So for each ψ̃ ∈ L1̃ there exists a complex measure

π∗(ψ̃) ∈M(G) such that\
G

dπ∗(ψ̃)(g)ϕ(g) =
\̃
G

dg̃ ψ̃(g̃) (π∗ϕ)(g̃)

for all ϕ ∈ L∞(G). Then ‖π∗(ψ̃)‖M(G) ≤ ‖ψ̃‖1̃.
Standard results involve transference of norm bounds on convolution op-

erators from one representation of a group to another. Define the isometric
representation Lπ of G̃ on Lp, with p ∈ [1,∞], by

Lπ(g̃)ϕ = L(π(g̃))ϕ.
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Let q be the dual exponent to p. Then for all ψ̃ ∈ L1̃, ϕ ∈ Lp and τ ∈ Lq

one has

(τ, Lπ(ψ̃)ϕ) =
\̃
G

dg̃ ψ̃(g̃)(τ, Lπ(g̃)ϕ) =
\̃
G

dg̃ ψ̃(g̃)(τ, L(π(g̃))ϕ)

=
\
G

dπ∗(ψ̃)(g) (τ, L(g)ϕ) = (τ, L(π∗(ψ̃))ϕ).

So Lπ(ψ̃) = L(π∗(ψ̃)) as operators on Lp.

The principal transference theorem of [CoW2], when applied to the rep-

resentation Lπ of G̃ on Lp and the left regular representation L̃ of G̃ on Lp̃,

gives a relationship between the norms of operators L(π∗(ψ̃)) on Lp(G ; dg)

and L̃(ψ̃) on Lp(G̃ ; dg̃). This result is significant because, in the context of

subelliptic semigroups, π∗(ψ̃) and ψ̃ correspond to the kernel of the semi-
group generated by the operator with the same coefficients but on G and

G̃, respectively (see Lemma 3.2 below).

Theorem 2.1. If ψ̃ ∈ L1(G̃ ; dg̃) then

‖L(π∗(ψ̃))‖p→p = ‖Lπ(ψ̃)‖p→p ≤ ‖L̃(ψ̃)‖p̃→p̃

for all p ∈ [1,∞].

P r o o f. The group G̃ has polynomial growth, hence is amenable by
[Pat], Proposition 0.13. Therefore if p < ∞ then the theorem is precisely

Theorem 2.4 of [CoW2] with L(π∗(ψ̃)) replaced by Lπ(ψ̃).

Finally, on L∞ one has

‖L(π∗ψ̃)ϕ‖∞ = ‖Lπ(ψ̃)ϕ‖∞ ≤ ‖π∗ψ̃‖M(G)‖ϕ‖∞

≤ ‖ψ̃‖1̃‖ϕ‖∞ = ‖L̃(ψ̃)‖∞̃→∞̃‖ϕ‖∞

for all ϕ ∈ L∞. This establishes the L∞-estimate of the theorem.

This theorem will be applied in Section 4 to transfer knowledge about
Riesz transforms on G̃ to knowledge about the comparable transforms on
G acting on the Lp-spaces with p ∈ (1,∞). There is a similar transference
result, based on Theorem 2.6 of [CoW2], which deals with estimates of weak
type (1, 1). But this will not play a role in the sequel.

3. Heat kernels of subcoercive operators. In the introduction
we discussed second-order subelliptic operators but our results are valid for
subelliptic operators of all orders. We begin this section by describing the
notion of subcoercivity, or subellipticity, for the higher-order situation.
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Let m be an even positive integer and for every multi-index α with
|α| = m let cα ∈ C. We consider the homogeneous mth order operator

H =
∑

|α|=m

cαA
α

on Lp with domain D(H) = L′
p;m and compare it with its analogue

H̃ =
∑

|α|=m

cαÃ
α

on Lp̃. We assume the operator H is subcoercive of step r, where r is the
rank of the nilpotent Lie algebra g, in the sense of [E1R3]. This means that

the comparison operator H̃ satisfies a G̊arding inequality on L2̃, i.e., there
exists µ > 0 such that

Re(ϕ̃, H̃ϕ̃) ≥ µ
∑

|α|=m/2

‖Ãαϕ̃‖2̃

uniformly for all ϕ̃ ∈ C∞
c (G̃). For second-order operators there is a simpler

description, at least for r ≥ 2.

Proposition 3.1. Define the d′ × d′ matrix C by Cij = −c(i,j). If r ≥ 2
then the second-order operator H is subcoercive of step r if , and only if , the

matrix ℜC = 2−1(C + C∗) is strictly positive, i.e.,

Re
d′∑

i,j=1

Cijξiξj ≥ µ|ξ|2

for some µ > 0 and all ξ ∈ C
d′

.

P r o o f. See [EIR4], Proposition 3.7.

If r = 1 then the “only if” part of Proposition 3.1 fails, but the “if” part
is still valid ([EIR4], Corollary 3.6). So for any r ∈ N, operators of the form
(1) which satisfy (2) are subcoercive of step r.

The main result of [EIR3] and [EIR4] is that H generates a holomorphic
semigroup St on the Lp-spaces with a C∞-kernel Kt satisfying Gaussian

bounds and H̃ generates a similar semigroup S̃t on the Lp̃-spaces with a

kernel K̃t.
Now if ϕ ∈ Cb(G) then π∗ϕ = ϕ ◦ π ∈ Cb(G̃) and

Ãiπ
∗ϕ = π∗(Aiϕ).

Consequently,

H̃π∗ϕ = π∗(Hϕ).

Therefore

(λI + H̃)π∗ϕ = π∗((λI +H)ϕ) and (λI + H̃)−1π∗ϕ = π∗((λI +H)−1ϕ)
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for all large λ > 0. Hence, by the usual semigroup algorithms,

S̃tπ
∗ϕ = π∗(Stϕ)

for all t > 0. This allows one to relate the kernels of the two semigroups.

Lemma 3.2. The identities\
G

dg ϕ(g)(AαBβKt)(g) =
\̃
G

dg̃ (π∗ϕ)(g̃)(ÃαB̃βK̃t)(g̃)

are valid for all ϕ ∈ Cb(G), all t > 0 and all multi-indices α, β. Hence

AαBβKt = π∗(Ã
αB̃βK̃t)

for all t > 0 and all multi-indices α, β, where we identify L1(G ; dg) with

the space of all absolutely continuous measures on G.

P r o o f. Consider the case |α| = 0 = |β|. Introduce ϕ̌ by setting ϕ̌(g) =
ϕ(g−1). Then

(S̃tπ
∗ϕ̌)(ẽ) = (S̃t(π

∗ϕ)̌ )(ẽ) =
\̃
G

dg (π∗ϕ)(g)K̃t(g)

because π is a homomorphism. But

(S̃tπ
∗ϕ̌)(ẽ) = (π∗(Stϕ̌))(ẽ) = (Stϕ̌)(e) =

\
G

dg ϕ(g)Kt(g)

since π(ẽ) = e. Combining these equations gives the required identities for
|α| = 0 = |β|. The general case follows similarly.

The identification Kt = π∗(K̃t) is the key to obtaining good Gaussian
bounds on the kernel Kt by transference. But first one needs optimal bounds
on the kernel K̃t. These can be obtained by exploiting the scaling properties
of the group G̃ and the homogeneity of H̃ (see [EIR3]).

The group G̃ is homogeneous with respect to a semigroup of dilations
(γu)u>0. These dilations are initially defined as the Lie algebra isomorphism

on g̃ satisfying γu(ãi) = uãi. The dilations of g̃ then induce dilations of G̃
via the exponential map. It follows automatically that |γu(g̃)|′ = u|g̃|′ for

all g̃ ∈ G̃ where | · |′ now denotes the subelliptic distance on G̃ associated

with the generators ã1, . . . , ãd′ . Moreover, there is an integer D̃, called the
homogeneous dimension of G̃ with respect to the basis ã1, . . . , ãd′ , such that

Ṽ (̺) = |B̃′(g̃ ; ̺)| = ̺D̃|B̃′(g̃ ; 1)| = ̺D̃Ṽ (1)

for all ̺ ∈ (0,∞). Since the subcoercive operator H̃ is a pure mth order
operator it follows that one has the scaling property

(H̃(ϕ ◦ γu)) ◦ γu−1 = um(H̃ϕ)
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for all ϕ ∈ D(H̃). Therefore the associated kernel satisfies

u−D̃K̃t(γu−1(g̃)) = K̃umt(g̃)

for all t, u > 0 and all g̃ ∈ G̃. More generally,

u−D̃−|α|−|β|(ÃαB̃βK̃t)(γu−1(g̃)) = (ÃαB̃βK̃umt)(g̃).

These relations allow one to deduce large t, or small t, bounds on the kernel
K̃ and its derivatives from bounds at t = 1.

The utility of the scaling relations in combination with the kernel identi-
fication of Lemma 3.2 is illustrated by the following pair of estimates. First,
one has

(3) ‖St‖p→p = ‖L(π∗(K̃t))‖p→p ≤ ‖π∗(K̃t)‖1 ≤ ‖K̃t‖1̃ = ‖K̃1‖1̃

where the last identification uses the scaling property of G̃. These bounds
are uniform for p ∈ [1,∞] and t > 0. Since the operator H has complex
coefficients, this simple proof of uniformity is somewhat surprising. (Note

that ‖K̃t‖1̃ ≥ 1 with equality if, and only if, K̃ is positive or, equivalently, H
is a second-order operator and the coefficients of H are real. The first equiv-
alence follows because S̃tI = I and hence

T
K̃t = 1. The second equivalence

is established in [Rob], Section III.5.) Secondly, one has the holomorphy
estimates

‖HSt‖p→p = ‖L(π∗(∂K̃t))‖p→p(4)

≤ ‖π∗(∂K̃t)‖1 ≤ ‖∂K̃t‖1̃ = t−1‖∂K̃1‖1̃

where ∂ denotes the partial derivative with respect to t. Again these bounds
are uniform for p ∈ [1,∞] and are valid for all t > 0.

Now we return to the discussion of pointwise bounds.

Lemma 3.3. There exist a, b > 0 such that

|K̃t(g̃)| ≤ at−D̃/me−b((|g̃|′)mt−1)1/(m−1)

for all t > 0 and all g̃ ∈ G̃. Moreover , for each ε > 0 and all multi-indices

α, β there exists an aα,β > 0 such that

|(ÃαB̃βK̃t)(g̃)| ≤ aα,βt
−(D̃+|α|+|β|)/me−(b−ε)((|g̃|′)mt−1)1/(m−1)

uniformly for all t > 0 and all g̃ ∈ G̃.

P r o o f. The bounds on K̃ are given in [EIR3], Corollary 4.10. This
reference also gives bounds on the left derivatives of the kernel but with
the value of the Gaussian exponent dependent on α. The proof is based on

the identification of the ÃαK̃t with the kernels of the bounded operators
ÃαS̃t. But one calculates straightforwardly that B̃βK̃t is the kernel of the
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bounded closure of the densely defined operator (−1)|β|S̃tÃ
β∗ , where β∗ is

the multi-index obtained from β by reversing its order. Specifically,

(S̃tL̃(exp(−tã))ϕ̃)(g̃) =
\̃
G

dh̃ K̃t(h̃)ϕ̃(exp(tã)h̃−1g̃)

=
\̃
G

dh̃ K̃t(h̃ exp(−tã))ϕ̃(h̃−1g̃).

Therefore ÃαB̃βK̃t is the kernel of (−1)|β|ÃαS̃tÃ
β∗ and the bounds on the

mixed derivatives follow from the bounds on the left derivatives derived in
[EIR3] by duality. It remains, however, to prove that one may choose the
Gaussian exponent independent of α and β and arbitrarily close to b.

Let L̺
p̃ = Lp(G̃ ; e̺|g̃|′dg̃) with norm ‖ · ‖̺

p̃ for all ̺ ∈ R. Then for each

ε ∈ (0, 2−1) one has

e−̺|g̃|′ |(ÃαB̃βK̃t)(g̃)| = sup
‖ϕ‖̺

1̃
≤1

|(ÃαS̃tÃ
β∗ϕ)(e)| ≤ ‖ÃαS̃tÃ

β∗‖̺

1̃→∞̃

≤ ‖S̃εtÃ
β∗‖̺

1̃→2̃
‖S̃(1−2ε)t‖

̺

2̃→2̃
‖ÃαS̃εt‖

̺

2̃→∞̃

= ‖ÃβS̃∗
εt‖

−̺

2̃→∞̃
‖S̃(1−2ε)t‖

̺

2̃→2̃
‖ÃαS̃εt‖

̺

2̃→∞̃

where the crossnorms are now between the weighted spaces. But it follows
from the Gaussian bounds on the left derivatives of K̃ that

‖ÃαS̃t‖
̺

2̃→∞̃
≤ sup

h̃∈G̃

( \̃
G

dg̃ (|(ÃαK̃t)(h̃g̃
−1)|e|̺|·|h̃g̃−1|′)2

)1/2

≤ aαt
−D̃/4t−|α|/meωα̺mt

by a quadrature estimate. Similarly,

‖Ãβ S̃∗
t ‖

−̺

2̃→∞̃
≤ a′βt

−D̃/4t−|β|/meω′

β̺mt.

Moreover, ‖L̃(g̃)‖̺

2̃→2̃
≤ e|̺|·|g̃|

′

. Therefore

‖S̃t‖
̺

2̃→2̃
≤ ‖K̃t‖

|̺|

1̃
≤
\̃
G

dg̃ at−D̃/me−b((|g̃|′)mt−1)1/(m−1)

e|̺|·|g̃|
′

≤ sup
h̃∈G̃

e−(b−ε)((|h̃|′)mt−1)1/(m−1)

× e|̺|·|h̃|
′
\̃
G

dg̃ at−D̃/me−ε((|g̃|′)mt−1)1/(m−1)

≤ a′εe
ωb−ε̺mt,

where ωb−ε = (b−ε)−(m−1)(m−1)m−1m−m. Combination of these estimates
gives

e−̺|g̃|′ |(ÃαB̃βK̃t)(g̃)| ≤ aα,β,εt
−(D̃+|α|+|β|)/me((1−2ε)ωb−ε+ε(ωα+ω′

β))̺mt.
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Hence for all sufficiently small ε > 0 one obtains bounds

e−̺|g̃|′ |(ÃαB̃βK̃t)(g̃)| ≤ a′α,β,εt
−(D̃+|α|+|β|)/meωb−ε̺mt.

Minimizing over ̺ then gives

|(ÃαB̃βK̃t)(g̃)| ≤ a′′α,β,εt
−(D̃+|α|+|β|)/me−(b−ε)((|g̃|′)mt−1)1/(m−1)

as desired.

Lemma 3.2 provides the mechanism for transferring the Gaussian bounds
of Lemma 3.3 from the semigroup kernel K̃ to the kernel K and the next
lemma provides the transference channel.

Lemma 3.4. Let G be a group with polynomial growth, a1, . . . , ad′ an

algebraic basis of the Lie algebra of G and K∆ the kernel associated with

the sublaplacian ∆ = −
∑d′

i=1A
2
i . Then there exist a, b, a′, b′ > 0 such that

a′V (t1/2)−1e−b′(|g|′)2t−1

≤ K∆
t (g) ≤ aV (t1/2)−1e−b(|g|′)2t−1

for all t > 0 and all g ∈ G.

P r o o f. This result can be pieced together from [Rob], Theorem IV.4.16,
Proposition IV.4.19 and Proposition IV.4.21.

Note that since each nilpotent group has polynomial growth, the lemma

applies to both K∆ on G and the corresponding kernel K̃∆̃ on the homoge-
neous group G̃.

At this point we can readily derive the estimates for the kernel K stated
in the introduction for second-order operators. Let ϕ ∈ Cb(G) be positive.
Then π∗ϕ ≥ 0 and

∣∣∣
\
G

dg ϕ(g)(AαBβKt)(g)
∣∣∣ ≤

\̃
G

dg̃ (π∗ϕ)(g̃)|(ÃαB̃βK̃t)(g̃)|

≤ aα,β

\̃
G

dg̃ (π∗ϕ)(g̃)t−(D̃+|α|+|β|)/2e−b(|g̃|′)2t−1

≤ a′α,βt
−(|α|+|β|)/2

\̃
G

dg̃ (π∗ϕ)(g̃)K̃∆̃
ωt(g̃)

= a′α,βt
−(|α|+|β|)/2

\
G

dg ϕ(g)K∆
ωt(g),

by application of Lemmas 3.2–3.4 to both the kernels K∆
t and K̃∆̃

t . It then
follows by the Lebesgue theorem that

|(AαBβKt)(g)| ≤ a′α,βt
−(|α|+|β|)/2K∆

ωt(g)

for all t > 0 and g ∈ G. Since K∆
t satisfies Gaussian bounds with the correct
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asymptotic behaviour, by Lemma 3.4 applied to G and ∆, one obtains the
desired bounds.

The comparable result for higher-order operators is derived by similar
reasoning supplemented by some more detailed Gaussian estimates. It is a
consequence of the next theorem and Lemma 3.3.

Theorem 3.5. Let a, b > 0 be such that

|K̃t(g̃)| ≤ at−D̃/me−b((|g̃|′)mt−1)1/(m−1)

for all t > 0 and all g̃ ∈ G̃. Then for all ε > 0 and all multi-indices α, β
there exists an aα,β > 0 such that

|(AαBβKt)(g)| ≤ aα,βt
−(|α|+|β|)/mV (t1/m)−1e−(b−ε)((|g|′)mt−1)1/(m−1)

for all t > 0 and all g ∈ G.

P r o o f. Let ̺ ≥ 0 and ϕ ∈ Cc(G). Then for all ε > 0 one deduces that
∣∣∣
\
G

dg ϕ(g)e̺|g|′ (AαBβKt)(g)
∣∣∣

≤
\̃
G

dg̃ |(π∗ϕ)(g̃)|e̺|π(g̃)|′ |(ÃαB̃βK̃t)(g̃)|

≤ aα,β

\̃
G

dg̃ |(π∗ϕ)(g̃)|e̺|g̃|′t−(D̃+|α|+|β|)/me−(b−ε)((|g̃|′)mt−1)1/(m−1)

≤ aα,βt
−(|α|+|β|)/m sup

h̃∈G̃

(e|̺|·|h̃|
′

e−(b−2ε)((|h̃|′)mt−1)1/(m−1)

)

×
\̃
G

dg̃ |(π∗ϕ)(g̃)|t−D̃/me−ε((|g̃|′)mt−1)1/(m−1)

for suitable aα,β > 0 by Lemmas 3.3 and 3.2 since |π(g̃)|′ ≤ |g̃|′. Moreover,

e̺|h̃|′e−(b−2ε)((|h̃|′)mt−1)1/(m−1)

≤ eωb−2ε̺mt

for all h̃ ∈ G̃, where ωb−2ε = (b− 2ε)−(m−1)(m− 1)m−1m−m.
Next we estimate\̃

G

dg̃ |(π∗ϕ)(g̃)|t−D̃/me−ε((|g̃|′)mt−1)1/(m−1)

by a detour through second-order operators. Again let K∆
t and K̃∆̃

t denote

the semigroup kernels associated with the Laplacians ∆ = −
∑d′

i=1A
2
i and

∆̃ = −
∑d′

i=1 Ã
2
i , respectively. These kernels satisfy upper and lower Gaus-

sian bounds with the correct asymptotic behaviour by Lemma 3.4. Then
one has

s−D̃/2e−(|g̃|′)2s−1

≤ aK̃∆̃
ωs(g̃)
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for suitable a, ω > 0 and all s > 0 and g̃ ∈ G̃ by Lemma 3.4 applied to G̃
and ∆̃. Therefore\̃

G

dg̃ |(π∗ϕ)(g̃)|s−D̃/2e−(|g̃|′)2s−1

≤ a
\̃
G

dg̃ |(π∗ϕ)(g̃)|K̃∆̃
ωs(g̃)

= a
\
G

dg |ϕ(g)|K∆
ωs(g)

≤ a‖K∆
ωs‖∞‖ϕ‖1 ≤ a′V (s1/2)−1‖ϕ‖1,

by Lemma 3.2 and application of Lemma 3.4 to the kernels K∆
t .

Next consider the decomposition\̃
G

dg̃ |(π∗ϕ)(g̃)|t−D̃/me−ε((|g̃|′)mt−1)1/(m−1)

=

∞∑

n=0

\
Ωn

dg̃ |(π∗ϕ)(g̃)|t−D̃/me−ε((|g̃|′)mt−1)1/(m−1)

,

where Ωn = {g̃ ∈ G̃ : n ≤ (|g̃|′)mt−1 ≤ n+ 1}. For all n ∈ N0 one has\
Ωn

dg̃ |(π∗ϕ)(g̃)|t−D̃/me−ε((|g̃|′)mt−1)1/(m−1)

≤ t−D̃/me−εn1/(m−1)
\

Ωn

dg̃ |(π∗ϕ)(g̃)|

≤ t−D̃/me−εn1/(m−1)

sD̃/2e((n+1)t)2/ms−1
\

Ωn

dg̃ |(π∗ϕ)(g̃)|s−D̃/2e−(|g̃|′)2s−1

≤ t−D̃/me−εn1/(m−1)

sD̃/2e((n+1)t)2/ms−1
\̃
G

dg̃ |(π∗ϕ)(g̃)|s−D̃/2e−(|g̃|′)2s−1

≤ t−D̃/me−εn1/(m−1)

sD̃/2e((n+1)t)2/ms−1

a′V (s1/2)−1‖ϕ‖1

for all s > 0. Now set s = (n+ 1)t2/m. Then\
Ωn

dg̃ |(π∗ϕ)(g̃)|t−D̃/me−ε((|g̃|′)mt−1)1/(m−1)

≤ a′V ((n + 1)1/2t1/m)−1(n+ 1)D̃/2e−εn1/(m−1)+(n+1)−1+2/m

‖ϕ‖1

≤ a′eV (t1/m)−1(n + 1)D̃/2e−εn1/(m−1)

‖ϕ‖1.

Since
∞∑

n=0

e−εn1/(m−1)

(n+ 1)D̃/2 <∞
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it follows that\̃
G

dg̃ |(π∗ϕ)(g̃)|t−D̃/me−ε((|g̃|′)mt−1)1/(m−1)

≤ a′′V (t1/m)−1‖ϕ‖1.

Hence∣∣∣
\
G

dg ϕ(g)e̺|g|′ (AαBβKt)(g)
∣∣∣≤a′′aα,βe

ωb−2ε̺mtt−(|α|+|β|)/mV (t1/m)−1‖ϕ‖1

for all t > 0 and ϕ ∈ Cc(G). Therefore

e̺|g|′ |(AαBβKt)(g)| ≤ a′′aα,βe
ωb−2ε̺mtt−(|α|+|β|)/mV (t1/m)−1

for all t > 0 and g ∈ G. Finally, minimizing over ̺ one obtains the bounds

|(AαBβKt)(g)| ≤ a′′aα,βt
−(|α|+|β|)/mV (t1/m)−1e−(b−2ε)((|g|′)mt−1)1/(m−1)

for all t > 0 and g ∈ G.

The exponent b−ε in the Gaussian bounds for the kernel on G is smaller
than the corresponding exponent b for the homogeneous group but can be
chosen arbitrarily close to b at the risk of increasing the value of aα,β .

4. Riesz transforms. In this section we examine the Lie group ana-
logues Rα = AαH−|α|/m of the classical Riesz transforms on the Lp-spaces
with p ∈ (1,∞). If G is not compact, define kα : G \ {e} → C by

(5) kα(g) = Γ (|α|/m)−1
∞\
0

dt t−1+|α|/m(AαKt)(g).

Then, formally, Rα = L(kα) and the bounds on the derivatives of K given
by Theorem 3.5 lead to estimates

|kα(g)| ≤ aV (|g|′)−1

if G is not compact (see, for example, the appendix of [EIR2]). These
estimates reflect the expected singularities of the kernel. They demonstrate
that its integral is logarithmically divergent both at the identity and at
infinity. The kernel kα defined by (5) is also differentiable away from the
identity and its left derivatives satisfy bounds

(6) |(Aγkα)(g)| ≤ a(|g|′)−|γ|V (|g|′)−1

for all multi-indices γ. These kernel bounds indicate the viability of sin-
gular integration techniques (see, for example, [Ste], Chapter I, or [CoW1],
Chapter III) to bound the Rα. But the difficulty with this approach is that
it requires a priori knowledge of the boundedness of the transforms on L2,
or on one of the other Lp-spaces with p ∈ (1,∞). It is, however, unclear
whether the Rα are even densely defined on these spaces. In the classical
setting, G = R

d, this question is readily resolved by Fourier theory but in
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the general Lie group setting it is not straightforward except in special cases
such as second-order self-adjoint H on L2 and |α| = 1. In the latter case

one has D(H1/2) =
⋂d′

i=1D(Ai) and

µ

d′∑

i=1

‖Aiϕ‖
2
2 ≤ ‖H1/2ϕ‖2

2 ≤ ‖C‖

d′∑

i=1

‖Aiϕ‖
2
2

for all ϕ ∈ D(H1/2) with µ the ellipticity constant defined by (2) and ‖C‖
the norm of the matrix of coefficients. It follows that ψ is orthogonal to the
range of H1/2 if, and only if, ψ ∈ D(H1/2) and H1/2ψ = 0, i.e., if, and only
if, Aiψ = 0 for all i ∈ {1, . . . , d′} or, equivalently, ψ is constant. But L2

contains non-zero constant functions if, and only if, G is compact and as G
is nilpotent this occurs if, and only if, G = T

d′

(see [HeR], Corollary 29.44).
One concludes that R(H1/2) is dense in L2 and H−1/2 is densely defined
except in the special case G = T

d′

. Moreover, the foregoing estimates
then establish that the Riesz transforms, R(i), are norm-densely defined and
have bounded closures except in the special case of the tori. In the latter
situation the Riesz transforms are norm-densely defined on the subspace
of the functions with mean value zero. Then one can define R(i) = 0 on
the constant functions and with this convention these lowest order Riesz
transforms are again bounded on L2.

If |α| > 1, or if H is of order m > 2, or if H fails to be self-adjoint, then
similar simple observations no longer yield boundedness of the Riesz trans-
forms on L2. Therefore it is difficult to apply directly the techniques of singu-
lar integration. Nevertheless, one can make an indirect application of these
techniques combined with regularization, following [BER], and then gain
extra uniformity by transference arguments. This is the approach we take.

Let H again denote a homogeneous subcoercive operator of order m
acting on the Lp-spaces. Then H−N/m is defined on the range of HN/m

and although it is not evident that this subspace is dense, it does follow
from the uniform boundedness (3) of the St that the range of (νI +H)N/m

is dense for each ν > 0. Therefore our tactic is to analyze the operators
Rα;ν = Aα(νI + H)−|α|/m and then recuperate information about the Rα

by taking the limit ν ↓ 0. Again it is not evident that the Rα;ν are densely
defined because this requires D(H |α|/m) ⊆ D(Aα). But this follows from
[BER], at least on Lp with p ∈ (1,∞), and, moreover, theRα;ν have bounded
closures for sufficiently large values of ν by Theorem 2.3 of [BER]. These
results hold for a general Lie group. If, however, the group is homogeneous,
the norms are independent of ν, by scaling, and one could hope to transfer
the bounds of the transforms on the homogeneous group to the transforms on
the nilpotent group G by Theorem 2.1. But this is again not straightforward
since the kernels of the Rα;ν are not integrable.
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For any nilpotent Lie group G and all ν > 0 define kα;ν : G \ {e} → C

by

(7) kα;ν(g) = Γ (|α|/m)−1
∞\
0

dt t−1+|α|/me−νt(AαKt)(g).

Then for all ϕ,ψ ∈ C∞
c (G) with disjoint supports one has

(ψ,Rα;νϕ) = (−1)|α|(Aα∗ψ, (νI +H)−|α|/mϕ)

= (−1)|α|Γ (|α|/m)−1
(
Aα∗ψ,

∞\
0

dt t−1+|α|/me−νtKt ∗ ϕ
)

= Γ (|α|/m)−1
(
ψ,

∞\
0

dt t−1+|α|/me−νt(AαKt) ∗ ϕ
)

= (ψ, kα;ν ∗ ϕ).

So by density,

(8) (ψ,Rα;νϕ) = (ψ, kα;ν ∗ ϕ)

for all ϕ ∈ Lp and ψ ∈ Lq both with compact, but disjoint, supports.
Moreover, the bounds of Theorem 3.5 now lead to estimates

(9) |kα;ν(g)| ≤ aV (|g|′)−1e−bν1/m|g|′ ,

if G is not compact, with a and b independent of ν and g. The exponen-
tial factor ensures integrability of the kernel at infinity but the integral of
the kernel is still logarithmically divergent at the identity. Therefore the
transference theorem, Theorem 2.1, is not directly applicable to the Rα;ν .
In order to circumvent this difficulty we again follow the ideas of [BER] and
consider the regularized transforms

Rα;ν,ε = Aα(νI +H)−|α|/m(I + εH)−n

with ε > 0 and n a positive integer. The kernels kα;ν,ε of these operators
are less singular since the extra (I + εH)−n introduces a factor (|g|′)nm.
Therefore if n is sufficiently large the kernels are integrable although the
norms ‖kα;ν,ε‖1 diverge as ν ↓ 0 or ε ↓ 0. (For detailed estimates see [BER],
Lemma 2.4.) But using these regularizations and singular integration theory
it is established in [BER] that

‖Aα(νI +H)−|α|/m‖p→p <∞

for all p ∈ (1,∞), all large ν > 0 and all multi-indices α. These estimates
are the starting point for our analysis of the Riesz transforms. We begin by
applying them to the homogeneous group G̃.
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Lemma 4.1. The regularized transforms R̃α;ν,ε defined on G̃ satisfy

bounds

‖R̃α;ν,ε‖p̃→p̃ ≤ ‖S̃1‖p̃→p̃‖Ã
α(I + H̃)−|α|/m‖p̃→p̃

for all p ∈ (1,∞), ε > 0 and ν > 0.

P r o o f. It follows from the definition of R̃α;ν,ε that

‖R̃α;ν,ε‖p̃→p̃ ≤ ‖Ãα(νI + H̃)−|α|/m‖p̃→p̃‖(I + εH̃)−n‖p̃→p̃.

But

‖(I + εH̃)−n‖p̃→p̃ ≤ Γ (n)−1
∞\
0

dt e−tt−1+n‖S̃εt‖p̃→p̃ ≤ ‖S̃1‖p̃→p̃

where the last estimate uses scaling. Moreover,

‖Ãα(νI + H̃)−|α|/m‖p̃→p̃ = ‖Ãα(I + H̃)−|α|/m‖p̃→p̃

by another application of scaling. The statement of the lemma follows from
combination of these estimates.

Since kα;ν,ε = π∗(k̃α;ν,ε), where k̃α;ν,ε is defined in the obvious way, by
the argument used to prove Lemma 3.2, one can apply the transference
theorem, Theorem 2.1, to the regularized transforms to obtain

(10) ‖Rα;ν,ε‖p→p = ‖L(kα;ν,ε)‖p→p ≤ ‖L̃(k̃α;ν,ε)‖p̃→p̃ = ‖R̃α;ν,ε‖p̃→p̃.

Combination of these bounds with Lemma 4.1 immediately yields the key
estimates on the Riesz transforms.

Lemma 4.2. For each multi-index α one has D(H |α|/m) ⊆ D(Aα) and

(11) ‖Aαϕ‖p ≤ sα,p‖H
|α|/mϕ‖p

for all ϕ ∈ D(H |α|/m) and all p ∈ (1,∞), where

sα,p = lim sup
ε↓0, ν↓0

‖R̃α;ν,ε‖p̃→p̃ ≤ ‖S̃1‖p̃→p̃‖Ã
α(I + H̃)−|α|/m‖p̃→p̃.

P r o o f. Let N ∈ N. It follows from the foregoing estimate that

‖Rα;ν,εψ‖p ≤ ‖R̃α;ν,ε‖p̃→p̃‖ψ‖p

for all ψ ∈ Lp, p ∈ (1,∞), ε, ν > 0 and α with |α| = N . Therefore, setting
ψ = (νI + H)|α|/m(I + εH)nϕ with ϕ ∈ D∞(H) =

⋂
m≥1D(Hm) = Lp;∞

one has

‖Aαϕ‖p ≤ ‖R̃α;ν,ε‖p̃→p̃‖(νI +H)|α|/m(I + εH)nϕ‖p.

Taking the limits ν ↓ 0 and ε ↓ 0 gives the bounds (11) for ϕ ∈ D∞(H) =
Lp;∞. (The upper bound on sα,p follows from Lemma 4.1.) Here we have
used
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lim
ν↓0

‖(νI +H)γψ −Hγψ‖p = 0

for all γ > 0 and all ψ ∈ D∞(H). This is evident for integer values of γ and
follows from Lemma II.3.2 of [Rob] if γ ∈ (0, 1). The general result then
follows by combination of these special cases.

In particular, setting αi = (i, . . . , i) with i ∈ {1, . . . , d′}, one obtains
‖AN

i ϕ‖p ≤ sαi,p‖H
N/mϕ‖p for all ϕ ∈ D∞(H). Since D∞(H) is a core

for HN/m and AN
i is closed, it then follows that D(HN/m) ⊂ D(AN

i ). So

D(HN/m) ⊆
⋂d′

i=1D(AN
i ) = L′

p;N , by [BER], Corollary 2.6. Finally, if

ϕ ∈ D(HN/m) and ϕ1, ϕ2, . . . ∈ D∞(H) are such that limϕn = ϕ and
limHN/mϕn = HN/mϕ in Lp, then limHj/mϕn = Hj/mϕ in Lp for all
j ∈ {0, 1, . . . , N}. Hence by induction on |α| it follows from the esti-
mates (11) and the closedness of the Ai that limAαϕn = Aαϕ for all α
with |α| ≤ N . Then (11) is established for all ϕ ∈ D(HN/m) by limit-
ing.

Corollary 4.3. For all N ∈ N and p ∈ (1,∞) one has D(HN/m) =
L′

p;N and there exists a c > 0 such that

‖HN/2ϕ‖p ≤ c max
|α|=N

‖Aαϕ‖p

for all ϕ ∈ L′
p;N . Therefore the seminorms ϕ 7→ ‖HN/mϕ‖p and ϕ 7→

max|α|=N ‖Aαϕ‖p are equivalent.

P r o o f. We first consider the cases N ∈ {1, . . . ,m−1}. For every multi-
index α with |α| = m let α′ and α′′ be multi-indices such that α = 〈α′, α′′〉
and |α′| = m−N and |α′′| = N . Since the adjoint H∗ of H is a subelliptic
operator of the same kind as H, the foregoing conclusions apply equally well
to the H∗ on the dual Lq of Lp. One then has

|(ψ,ϕ)| = |(ψ, (νI +H)−(m−N)/m(νI +H)(νI +H)−N/mϕ)|

≤
∑

|α|=m

|cα| ‖A
α′

∗(νI +H∗)−(m−N)/mψ‖q‖A
α′′

(νI +H)−N/mϕ‖p

+ ν‖ψ‖q‖(νI +H)−1ϕ‖p

≤
d′∑

i,j=1

|cα| ‖S̃
∗
1‖q̃→q̃‖Ã

α′

∗(I + H̃∗)−(m−N)/m‖q̃→q̃

× ‖ψ‖q‖A
α′′

(νI +H)−N/mϕ‖p + ν‖ψ‖q‖(νI +H)−1ϕ‖p

for all ϕ ∈ L′
p;∞, ψ ∈ Lq and ν > 0, by Lemma 4.1 and the bounds (10).

Hence replacing ϕ by (νI +H)N/mϕ one gets
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‖(νI +H)N/mϕ‖p

≤
∑

|α|=m

|cα| ‖S̃
∗
1‖q̃→q̃‖Ã

α′

∗(I + H̃∗)−(m−N)/m‖q̃→q̃‖A
α′′

ϕ‖p

+ ν‖(νI +H)−(m−N)/mϕ‖p

for all ϕ ∈ L′
p;∞. Taking the limit ν ↓ 0 it then follows that

‖HN/mϕ‖p ≤
∑

|α|=m

|cα| ‖S̃
∗
1‖q̃→q̃‖Ã

α′

∗(I + H̃∗)−(m−N)/m‖q̃→q̃‖A
α′′

ϕ‖p

for all ϕ ∈ L′
p;∞, and so, by density, for all ϕ ∈ L′

p;N . This proves the cases
N < m.

The general case follows easily by induction.

At this stage it is straightforward to argue that the Riesz transforms
extend to bounded operators. First, the foregoing conclusions apply to the
adjoint H∗ of H on the dual Lq of Lp. Therefore (H∗)N/mϕ = 0 implies
Aβϕ = 0 for all β with |β| = N and as a consequence Aiϕ = 0 for all
i ∈ {1, . . . , d′}. Since a1, . . . , ad′ is an algebraic basis this implies that ϕ is
constant. But q 6= ∞ and hence Lq contains non-zero constant functions
if, and only if, G is compact, and as G is nilpotent this occurs if, and only
if, G = T

d′

(see [HeR], Corollary 29.44). One concludes that R(HN/m)
is dense in Lp except in the special case G = T

d′

. Moreover, the forego-
ing estimates then establish that the Riesz transforms Rα are norm-densely
defined and have bounded closures except in the special case of the tori.
Alternatively, if G is compact one can replace the space Lp by the closed
subspace of functions with mean value zero, i.e., one considers the space Lp

modulo the constant functions. Then left translations act on this subspace
and the Riesz transforms are defined and bounded. Moreover, on Lp, define
Rα = 0 on the constant functions and with this convention the Riesz trans-
forms are again bounded. In the sequel we assume that one or the other of
these modifications has been made in the compact case.

Theorem 4.4. The Riesz transforms Rα extend to bounded operators on

each of the Lp-spaces, p ∈ (1,∞), and

‖Rα‖p→p ≤ apb
k
p‖R̃α‖p̃→p̃

where

ap = sup
t>0

‖S̃1 − S̃1+t‖p̃→p̃, bp = ‖I − S̃1‖p̃→p̃

and k is the integer part of |α|/m.

P r o o f. Using Lemma 4.2 it remains to show that

lim sup
ε↓0, ν↓0

‖R̃α;ν,ε‖p̃→p̃ ≤ apb
k
p‖R̃α‖p̃→p̃.
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But
lim sup
ε↓0, ν↓0

‖R̃α;ν,ε‖p̃→p̃

≤ ‖R̃α‖p̃→p̃ lim sup
ε↓0, ν↓0

‖H̃ |α|/m(νI + H̃)−|α|/m(I + εH̃)−n‖p̃→p̃

= ‖R̃α‖p̃→p̃ lim sup
δ↓0

‖H̃ |α|/m(I + H̃)−|α|/m(I + δH̃)−n‖p̃→p̃

where the last identification uses scaling on G̃. Now |α|/m = k + γ with
γ ∈ [0, 1) and

‖H̃k(I + H̃)−k‖p̃→p̃ ≤ (‖H̃(I + H̃)−1‖p̃→p̃)
k.

But

‖H̃(I + H̃)−1‖p̃→p̃ =
∥∥∥

∞\
0

dt e−t(I − S̃t)
∥∥∥

p̃→p̃
≤ bp.

Next, if J is the generator of a uniformly bounded semigroup then

Jγ = n−1
γ

∞\
0

dλλ−1+γJ(λI + J)−1

for γ ∈ (0, 1) with nγ =
T∞
0
dλλ−1+γ(λ + 1)−1. Since H̃ generates a uni-

formly bounded semigroup it follows that J = H̃(I + H̃)−1 also generates
a uniformly bounded semigroup. Hence applying the foregoing fractional
power formula we get

H̃γ(I + H̃)−γ = (H̃(I + H̃)−1)γ

= n−1
γ

∞\
0

dλλ−1+γ(1 + λ)−1H̃(λ(1 + λ)−1I + H̃)−1.

Therefore

‖H̃γ(I + H̃)−γ(I + δH̃)−n‖p̃→p̃ ≤ sup
0≤ε≤1

‖H̃(εI + H̃)−1(I + δH̃)−n‖p̃→p̃

≤ sup
0≤ε≤1

‖H̃(I + H̃)−1(I + δεH̃)−n‖p̃→p̃

where the last step uses scaling. Now

H̃(I + H̃)−1(I + νH̃)−n = Γ (n)−1
∞\
0

ds

∞\
0

dt e−(s+t)s−1+nS̃νs(I − S̃t)

and combination of these observations gives

lim sup
δ↓0

‖H̃γ(I + H̃)−γ(I + δH̃)−n‖p̃→p̃

≤ lim sup
ν↓0

‖H̃(I + H̃)−1(I + νH̃)−n‖p̃→p̃ ≤ ap.

The statement of the proposition follows immediately.
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Note that if p = 2 and H is self-adjoint then a2 = b2 = 1 and hence
‖Rα‖2→2 ≤ ‖R̃α‖2̃→2̃. Alternatively, if m = 2 and St is a Markovian
semigroup then ap, bp ≤ 2 and a2 = b2 = 1. Thus by interpolation
ap, bp ≤ 2|1−2/p|.

In the non-commutative context of Lie groups there are various operators
other than the Rα which are analogues of the Riesz transforms. But these
can be bounded by additional arguments such as duality.

Corollary 4.5. The transforms Rα,β = AαH−(|α|+|β|)/mAβ extend to

bounded operators on each of the spaces Lp(G ; dg) with p ∈ (1,∞).

P r o o f. One has Rα,β(H) = Rα(H)(Rβ∗
(H∗))∗ where we have tem-

porarily modified the notation to indicate the dependence of the transforms
on H, or H∗. Therefore the Rα,β(H) extend to bounded operators on the
Lp-spaces as the product of the bounded Rα(H) and the bounded adjoints
Rβ∗

(H∗).

Alternatively, one can examine multiple products of derivatives and in-
verse powers of H.

Corollary 4.6. The transforms Aα1H−n1/m . . . AαkH−nk/m on Lp;∞

extend to bounded operators on each of the spaces Lp(G ; dg) with p ∈ (1,∞)
for all k ∈ N, all multi-indices α1, . . . , αk and all n1, . . . , nk ∈ N0 such that

|α1| + . . .+ |αk| = ni + . . . + nk.

P r o o f. The proof follows from the observation that for all N ∈ Z,
i ∈ {1, . . . , d′} and p ∈ (1,∞) there exists a c > 0 such that

‖H(N−1)/mAiH
−N/mϕ‖p ≤ c‖ϕ‖p

uniformly for ϕ ∈ Lp;∞.

The case N = 0 has already been established. Therefore suppose N ≥ 1.
Then

‖H(N−1)/mAiH
−N/mϕ‖p ≤ c max

|β|=N−1
‖AβAiH

−N/mϕ‖p

≤ c max
|α|=N

‖AαH−N/mϕ‖p ≤ c′‖ϕ‖p

by Lemma 4.2 and Corollary 4.3. Finally, the case N < 0 follows by duality
from the case N ≥ 0.

Although we have established boundedness of the Riesz transforms on
the Lp-spaces with p ∈ (1,∞), our arguments do not establish directly that
the Rα are weak type (1, 1). One deduces from [BER] that the regularized
operators Rα;ν,ε are weak type (1, 1) but it appears difficult to conclude
by limiting arguments that this property extends to the Rα. Nevertheless,
since we now know that the Rα are bounded on L2 we are in a position to
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deduce the weak type (1, 1) property by the standard arguments of singular
integration theory.

Proposition 4.7. The Riesz transforms Rα extend to operators of weak

type (1, 1).

P r o o f. We will verify the assumptions of Theorem 3 of Chapter I of
[Ste] for the operators Rα. Then the proposition is a corollary. Note that
although the discussion of Chapter I of [Ste] is restricted to the Euclidean
space R

d equipped with the Lebesgue measure dx, the analogue of Theo-
rem 3 is valid on a homogeneous space X with a measure µ satisfying the
doubling property. (Singular integration theory is described in this latter
setting in [CoW1] but the main result, Theorem III.2.4, contains an extra-
neous assumption of square integrability of the operator kernel.)

First suppose G is not compact. Fix p ∈ (1,∞). Then Rα is bounded on
Lp by Theorem 4.4. Moreover, H |α|/m(νI +H)−|α|/m is bounded for each
ν > 0. But it is readily verified that

lim
ν↓0

‖H |α|/m(νI +H)−|α|/mϕ− ϕ‖p = 0

for all ϕ ∈ Lp. Therefore

(ψ,Rαϕ) = lim
ν↓0

(ψ,RαH
|α|/m(νI +H)−|α|/mϕ)

= lim
ν↓0

(ψ,Aα(νI +H)−|α|/mϕ)

for all ϕ ∈ Lp and ψ ∈ Lq, the dual of Lp.

But (ψ,Aα(νI +H)−|α|/mϕ) = (ψ, kα;ν ∗ ϕ) if ϕ ∈ Lp and ψ ∈ Lq, with
compact and disjoint supports, by (8). Moreover, kα,ν satisfies the bounds
(9), uniformly for all ν > 0. Therefore one deduces from the Lebesgue
dominated convergence theorem that

(ϕ,Rαψ) = lim
ν↓0

(ϕ, kα,ν ∗ ψ) = (ϕ, kα ∗ ψ)

for ϕ,ψ with disjoint supports and with kα defined by (8). Thus Rα is
determined by the singular kernel kα in this weak sense. But this weak
relation between the operator and the singular kernel, together with the
bounds (9), is sufficient for Rα to be of weak type (1, 1) (see [Ste], Section I.5,
for a discussion of this point in the case G = R

n).

Finally, if G is compact, let Pϕ =
T
G
dg L(g)ϕ denote the projection of

ϕ on the space of constant functions. Then on the subspace (I − P )L1 of
L1 the restriction Hr of the operator H has a bounded inverse as a direct
consequence of spectral properties (see [Rob], Proposition I.7.1). Therefore
the operator (νI + Hr)H

−1
r is bounded for all ν > 0. Alternatively, the

operator Aα(νI +H)−1 and hence the operator Aα(νI +Hr)
−1 is of weak



HEAT KERNELS AND RIESZ TRANSFORMS 213

type (1, 1), by a direct application of singular integration theory to the
operator Rα;ν (cf. [Ste], Section I.5). Therefore

Rα = (Aα(νI +Hr)
−1)((νI +Hr)H

−1
r )(I − P )

is an operator of weak type (1, 1).

5. Concluding remarks. The heat kernel bounds of Section 3 and
the bounds on the Riesz transforms of Section 4 can be used to investigate
various other aspects of the analytic structure of the nilpotent Lie group
G. For example, one can extend the analysis of subelliptic Lipschitz spaces
given in [EIR1] (see also [Rob], Chapter II) in a manner which takes into
account both the local smoothness and the asymptotic decay. Secondly, we
briefly discuss a holomorphic functional calculus, and finally, for second-
order operators with real coefficients we consider lower bounds for large t
and Harnack inequalities.

5.1. Lipschitz spaces. It was established in Corollary 4.3 that the semi-
norms ϕ 7→ max|α|=n ‖Aαϕ‖p and ϕ 7→ ‖Hn/mϕ‖p are equivalent on the
L′

p;n-spaces with p ∈ (1,∞). But these seminorms are in fact norms unlessG

is compact, i.e., unless G = T
d′

, and in this latter case they are norms on the
subspace of functions with mean value zero. In the following we assume that
G is not compact, although the results are also valid for compact G if one
reads seminorms instead of norms. Note, however, the spaces L′

p;n equipped
with either of these norms are not Banach spaces. Now one can develop a
theory of intermediate spaces for the Cn-subspaces L′

p;n equipped with these
norms (see, for example, [BeL] for background information). Since the Ai

are group generators and H generates a bounded holomorphic semigroup S,
one then has alternative characterizations in terms of Lipschitz norms, etc.
Fix γ > 0 and n ∈ N with n > γ and q ∈ [1,∞).

Define ‖ · ‖
(n)
p;γ,q : Lp → [0,∞] by

‖ϕ‖(n)
p;γ,q =

( ∞\
0

dt t−1(t−γκ(n)
ϕ (t))q

)1/q

,

where

κ(n)
ϕ (t) = inf{‖ϕ0‖p + tn max

|α|=n
‖Aαϕ‖p : ϕ = ϕ0 + ϕn, ϕn ∈ L′

p;n}

and we use the Cn-(semi)norm ϕ 7→ max|α|=n ‖Aαϕ‖p. Then the spaces

L(n)
p;γ,q = (Lp, L

′
p;n)γ,q = {ϕ ∈ Lp : ‖ϕ‖(n)

p;γ,q <∞}

correspond to the real interpolation spaces for the Cn-structure of the left
regular representation L of G on Lp(G ; dg). They are normed spaces with
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respect to the norms ‖ ·‖
(n)
p;γ,q. Then L′

p;n is dense in L
(n)
p;γ,q (see [BeL], Theo-

rem 3.4.2). Alternatively, they can be equipped with an equivalent norm de-
fined as above but with ϕ 7→ max|α|=n ‖Aαϕ‖ replaced by ϕ 7→ ‖Hn/mϕ‖p.
Then the spaces correspond to the intermediate spaces of the fractional pow-
ers of H. But H generates the holomorphic semigroup S and the general
theory of interpolation spaces for holomorphic semigroups establishes that

these spaces can be characterized as the spaces L
(n,S)
p;γ/m,q of all ϕ ∈ Lp for

which

‖ϕ‖
(n,S)
p;γ/m,q =

(∞\
0

dt t−1(t−γ/m‖(I − St)
nϕ‖p)

q
)1/q

is finite, or the spaces L
(n,H)
p;γ/m,q for which

‖ϕ‖
(n,H)
p;γ/m,q =

( ∞\
0

dt t−1(tn−γ/m‖HnStϕ‖p)
q
)1/q

is finite. The equivalence of the last two norms is a version of a result
of Peetre (see, for example, [BuB], Chapter III). It follows whenever the
semigroup S and its generator H satisfy bounds ‖St‖ ≤ M and ‖HSt‖ ≤
Mt−1 uniformly for all t > 0. But in the current context these latter bounds
are given by (3) and (4).

Once one has the foregoing equivalences it follows by a slight variation
of the arguments used in Steps 1, 2 and 3 of the proof of Theorem 3.2 in

[EIR1] that L
(n)
p;γ,q is equal to the space L

(n,L)
p;γ,q of all ϕ ∈ Lp for which

‖ϕ‖(n,L)
p;γ,q =

( \
Gn

dµn(g)(|g|−γ‖(I − L(g1)) . . . (I − L(gn))ϕ‖p)q
)1/q

is finite where g = (g1, . . . , gn), |g| = |g1|
′ + . . . + |gn|

′ and dµn(g) =
dg1 . . . dgnV (|g|)−n. Moreover, the norms

(12) ‖ · ‖(n)
p;γ,q, ‖ · ‖

(n,S)
p;γ/m,q, ‖ϕ‖

(n,H)
p;γ/m,q and ‖ · ‖(n,L)

p;γ,q

are equivalent. It then follows by standard reasoning that all these spaces
are independent of the choice of n, within the range n > γ.

All foregoing Lipschitz spaces, L
(n)
p;γ,q, L

(n,S)
p;γ/m,q, L

(n,H)
p;γ/m,q and L

(n,L)
p;γ,q , can

also be defined if p = 1 or p = ∞, as well as, with obvious modifications, if
q = ∞. In those cases one can use the arguments used in all four steps of
the proof of Theorem 3.2 in [EIR1] to deduce that the four Lipschitz spaces
are equal and the four norms in (12) are equivalent.

5.2. Bounded holomorphic functional calculus. A second related topic
is the existence of a bounded holomorphic functional calculus, in the sense
of McIntosh [McI] (see also [CDMY] and [ADM]), for the homogeneous
subcoercive operators H. Since these operators are automatically maximal
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accretive on L2 they have a bounded holomorphic calculus, with the sector
of holomorphy dictated by the spectral properties of the individual H, on L2

(see [ADM], Theorem G). But then the kernel bounds of Theorem 3.5 more
than suffice to deduce that the H have a bounded holomorphic functional
calculus on each of the Lp-spaces with p ∈ (1,∞) (see [DuR], Theorem 3.1
or Theorem 3.4). The transference arguments of Section 2 can then be used
to derive alternative bounds on the norms ‖f(H)‖p→p of the holomorphic
function f of H. The standard estimate is ‖f(H)‖p→p ≤ c‖f‖∞ with ‖f‖∞
the supremum norm within the sector of holomorphy. But f(H) can be
expressed in the form f(H) = L(Kf ) where the kernel Kf is not necessarily
integrable. This can, however, be arranged by regularization. Then arguing
as in Section 4 one obtains bounds ‖f(H)‖p→p ≤ c′‖f(H̃)‖p̃→p̃ in terms of
the homogeneous group.

On L2 there is a connection between the holomorphic functional calculus
and the Lipschitz spaces. The Hilbert space theory surrounding the func-
tional calculus (see [ADM], Sections 3 and 4) ensures that the operators H
satisfy quadratic estimates. In particular, the norm ‖ · ‖2 is equivalent to
the norms

ϕ 7→
(∞\

0

dt t−1(tn−γ‖Hn−γStϕ‖2)
2
)1/2

for all n > γ > 0. Thus replacing ϕ by Hγϕ one deduces that the norms

ϕ 7→ ‖Hγϕ‖2 and ϕ 7→ ‖ϕ‖
(n,H)
2;γ are equivalent on D(Hγ). Then of course

the other Lipschitz norms are also equivalent to the norm on the fractional
powers. This type of identification is not generally true on the other Lp-
spaces [CDMY].

5.3. Real second-order operators. The kernelK of an mth order operator
with complex coefficients is positive if, and only if, m = 2 and all coefficients
are real (see [Rob], Section III.5). In that case one has Gaussian lower
bounds

Kt(g) ≥ at−D′/2e−ωte−b(|g|′)2t−1

for some a, b > 0 and ω ≥ 0. These bounds have the correct small time
behaviour. On nilpotent Lie groups we next prove Gaussian lower bounds
with the correct large time behaviour, i.e., ω = 0, which extends Lemma 3.4
to non-symmetric operators.

Theorem 5.1. If m = 2 and cα ∈ R for all α then there exist a, b > 0
such that

Kt(g) ≥ aV (t1/2)−1e−b(|g|′)2t−1

for all t > 0 and g ∈ G.
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P r o o f. It follows from Lemma 3.4 that there exist a, ω > 0 such that

K̃1(g̃) ≥ aK̃∆̃
ω (g̃)

for all g̃ ∈ G̃, where K̃∆̃ is again the kernel with respect to the sublaplacian.
Then by scaling,

K̃t(g̃) ≥ aK̃∆̃
ωt(g̃)

for all t > 0 and g̃ ∈ G̃. Next, if g̃ ∈ G̃ then

Kt(π(g̃)) = lim
s↓0

Kt+s(π(g̃)) = lim
s↓0

(S̃t(π
∗Ks))(g̃)

= lim
s↓0

\̃
G

dh̃ K̃t(h̃)Ks(π(h̃−1g̃))

≥ lim
s↓0

a
\̃
G

dh̃ K̃∆̃
ωt(h̃)Ks(π(h̃−1g̃))

= lim
s↓0

a(K∆
ωt ∗Ks)(π(g̃)) = K∆

ωt(π(g̃))

for all t > 0. Since π is surjective one establishes that Kt ≥ aK∆
ωt for all

t > 0. Then the Gaussian lower bounds follow from Lemma 3.4 applied
to K∆.

As an easy consequence one has the following Harnack inequalities.

Corollary 5.2. If m = 2 and the coefficients of the operator H are real

then for all multi-indices α, β and all v, ω > 0 there exists an aα,β;v,ω > 0
such that

sup
g∈B′(e;vt1/2)

|(AαBβKt)(g)| ≤ aα,β;v,ωt
−(|α|+|β|)/2 inf

g∈B′(e;vt1/2)
Kωt(g)

uniformly for all t > 0.

P r o o f. It follows from Lemma 3.3 and Theorem 3.5 that one has bounds

sup
g∈B′(e;vt1/2)

|(AαBβKt)(g)| ≤ aα,βt
−(|α|+|β|)/2V (t1/2)−1

for all v, t > 0. But Theorem 5.1 gives complementary bounds

inf
g∈B′(e;vt1/2)

Kωt(g) ≥ aV ((ωt)1/2)−1e−bv2/ω

for all v, t > 0. The Harnack inequalities follow by combination of these
bounds.
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