Let \(g_1, \ldots, g_n \) be the generators of the free group \(F_n \). C. Akemann and P. Ostrand proved in [A-O] a formula for the norm of free operators, i.e. operators of the form \(\sum \alpha_i \lambda(g_i) \). This formula improved estimates of M. Leinert [L] and M. Bożejko [Bo]. It was previously known in the case of equal coefficients [K] and simpler proofs were found in [W] and [P-P]. In this note we show how a part of the proof of [P-P] can be generalized to obtain estimates for the operator-valued case, which improve the bounds in [H-P, Proposition 1.1] (see also [Bu] for related recent results).

Theorem 1. Let \(n \geq 2 \) and \(g_1, \ldots, g_n \) be the generators of the free group \(F_n \), and let further \(a_1, \ldots, a_n \) be some operators on a Hilbert space \(H \) which can be approximated by invertible operators. Then

\[
\left\| \sum_{i=1}^{n} \lambda(g_i) \otimes a_i \right\|_{\min} \leq \inf_{s > 0} \left(\left\| \sum_{i=1}^{n} (s^2 I + a_i a_i^*)^{1/2} - (n-2)sI \right\|^{1/2} \times \left\| \sum_{i=1}^{n} (s^2 I + a_i^* a_i)^{1/2} - (n-2)sI \right\|^{1/2} \right).
\]

Remark. If the Hilbert space \(H \) is finite-dimensional, any operator can be approximated by invertible ones. In the infinite-dimensional case this is not generally true; see [H, Problem 140]. However, we have

Corollary 2. For an arbitrary family of operators \(a_1, \ldots, a_n \) on a Hilbert space \(H \) we have

\[
\left\| \sum_{i=1}^{n} \lambda(g_i) \otimes a_i \right\|_{\min} \leq 2 \sqrt{1 - \frac{1}{n} \left(\frac{\| \sum_{i=1}^{n} a_i a_i^* \| + \| \sum_{i=1}^{n} a_i^* a_i \|}{2} \right)^{1/2}} \leq 2 \sqrt{1 - \frac{1}{n} \max \left\{ \| \sum_{i=1}^{n} a_i a_i^* \|^{1/2}, \| \sum_{i=1}^{n} a_i^* a_i \|^{1/2} \right\}}.
\]
The proof of (1) is an adaptation to the non-commutative situation of the first part of [P-P]. Denote by $\text{HS}(H)$ the space of Hilbert–Schmidt operators on the Hilbert space H and by tr the usual (unbounded) trace. We need the following version of the Cauchy–Schwarz inequality.

Lemma 3. For any $x_1, \ldots, x_n \in B(H)$ and $y_1, \ldots, y_n \in \text{HS}(H)$ we have the inequality

$$\left\| \sum_{i=1}^{n} x_i y_i \right\|_{\text{HS}} \leq \left(\sum_{i=1}^{n} x_i^* x_i \right)^{1/2} \text{tr} \left(\sum_{i=1}^{n} y_i^* y_i \right)^{1/2}.$$

Proof. After writing the sum as

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & 0 & \cdots & 0 \\ 0 & y_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & y_n \end{bmatrix}$$

the claim follows from the operator ideal property of $\text{HS}(H^n)$.

Proof of Theorem 1. We first consider the case where all the operators a_i are invertible. The general case then follows by a topological argument.

Let $T = \sum_{i=1}^{n} \lambda(g_i) \otimes a_i$ act on the Hilbert space $\ell_2(F_n; \text{HS}(H))$. For every word $y \in F_n$, $i \in \{1, \ldots, n\}$ and any positive real number s we define the following operator:

$$p_i(y, s) = a_i^{-1}((s^2 + a_i a_i^*)^{1/2} \mp s) = ((s^2 + a_i^* a_i)^{1/2} \mp s) a_i^{-1}$$

with

“−” if there is no cancellation in the word $g_i^{-1} y$, i.e. the first letter of y is different from g_i,

“+” if the first letter of y is g_i and there is cancellation.

Here and in the following, scalars appearing in operator expressions mean the corresponding multiple of the identity operator, and the square root of a positive operator is always the unique positive square root. Then one can easily check that $p_i(y, s)$ is invertible and that its inverse is

$$p_i(y, s)^{-1} = ((s^2 + a_i a_i^*)^{1/2} \pm s) a_i^{-1} = a_i^{-1}((s^2 + a_i^* a_i)^{1/2} \pm s)$$

(note the change of sign).

Now pick $h \in \ell_2(F_n; \text{HS}(H))$ with finite support. In order to get the upper bound for $\|Th\|_2^2 = \sum_y \|Th(y)\|_{\text{HS}}^2$ we first give an estimate of

$$\|Th(y)\|_{\text{HS}}^2 = \left\| \sum_{i=1}^{n} a_i p_i(y, s)p_i(y, s)^{-1} h(g_i^{-1} y) \right\|_{\text{HS}}^2$$

for fixed y. Now the operator $a_i p_i(y, s)$ is positive and we can apply the above lemma by letting $x_i = (a_i p_i(y, s))^{1/2}$ be its (positive) square root.
and \(y_i = (a_i p_i(y, s))^{1/2} p_i(y, s)^{-1} h(g_i^{-1} y) \):

\[
\|T h(y)\|_{\text{HS}}^2 \leq \left\| \sum_{i=1}^{n} a_i p_i(y, s) \right\| \text{tr} \left(\sum_{i=1}^{n} h(g_i^{-1} y)^* p_i(y, s)^{*^{-1}} a_i h(g_i^{-1} y) \right).
\]

Note that among the words \(\{g_1^{-1} y, \ldots, g_n^{-1} y\} \) there is at most one cancellation, so that there is always the “-” sign in \(p_i(y, s) \) except maybe for one case and since all the summands \(a_i p_i(y, s) \) are positive operators, we have the operator inequality

\[
\sum_{i=1}^{n} a_i p_i(y, s) \leq 2s + \sum_{i=1}^{n} ((s^2 + a_i a_i^*)^{1/2} - s) =: c_0(s).
\]

This upper bound does not depend on the word \(y \) and we can estimate the norm of \(T h \) as follows:

\[
\|T h\|_2^2 \leq \|c_0(s)\| \sum_{y} \text{tr} \left(\sum_{i=1}^{n} p_i(g_i y, s)^{*^{-1}} a_i h(y) h(y)^* \right)
\]

\[
\leq \|c_0(s)\| \sum_{y} \left\| \sum_{i=1}^{n} p_i(g_i y, s)^{*^{-1}} a_i \right\| \|h(y)\|_{\text{HS}}^2.
\]

Now \(p_i(g_i y, s) \) has always the “+” sign with at most one exception possible in the case when there is already cancellation in \(g_i y \). Thus \(p_i(g_i y, s)^{-1} \) has the “-” signs and with the formula for the inverse we get

\[
\sum_{i=1}^{n} p_i(g_i y, s)^{*^{-1}} a_i \leq 2s + \sum_{i=1}^{n} ((s^2 + a_i a_i^*)^{1/2} - s) =: c_1(s).
\]

The bound \(c_1(s) \) is again independent of \(y \) and we finally get the inequality we wanted: For all positive real numbers \(s \),

\[
\|T h\|_2^2 \leq \|c_0(s)\| \cdot \|c_1(s)\|.
\]

Let us now consider the case where the \(a_i \)'s are not invertible but approximable by invertible operators. Consider the topological space \(B(H)^n \) equipped with the product topology and define the functions

\[
B(H)^n \to \mathbb{R},
\]

\[
g : x = (a_1, \ldots, a_n) \mapsto \inf_{s \geq 0} \left(\|c_0(s)\| \cdot \|c_1(s)\| \right)^{1/2},
\]

\[
f : x = (a_1, \ldots, a_n) \mapsto \left\| \sum_{i=1}^{n} \lambda(g_i) \otimes a_i \right\|.
\]

Observe that \(g \) is upper semicontinuous, i.e. the set

\[
\{ x \in B(H)^n \mid g(x) < t \}
\]
is open for any $t \in \mathbb{R}$. Since f is continuous, the set
\[
\{ x \in B(H)^n \mid g(x) - f(x) \geq 0 \}
\]
is closed and hence contains the closure of all the n-tuples of invertible operators.

Note that the infimum over all positive scalars s could be replaced by an infimum over all positive operators S which commute with the a_i’s. However, in view of the examples below this does not seem to improve the inequality very much.

Proof of Corollary 2. We will first prove the case where the a_i’s are approximable by invertibles. In fact we will show that the bound (1) is sharper than (2) just as in the commutative case (cf. [A-O]). We recall the following facts from non-commutative analysis. A function f is called **operator-monotone** if for any positive selfadjoint operators $a, b,$
\[
 a \geq b \Rightarrow f(a) \geq f(b).
\]
It is **operator-concave** if the operator inequality
\[
f(\lambda a + (1 - \lambda)b) \geq \lambda f(a) + (1 - \lambda)f(b)
\]
holds for all positive operators a, b and any $0 < \lambda < 1$. By Löwner’s theorem [M-O, p. 464], the function $t \mapsto t^\alpha$ is operator-monotone for $0 \leq \alpha \leq 1$ (see also [Ped]). Ando showed in [A] (see also [M]) that any operator-monotone function is necessarily operator-concave. We can now apply this to the function $t \mapsto \sqrt{t}$ and any sequence of positive operators $x_i = a_i^*a_i$:
\[
\frac{1}{n} \sum_{i=1}^{n} x_i^{1/2} \leq \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^{1/2},
\]
and our bound becomes
\[
\left(\|c_0(s)\| \cdot \|c_1(s)\| \right)^{1/2} \leq \left(2 - n \right) s + \frac{n}{2} \left(\sqrt{\frac{s^2}{n} + \frac{1}{n} \left\| \sum_{i=1}^{n} a_i a_i^* \right\|} \right)^{1/2}
\times \left(2 - n \right) s + n \left(\sqrt{\frac{s^2}{n} + \frac{1}{n} \left\| \sum_{i=1}^{n} a_i a_i^* \right\|} \right)^{1/2}
\leq (2 - n) s + \frac{n}{2} \left(\sqrt{\frac{s^2}{n} + \frac{1}{n} \left\| \sum_{i=1}^{n} a_i a_i^* \right\|} \right)
+ \left(\sqrt{\frac{s^2}{n} + \frac{1}{n} \left\| \sum_{i=1}^{n} a_i a_i^* \right\|} \right)
\]
\[\leq (2 - n)s + n\sqrt{s^2 + \frac{1}{2n}\left(\sum_{i=1}^{n} a_i a_i^* + \sum_{i=1}^{n} a_i^* a_i\right)}. \]

The infimum of the last expression over all \(s \geq 0 \) is the expression in the claim.

Let us now consider general operators \(a_1, \ldots, a_n \) which are not necessarily approximable by invertible ones. Denote by \(P_l(H) \) the set of all finite-dimensional projections on \(H \). It is easy to see that the embedding

\[\Phi : B(H) \to \bigoplus_{p \in P_l(H)} pB(H)p, \quad a \mapsto (pap)_{p \in P_l(H)}, \]

is a complete isometry, i.e. for any operators \(b_1, \ldots, b_n \) acting on some Hilbert space \(K \) we have

\[\left\| \sum_{i=1}^{n} a_i \otimes b_i \right\|_{\min} = \left\| \sum_{i=1}^{n} \Phi(a_i) \otimes b_i \right\|_{\min}. \]

Now \(\Phi(a_i) \) lying in a direct sum of matrix algebras can be approximated by invertibles, so that inequality (2) holds when we replace \(a_i \) by \(\Phi(a_i) \). Next we use the fact that the right hand side of (2) comes from an operator space structure. Indeed, denoting by \(e_{ij} \) the canonical basis of \(M_n \), it is easy to see that

\[\left\| \sum_{i=1}^{n} a_i \otimes e_{1i} \right\| = \left\| \sum_{i=1}^{n} a_i a_i^* \right\|^{1/2} \quad \text{and} \quad \left\| \sum_{i=1}^{n} a_i \otimes e_{i1} \right\| = \left\| \sum_{i=1}^{n} a_i^* a_i \right\|^{1/2}; \]

hence we have

\[\left\| \sum_{i=1}^{n} \lambda(g_i) \otimes a_i \right\|_{\min} = \left\| \sum_{i=1}^{n} \lambda(g_i) \otimes \Phi(a_i) \right\|_{\min} \]

\[\leq 2\sqrt{1 - \frac{1}{n}\left(\frac{\left\| \sum \Phi(a_i) \otimes e_{1i} \right\| + \left\| \sum \Phi(a_i) \otimes e_{i1} \right\|}{2}\right)^{1/2}} \]

\[= 2\sqrt{1 - \frac{1}{n}\left(\frac{\left\| \sum a_i \otimes e_{1i} \right\| + \left\| \sum a_i \otimes e_{i1} \right\|}{2}\right)^{1/2}} \]

and this proves the claim. We do not see how to generalize (1) to non-approximable operators with a similar trick, since the assignment \((a_i) \mapsto \left\| \sum |a_i| \right\| \) fails to be a norm and hence is not a complete invariant.

Examples. There is actually equality not only for scalar coefficients and it would be interesting to characterize such families of operators.

Example 1 (Commuting normal operators). As a simple consequence of Gel’fand’s theorem equality holds if the operators \(a_1, \ldots, a_n \) generate a commutative \(C^* \)-algebra.
Example 2. For unitaries u_1, \ldots, u_n there is equality:

$$\left\| \sum_{i=1}^{n} \lambda(g_i) \otimes \alpha_i u_i \right\| = \left\| \sum_{i=1}^{n} \alpha_i \lambda(g_i) \right\|$$

$$= \min_{s \geq 0} 2s + \sum_{i=1}^{n} (\sqrt{s^2 + |\alpha_i|^2} - s)$$

$$= \min_{s \geq 0} (\|c_0(s)\| \cdot \|c_1(s)\|)^{1/2}.$$

The first identity is Fell’s lemma [F] applied to the left regular representation and the unitary representation which is uniquely determined by $\pi(g_i) = u_i$.

The next example uses the following simple identity. For any projection p and positive real numbers σ, α,

$$(\sigma I + (\sqrt{\sigma^2 + \alpha^2} - \sigma)p)^2 = \sigma^2 I + \alpha^2 p.$$

Example 3. For the basis of the row-space R_n and equal coefficients there is equality:

$$\left\| \sum_{i=1}^{n} \lambda(g_i) \otimes e_{1i} \right\| = \sqrt{n} = \min_{s \geq 0} (\|c_0(s)\| \cdot \|c_1(s)\|)^{1/2}.$$

However, if the coefficients are different there may be strict inequality, e.g.

$$\|\lambda(g_1) \otimes e_{11} + \lambda(g_2) \otimes e_{12} + 2\lambda(g_3) \otimes e_{13}\| = \sqrt{6} < \sqrt{8} = \min_{s \geq 0} (\|c_0(s)\| \cdot \|c_1(s)\|)^{1/2}.$$

The bound for the general operator $\sum_{i=1}^{n} \lambda(g_i) \otimes \alpha_i e_{1i}$ is determined by the norms

$$\|c_0(s)\| = \left\| 2s + \sum_{i=1}^{n} ((s^2 + |\alpha_i|^2 e_{11})^{1/2} - s) \right\|$$

$$= 2s + \sum_{i=1}^{n} (\sqrt{s^2 + |\alpha_i|^2} - s),$$

$$\|c_1(s)\| = \left\| 2s + \sum_{i=1}^{n} ((s^2 + |\alpha_i|^2 e_{i1})^{1/2} - s) \right\|$$

$$= \left\| 2s + \sum_{i=1}^{n} ((s^2 + |\alpha_i|^2)^{1/2} - s) e_{i1} \right\|$$

$$= s + \sqrt{s^2 + \max |\alpha_i|^2}.$$

We must find the minimum of the function

$$g : s \mapsto \|c_0(s)\| \cdot \|c_1(s)\|.$$
If $\alpha_1 = \ldots = \alpha_n = 1$ this is
\[g(s) = (s + \sqrt{s^2 + 1})(2s + n(\sqrt{s^2 + 1} - s)), \]
with strictly positive derivative
\[g'(s) = \frac{2(s + \sqrt{s^2 + 1})^2}{\sqrt{s^2 + 1}}, \]
and thus the minimum is attained at $s = 0$, which yields (5). For (6) where
$\alpha_1 = \alpha_2 = 1$ and $\alpha_3 = 2$ we consider
\[g(s) = (2\sqrt{s^2 + 1} + \sqrt{s^2 + 4} - s)(s + \sqrt{s^2 + 4}), \]
which has the derivative
\[g'(s) = \frac{(2s + 2\sqrt{s^2 + 4})(s\sqrt{s^2 + 4} + s^2 + 1)}{\sqrt{s^2 + 1}\sqrt{s^2 + 4}}. \]
This is again strictly positive and the infimum of g is $g(0) = 8$.

Example 4 (The Cuntz algebra). In [H, Problem 140] it is shown that
the unilateral shift S on ℓ_2 cannot be approximated by invertible operators.
Consider the Cuntz algebra, which is generated by n “free” copies of the
shift. A priori we cannot apply Theorem 1 to the sum
\[\sum_{i=1}^{n} \lambda(g_i) \otimes \alpha_i S_i. \]
However, since this norm is trivially equal to $\left(\sum |\alpha_i|^2\right)^{1/2}$, the inequality
holds even in this case.

Acknowledgements. I would like to thank my advisor Professor G. Pisier for suggesting the problem and many discussions. I am also grateful to
U. Haagerup for helpful remarks.

Added in proof. We are working on an exact formula for norms of free operators
with matrix coefficients, which will be the subject of a forthcoming paper.

REFERENCES

58#2451.

[Bo] M. Bożejko, *On $\Lambda(p)$ sets with minimal constant in discrete noncommutative

[Bu] A. Buchholz, *Norm of convolution by operator-valued functions on free groups*,
preprint.

F. LEHNER

Fachbereich Mathematik
Universität Linz
4040 Linz, Austria
E-mail: lehner@caddo.bayou.uni-linz.ac.at

Current address:
IMADA
Odense Universitet
Campusvej 55
5230 Odense M, Denmark
E-mail: lehner@imada.ou.dk

Received 4 March 1997