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LOWER SEMICONTINUOUS DIFFERENTIAL INCLUSIONS.

ONE-SIDED LIPSCHITZ APPROACH

BY

TZANKO DONCHEV (SOFIA)

Some properties of differential inclusions with lower semicontinuous
right-hand side are considered. Our essential assumption is the one-sided
Lipschitz condition introduced in [4]. Using the main idea of [10], we ex-
tend the well known relaxation theorem, stating that the solution set of
the original problem is dense in the solution set of the relaxed one, under
assumptions essentially weaker than those in the literature. Applications in
optimal control are given.

1. Preliminaries. Refined lemma of Plís. We investigate differen-
tial inclusions having the form

(1) ẋ(t) ∈ F (t, x), x(0) = x0, t ∈ [0, T ] (usually T = 1);

here x ∈ E (a Banach space). It is well known that under some compactness
type assumptions (1) admits a solution when F (·, ·) is almost lower semicon-
tinuous (ALSC). However, the solution set may depend neither lower nor
upper semicontinuously on parameters. Moreover, the solution set of the
relaxed system

(2) ẋ(t) ∈ co F (t, x), x(0) = x0,

is not closed in general. When F (t, ·) is continuous the last system has
compact solution set. When co F (t, ·) is Lipschitz the solution set of (1)
is dense in the solution set of (2). We extend this and related results to
the case of lower semicontinuous and one-sided Lipschitz right-hand sides.
Our results are based on a refined version of a lemma of Plís [8]. The
quasitrajectories introduced by Ważewski are essentially used in the paper.
From the fact that the quasitrajectory set of (1) contains the relaxed solution
set we obtain a short proof of the relaxation theorem.
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The paper consists of three sections. In this section we give the main
definitions and notations and prove a refined version of the lemma of Plís.
The main results for (1) are presented in the second section. In the last
section applications in optimal control are given.

Note that all the concepts not discussed in detail in the sequel can be
found in [3]. Let E be a Banach space. Denote by Pf (E) the set of all
compact nonempty subsets of E. If A ∈ Pf (E), then clco A (or co A) is the
closed convex hull of A. A set valued map F : E → Pf (E) is said to be Lower

SemiContinuous (LSC) if for every x ∈ E, y ∈ F (x) and ε > 0 there exists
δ > 0 such that F (x′) ∩ U(y, ε) 6= ∅ for every x′ ∈ U(x, δ), where U(x, ε) is
the open ball with radius ε, centered at x. If for every ε > 0 there exists
Iε ⊂ I with meas(I \ Iε) ≤ ε such that F : Iε × E is LSC then F is called
ALSC. For x, y ∈ E we define [x, y]+ := limh→0+ h−1{|x + hy| − |x|}. From
[6], p. 7, we know that [·, ·]+ is upper semicontinuous as a real valued function
and nonexpansive in the second variable. We set d(b,A) = infa∈A |b − a|.
Definition 1.1. The multimap F : I×E → Pf (E) is said to be Almost

Lower SemiContinuous (ALSC) if for every ε > 0 there exists a compact
set Iε ⊂ I with Lebesgue measure µ(I \ Iε) ≤ ε such that F (·, ·) is lower
semicontinuous (LSC) on Iε × E.

We will use the following assumptions.

A1. F : I × E → Pf (E) is ALSC and |F (t, x)| ≤ λ(t){1 + |x|} for every
(t, x) ∈ I × E, where λ(·) is integrable and positive.

A2. There exists a Kamke function u : I × R
+ → R such that for every

x, y ∈ E and every fx ∈ F (t, x) there exists fy ∈ F (t, y) with [x−y, fx−fy]+
≤ u(t, |x − y|).

We recall that a Carathéodory function u(·, ·) is called a Kamke function

iff it is integrably bounded on bounded sets, u(t, 0) ≡ 0 and the unique
solution of ṡ(t) = u(t, s(t)), s(0) = 0, is s(t) ≡ 0.

A3. There exists a Kamke function w : I × R
+ → R such that

lim
h→0

χ(F ([t, t + h] × A)) ≤ w(t, χ(A)) for every bounded A ⊂ E.

Here χ(·) denotes the Hausdorff measure of noncompactness.

R e m a r k 1.1. A2 is the one-sided Lipschitz condition. For E∗ strongly
convex it becomes

σ(j(x − y), F (t, x)) − σ(j(x − y), F (t, y)) ≤ u(t, |x − y|)|x − y|
where σ(x,A) = supa∈A〈x, a〉 denotes the support function and j(x) = {l ∈
E∗ : 〈l, x〉 = |x|2 = |l|2} is the normalized duality map. More general
dissipative conditions for ordinary differential equations are used in [6]. In
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the literature the following definition for one-sided Lipschitz multimaps is
used:

For every x, y ∈ E and every fx ∈ F (t, x), fy ∈ F (t, y),

[x − y, fx − fy]+ ≤ w(t, |x − y|).
However, if F (t, ·) is LSC and one-sided Lipschitz then F (·, ·) is single valued.

Theorem 1.1. Suppose that F satisfies A1–A3. Let ε > 0 and let f(·) be

a positive L1-function. If x(·) is an AC function with d(ẋ(t), F (t, x(t))) ≤
f(t) for a.e. t ∈ I, then there exists a solution y(·) of (1) such that |x(t) −
y(t)| ≤ r(t), where r(0) = |x0 − y0| and ṙ(t) = u(t, r) + f(t) + ε.

P r o o f. We claim that the following map is ALSC and nonempty com-
pact valued:

Γ (t, w) := cl{v ∈ F (t, w) : [x(t)−w, ẋ(t)− v]+ < u(t, |x(t)−w|)+ f(t)+ ε}.
If z ∈ F (t, x(t)) and |z − ẋ(t)| ≤ f(t), then there exists v ∈ F (t, w) such
that [x(t) − w, z − v]+ ≤ u(t, |x(t) − w|). Therefore [x(t) − w, ẋ(t) − v]+ ≤
f(t) + u(t, |x(t) − w|), i.e. Γ (t, x) is nonempty compact valued.

From the Scorza Dragoni and Lusin’s properties we see that for every
ε > 0 there exists a compact set Iε ⊂ I with µ(I \Iε) ≤ ε, such that F (·, ·) is
LSC on Iε ×E, u(·, ·) is continuous on Iε ×R

+ and ẋ(·), f(·) are continuous
on Iε. Therefore it remains to show that Γ (·, ·) is LSC on Iε × E.

Let l ∈ Γ (t, w) (t ∈ Iε) and let [x(t) − w, ẋ(t) − l]+ ≤ u(t, |x(t) − w|) +
f(t)+ ε− γ, where γ > 0. Since F (·, ·) is LSC and [·, ·]+ is USC, there exist
τ > t and µ > 0 such that

[x(t′) − w′, ẋ(t′) − l′]+ − [x(t) − w, ẋ(t) − l]+ < γ

whenever |l′ − l| < µ, |w′ − w| < µ and t′ ∈ Iε ∩ [t, τ). Thus there exists
l′ ∈ F (t′, u′) such that

[x(t′) − u′, ẋ(t′) − l′]+ < u(t′, |x(t′) − u′|) + f(t′) + ε.

Therefore l′ ∈ Γ (t′, x(t′)) and hence Γ (·, ·) is ALSC.

2. Main results. In this section we prove the relaxation theorem and
the continuous dependence for (1).

Definition 2.1. The absolutely continuous (AC) function x(·) is said
to be a quasitrajectory if there exists a sequence {xi(·)}∞i=1 such that d(ẋi(t),
F (t, xi(t))) → 0 for a.e. t ∈ I and xi(·) → x(·) uniformly on I.

The next theorem generalizes Theorem 3.3.1 of [9], where co F (t, ·) is
assumed to be Lipschitz, and Theorem 1 of [7], where F (t, ·) is assumed to
be Lipschitz.
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Theorem 2.1. Under assumptions A1–A3 the solution set of (1) is dense

in the quasitrajectory set of (2).

P r o o f. The fact that the quasitrajectory sets of (1) and (2) coincide
has a standard proof. In view of Theorem 1.1 we have to show that under
assumptions A1 and A3 every relaxed solution is a quasitrajectory.

Let x(·) be a relaxed solution. The set
⋃

t∈I F (t, x(t)) is precompact
by A3. Therefore F (·, x(·)) is strongly measurable. Thus there exists a
sequence Gi : I → Pf (E) of piecewise constant maps such that d(Gi(t),
F (t, x(t))) → 0 for a.e. t ∈ I. From the Lyapunov and Vitali theorems
there exists a sequence gk(t) ∈ Gk(t) of piecewise constant functions with

yk(t) = x0 +
Tt
0
gk(t) dτ which converges uniformly to x(·). By A1 and the

dominated convergence theorem, D∗

H(F (t, yk(t)), F (t, x(t))) → 0 a.e. on I.
Here D∗

H(A,B) := maxa∈A minb∈B |b− a|. Thus D∗

H(F (t, yk(t)), Gk(t)) → 0
a.e. on I and hence d(ẏk(t), F (t, yk(t))) → 0 for a.e. t ∈ I.

Let E be reflexive. With the help of the recent result of Bressan and
Staicu [1] one can prove Theorem 2.1 for

(3) ẋ(t) ∈ Ax + F (t, x(t)), x(0) = x0,

where A is m-accretive and generates a compact semigroup, while F satisfies
A1–A2.

Theorem 2.1′. The set of integral solutions of (3) (see [1]) is dense in

the quasitrajectory set.

However, in general Banach spaces the quasitrajectory set of (3) does
not coincide with the quasitrajectory set of the convexified problem. Let M
be a metric space with a distance function ̺(·, ·). For α ∈ M consider the
differential inclusion

(4) ẋ(t) ∈ F (t, x(t), α), x(0) = xα.

Proposition 2.1. Suppose that F (·, ·, ·) is ALSC and satisfies A2, A3
uniformly in α. If α → β and if xα → xβ then for every solution xβ of (4β)
there exists a net xα(·) of solutions of (4α) converging uniformly to xβ(·).

Proposition 2.1 follows easily from Theorem 1.1 and the proof is omitted.

R e m a r k 2.1. Obviously the quasitrajectory set of (4α) depends con-
tinuously on α whenever F (t, x, ·) is continuous (in α).

When A2 does not hold Theorem 2.1 and Proposition 2.1 may not be
true. Furthermore, there are multimaps F which are not Lipschitz but
satisfy A2.

Example 2.1. Let α ∈ R and let

ẋ ∈ {−1, 1}, ẏ ∈ |α|x2 − 3
√

y.
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Obviously F (·, ·, ·) satisfies all the conditions of Theorem 2.1 and Proposi-
tion 2.1 but F is not Lipschitz. When

ẋ ∈ {−1, 1}, ẏ ∈ |α|x2 + 3
√

y,

Theorem 2.1 and Proposition 2.1 do not hold. Here A2 is not satisfied.

Define H(t, x) := co
⋂

ε>0
co F (t, x + U(0, ε)). If co F (t, ·) is continuous

then the quasitrajectory set coincides with the solution set of

(5) ẋ(t) ∈ H(t, x(t)), x(0) = x0.

In the other case that need not be true.

Example 2.2. Let A ⊂ R be open dense with meas(A) ≤ ε. Define
F (x) := [0, 1] for x ∈ A, and F (x) = 0 elsewhere. Consider the system

ẋ(t) ∈ F (x), x(0) = 0.

Obviously H(x) = [0, 1], x ∈ I. But if y(·) is a quasitrajectory, then y(t) ≤ ε.
On the other hand, y(t) = t, t ∈ [0, 1], is a solution of (5).

For E∗ uniformly convex, however, one can show that the two sets co-
incide. We will prove it for simplicity in the case of E a Hilbert space and
w(t, s) ≡ Ls, since in the general case the method is the same.

Theorem 2.2. Let E be a Hilbert space and let w(t, s) ≡ Ls. Under

assumptions A1–A3 the quasitrajectory set of (1) coincides with the solution

set of (5).

P r o o f. Note first that H(·, x) has a strongly measurable selector and
H(t, ·) is USC. Thus (5) has nonempty compact Rδ solution set. Let x(·)
be AC with ẋ(t) ∈ F (t, B(x, ε)) + B(0, ε), x(0) = x0. Define the multimap

Γ (t, y) = cl{u ∈ F (t, y) : 〈x(t) − y, ẋ(t) − u〉 < (L|x − y| + δ)2 + 2δ}.
Obviously Γ (·, ·) is nonempty compact valued and almost LSC (see the proof
of Theorem 1.1). Let ẏ ∈ Γ (t, y), y(0) = x0. Therefore

〈x(t) − y(t), ẋ(t) − ẏ(t)〉 < L|x(t) − y(t)|2 + 2LMδ + 2NLδ + 2δ.

Thus there exists a constant C such that |x(t) − y(t)| ≤ Cδ1/2 exp(L). It
is straightforward to show (see [2]) that for every solution x(·) of (5) there
exist sequences {εi}∞i=1 and {xi(·)}∞i=1 such that εi → 0 and

ẋi(t) ∈ F (t, U(x, εi)) + U(0, εi).

R e m a r k 2.2. If H(·, ·) is compact valued then using the main idea of
[5] one can prove Theorem 2.2 without A3. Indeed, let P = {pi}n

i=1 and
Q = {qj}m

j=1 be two subdivisions of I with P ⊂ Q. Consider the following
differential inclusions:

ẋ(t) ∈ H(t, x(pi)), x(0) = x0,(6)
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ẏ(t) ∈ H(t, y(qj)), y(0) = x0.(7)

It is easy to show that there exist constants M and N such that |x(t)| ≤ M
and |H(t, x)| ≤ N for all solutions of (6) and (7) and all subdivisions P and
Q. Let x(·) be a solution of (6). We set ẏ(t) ≡ ẋ(t) on [0, q1]. By virtue of
A2 there exists a strongly measurable selection f(t) ∈ H(t, y(q1)) such that

(8) 〈x0 − y(q1), ẋ(t) − f(t)〉 ≤ L|x0 − y(q1)|2.
We let y(t) = y(q1) +

Tt
q1

f(s) ds. Then

〈x(t) − y(t), ẋ(t) − ẏ(t)〉
≤ L|x0 − y(q1)|2 + {|x0 − x(t)| + |y(q1) − y(t)|}|ẋ(t) − ẏ(t)|
≤ L|x(t) − y(t)|2 + L{|x0 + x(t)| + |y(q1) + y(t)|}

× {|x0 − x(t)| + |y(q1) − y(t)|}
+ {|x0 − x(t)| + |y(q1) − y(t)|}|ẋ(t) − ẏ(t)|.

Thus

〈x(t) − y(t), ẋ(t) − ẏ(t)〉 ≤ L|x(t) − y(t)|2 + N(4LM + 2N)(t + t − q1)

≤ L|x(t) − y(t)|2 + C̃t

where C̃ is a constant (depending on N, L, M but not on t). One can con-
tinue in the same fashion. Thus for qj ∈ [pi, pi+1) we get ẏ(t) such that (8)
holds with x0 replaced by x(pi) and q1 by qj . Define δ = maxi (pi − pi−1),
where p0 = 0. Then

〈x(t) − y(t), ẋ(t) − ẏ(t)〉 ≤ L|x(t) − y(t)|2 + C̃δ

on I. If L̂ = max(L, 0), then |x(t) − y(t)|2 ≤ 2C̃ exp(L̂t). Thus there
exists a constant C (not depending on δ) such that |x(t) − y(t)| ≤ Cδ1/2.
The latter implies that if R1P is a compact subset of the solution set of
(6) then there exists a compact subset R1Q of the solution set of (7) with
DH(R1P , R1Q) ≤ Cδ1/2. Here the Hausdorff distance is in Pf (C(I,E)).

Now consider the sequence of subdivisions Pi ⊂ Pi+1 with Pn =
{i/2n}2

n

i=1. Then DH(R1Pk
, R1Pk+1

) ≤ C/2k. Thus {R1Pn
}∞n=1 is a Cauchy

sequence in Pf (C(I,E)). Let P be its limit. Then P 6≡ ∅ is a compact
subset of C(I,E). It is standard to prove that every x(·) ∈ P is a solution
of (5). Therefore the following proposition holds:

Proposition 2.2. If ∅ 6≡ G(t, x) ⊂ H(t, x) is closed convex valued such

that G(·, x) is strongly measurable and the support function σ(l, G(t, ·)) is

USC for every l ∈ E∗ and a.e. t ∈ I, then the differential inclusion

ẋ(t) ∈ G(t, x), x(0) = x0,

has a solution.
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Now it is easy to prove

Theorem 2.2′. Suppose all the conditions except A3 of Theorem 2.2
hold. Then the solution set of (1) is dense in the solution set of (5).

P r o o f. Let x(·) be a solution of (5). As in the proof of Theorem 2.2 fix
δ > 0 and consider the multimap

Γ (t, x) = cl{u ∈ F (t, y) : 〈x(t) − y, ẋ(t) − u〉 < (L|x − y| + δ)2 + 2δ}.
Γ (·, ·) is nonempty compact valued and almost LSC. Consequently, there
exists a solution y(·) of

ẋ(t) ∈ Γ (t, x(t)), x(0) = x0.

It is standard to show that |x(t) − y(t)| ≤ Cδ1/2, where C does not depend
on δ.

3. Applications in optimal control. In this section we consider
optimal control systems having the form

(9) ẋ(t) = f(t, x(t), u), x(0) = x0, u ∈ V.

Here f : I × E × V → E is a Carathéodory function, and E is a Banach
space with uniformly convex dual E∗. When f(t, ·, u) is continuous (not
uniformly in u) the multimap F (t, x) = co f(t, x, V ) is LSC (not necessarily
continuous) in x. Therefore it is not appropriate to associate the relaxed
system with

(10) x ∈ F (t, x), x(0) = x0.

The reason is that the solution set of the last system may be noncompact
and nonclosed (see Example 3.1 below). So, we suppose:

B1. f(·, ·, u) is almost continuous, f(t, x, ·) is continuous. V is a closed
subset of a metric space, and |f(t, x, V )| ≤ λ(t){1 + |x|} for an integrable
λ(·).

B2. 〈j(x−y), f(t, x, u)−f(t, y, u)〉 ≤ v(t, |x−y|)|x−y| for every x, y ∈ E.
Here j is the duality map.

B3. limh→0 χ(f([t, t + h], A, V )) ≤ w(t, χ(A)).

Here v,w, χ are as in A1–A3. Define G(t, x) =
⋂

ε>0
co{f(t, x+U(0, ε), V )}.

The relaxed solutions of (9) are the solutions of the system

(11) x ∈ G(t, x), x(0) = x0.

From the results of the second section we conclude that the following theo-
rem holds.

Theorem 3.1. Under assumptions B1, B2 the solution set of (9) is dense

in the solution set of (11), i.e. the set of solutions is dense in the set of

relaxed solutions.
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R e m a r k 3.1. When E∗ is not uniformly convex one can consider (9)
under B1–B3, defining the relaxed solutions as the quasitrajectories of (10).

Example 3.1. Consider the system

ẋ(t) = u, x(0) = 0, u ∈ {−1, 1},
ẏ(t) = x2 + f(y, v), y(0) = 0, v ∈ [1,∞),

f(y, v) =





0, y ∈ (−∞,−1/v],
− 3
√

vy − 1, y ∈ [−1/v, 1/v],
−2, y ∈ [1/v,∞).

This system satisfies B1, B2 and therefore Theorem 3.1 holds. Changing
the signs on the right-hand side one obtains a system in R

2 having the
form ż ∈ F (z), z(0) = 0. The solution set is dense in the solution set of
ż ∈ co F (z), z(0) = 0, but not in that of ż ∈ G(z), z(0) = 0.
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