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TUBULAR MUTATIONS
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1. Introduction

1.1. In the study of vector bundles over projective algebraic varieties,
mutations have been used since the early beginnings until today; see for
instance the papers of Atiyah [1] dealing with indecomposable bundles on
an elliptic curve, or Drezet [4] treating exceptional bundles on the projec-
tive plane. The concept of mutations with respect to exceptional bundles
was formalized by Gorodentsev and Rudakov [6] and successfully applied
in the classification of all exceptional bundles on the projective plane [13].
Later Bondal generalized this concept investigating mutations with respect
to exceptional objects in suitable triangulated categories [3].

As was shown in [11] mutations with respect to a finite Auslander–Reiten
orbit, called tubular mutations further on, play an important role in the
classification of indecomposable vector bundles on a weighted projective line
of genus one as in the case of an elliptic curve (compare [1] and [9]), and can
also be used to classify the indecomposable modules over a tubular canonical
algebra (compare [12]). In the existing literature tubular mutations are
only established as partially defined functors, though it was pointed out
in [10] that their natural environment are the associated derived categories
and though it was clear how mutations would act on objects. Previous
methods did not allow the extension of the action of tubular mutations to
all morphisms, a problem solved in this paper. Observe that we are dealing
here with mutations not with respect to an exceptional object but with
respect to the direct sum of all objects of a finite Auslander–Reiten orbit.
The advantage of considering mutations as derived equivalences is that it
allows the study of the whole automorphism group of the derived category
of coherent sheaves on a weighted projective line of genus one, equivalently
of the derived category of modules over a tubular algebra; in particular, this
allows the description of the relations between the mutations and Ringel’s
shrinking functors [12]. We will investigate these problems in a forthcoming
paper.
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2. Main result

2.1. Let k be an algebraically closed field. Further, let p = (p1, . . . , pt)
be a weight sequence of positive integers pi and λ = (λ1, . . . , λt) a parameter
sequence of pairwise distinct elements of P1(k) such that λ1 = ∞, λ2 = 0,
λ3 = 1 and X = X(p,λ) the attached weighted projective line [5]. Alter-
natively such a weighted projective line X with data p,λ can be viewed
as the usual projective line together with a parabolic structure determined
by these weights [14], as follows from work of Lenzing [10]. We put p =
l.c.m.(p1, . . . , pt). Denote by L(p) the corresponding rank one abelian group
on generators ~x1, . . . , ~xt with relations p1~x1 = . . . = pt~xt (:= ~c ). Geigle and
Lenzing introduced in [5] the category coh(X) (resp. Qcoh(X)) of L(p)-
graded coherent (resp. quasi-coherent) sheaves on X with structure sheaf O
and dualizing sheaf ω = O((t− 2)~c−

∑t
i=1 ~xi).

2.2. For an abelian category A we denote by Cb(A) the category of
bounded complexes over A, and by Kb(A) (resp. Db(A)) the correspond-
ing homotopy (resp. derived) category. Moreover, if A′ is a full abelian
subcategory of A then Cb

A′(A) (resp. Kb
A′(A), Db

A′(A)) denotes the full
subcategory of Cb(A) (resp. Kb(A), Db(A)) formed by all complexes with
cohomology in A′. Then we have localization functors κ : Kb(A) → Db(A)
and κ : Kb

A′(A) → Db
A′(A).

We denote the translation functor of a triangulated category by X 7→
X[1].

2.3. Let C be a triangulated k-category. Recall that an object A ∈ C
is called exceptional if HomC(A,A[i]) = 0 for i 6= 0 and HomC(A,A) = k.
In [3] Bondal defined left mutations with respect to an exceptional object
A ∈ C by forming triangles

Hom•(A,X)⊗A canX−−−→ X → LA(X)

for all objects X ∈ C, where Hom•(A,X) =
⊕

j∈Z HomC(A,X[j])[−j] is
considered as a complex with zero differential, and the maps canX are the
canonical maps corresponding to the identity endomorphisms. In this case
it is easy to check that LA is a functor.

2.4. Let Λ = Λ(p,λ) be the canonical algebra [12] attached to the data
p,λ. It was proved in [5] that there is a triangle-equivalence Db(coh(X)) '→
Db(mod(Λ)) where mod(Λ) denotes the category of finite-dimensional right
Λ-modules and X = X(p,λ).

For a weighted projective line X the virtual genus gX is defined by

gX = 1 +
1
2

(
(t− 2)p−

t∑
i=1

p

pi

)
.
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We are interested in weighted projective lines of genus one. It is easy to see
that gX = 1 if and only if the weight sequence is up to permutation one of
the following: (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) and (2, 3, 6). Furthermore, this
is equivalent to the fact that Λ = Λ(p,λ) is a tubular algebra in the sense
of [12]. Finally, by [8] each tubular algebra is derived equivalent to a tubular
canonical algebra.

If T is a nonsingular elliptic curve over k we denote by coh(T) (resp.
Qcoh(T)) the category of coherent (resp. quasi-coherent) sheaves and put
p = 1. The categories coh(X) and coh(T) admit Auslander–Reiten se-
quences, the Auslander–Reiten translation is denoted by τ . It is given by
tensoring with the dualizing sheaf, which equals ω = O((t− 2)~c−

∑t
i=1 ~xi)

in the case coh(X) and OT in the case coh(T).
Recall that for a weighted projective line X of genus one the Auslander–

Reiten components of coh(X) are tubes in the sense of [12]. Also when T
is a nonsingular elliptic curve the Auslander–Reiten components of coh(T)
are tubes, in this case all of them are homogeneous. An indecomposable
sheaf lying at the mouth of a tube is called quasi-simple. Note that in our
situation a sheaf is quasi-simple if and only if it is µ-stable.

Theorem 2.5. Let Y be a weighted projective line of genus one or a
nonsingular elliptic curve, and U a τ -orbit of a sheaf in coh(Y). Then
there exists an equivalence L : Db(coh(Y)) → Db(coh(Y)) and a natural
transformation η : id → L such that⊕

U∈U
Hom•(U,X)⊗ U canX−−−→ X

ηX−→ L(X)

is a distinguished triangle for each object X ∈ Db(coh(Y)).

P r o o f. Step 1. Let U be an arbitrary τ -orbit of a quasi-simple sheaf in
coh(Y). We first show the existence of a functor L such that L(X) appears
in a distinguished triangle as above.

We consider the functor F : Qcoh(Y) → Qcoh(Y) defined on objects by

F (X) =
⊕
U∈U

Hom(U,X)⊗ U

and the morphism of functors α : F → idQcoh(Y) which is given by the
canonical maps. Obviously, F extends to a functor F : Kb(Qcoh(Y)) →
Kb(Qcoh(Y)) and α extends to a morphism of functors α : F → idKb(Qcoh(Y)).
Define L̄ : Kb(Qcoh(Y)) → Kb(Qcoh(Y)) as the mapping cone of α, thus for
X• = (Xn, dn) ∈ Kb(Qcoh(Y)) we get L̄(X•)n = F (Xn+1) ⊕ Xn and the
differential in L̄(X•) is given by
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−F (dn+1) 0
α(Xn+1) dn

)
: F (Xn+1)⊕Xn → F (Xn+2)⊕Xn+1.

Clearly, L̄ is a functor.
Let I be the full subcategory of Qcoh(Y) consisting of all injective qua-

sicoherent sheaves, and let Kb(I) be the full subcategory of Kb(Qcoh(Y))
formed by all complexes of objects from I, and let Kb

coh(Y)(I), be the
full subcategory of Kb(I) having all cohomology sheaves in coh(Y). We
show that if I• ∈ Kb

coh(Y)(I), then L̄(I•) ∈ Kb
coh(Y)(Qcoh(Y)). Let I• =

(In, dn) ∈ Kb
coh(Y)(I). It is sufficient to show that F (I•) has coherent co-

homology. We define Bn = im(dn−1), Zn = ker(dn), Hn = Zn/Bn and
F ′(X) =

⊕p
j=1 Ext1(τ jO, X)⊗τ jO for X ∈ coh(Y). Observe that F (Zn) '

ker(F (dn)), F ′(Bn) = 0 and F (Hn) ' F (Zn)/F (Bn) for all n ∈ Z. Now,
for the exact sequence

0 → F (Bn)/ im(F (dn−1)) → F (Zn)/ im(F (dn−1)) → F (Zn)/F (Bn) → 0

we see that F (Bn)/ im(F (dn−1))' F ′(Zn−1)' F ′(Hn−1) and F (Zn)/F (Bn)
are coherent, therefore the middle term is coherent, too. Hence the complex
F (I•) has coherent cohomology.

Thus by restriction we obtain a functor

L′ : Kb
coh(Y)(I) → Kb

coh(Y)(Qcoh(Y)).

Now the composition

Kb
coh(Y)(I)

i
↪→ Kb

coh(Y)(Qcoh(Y)) κ→ Db
coh(Y)(Qcoh(Y))

is an equivalence; let φ be a quasi-inverse of κ ◦ i. Then we consider the
composition

Db
coh(Y)(Qcoh(Y))

φ→ Kb
coh(Y)(I) L′→ Kb

coh(Y)(Qcoh(Y)) κ→ Db
coh(Y)(Qcoh(Y)),

and identifying Db(coh(Y)) with Db
coh(Y)(Qcoh(Y)) we get a functor L :

Db(coh(Y)) → Db(coh(Y)). Moreover, the obvious natural transformation
idKb(Qcoh(Y)) → F induces a natural transformation η : idDb(coh(Y)) → L.
The existence of triangles as stated in the theorem is a consequence of the
definition of L.

S t e p 2. Next we show that L = LU is an equivalence in the particular
case that U is the τ -orbit of the structure sheaf. For this we apply Beilinson’s
Lemma [2] saying that if G : C → D is an exact functor between triangu-
lated categories and if X = {Xi}i∈I is a generating system (in the sense of
triangulated categories) of C such that {G(Xi)}i∈I is a generating system
of D and G induces equivalences Hom•(Xi, Xj)

'→ Hom•(G(Xi), G(Xj)) for
all Xi, Xj ∈ X , then G is an equivalence.
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Now, if 0 → I•1
α→ I•2

β→ I•3 → 0 is an exact sequence in Cb(Qcoh(Y))
with terms in Cb

coh(Y)(I), then the complex 0 → L′(I•1 ) L′(α)−−−→ L′(I•2 ) L′(β)−−−→
L′(I•3 ) → 0 is a pointwise split exact sequence. Interpreting the homotopy
categories as Frobenius categories it follows from [7, Chapter I, Lemma 2.8]
that L′ and hence L is an exact functor of triangulated categories.

C a s e (a). Y=X is a weighted projective line of genus one. Consider the
generating system {O, {Si,j}i=1,...,t, j=0,...,pi−1} where the Si,j are the simple
sheaves concentrated at the exceptional points. From the exact sequences

0 → O(j~xi) → O((j + 1)~xi) → Si,j → 0

[5, 2.5] we conclude that the only non-vanishing Hom-spaces between the
sheaves of the generating system are Hom(O, Si,pi−1) = k, Ext1(Si,0,O) =
k, Ext1(Si,j , Si,j−1) = k and Hom(X, X) = k for X = O or Si,j . Choosing
injective resolutions for O and Si,j one easily calculates that L(O) ' ω−1

and L(Si,j) ' O(−~xi + (pi − 1− j)~ω)[1].
It follows that

Hom(L(O), L(Si,pi−1)) = k,

Hom(L(Si,0), L(O)[1]) = k,

Hom(L(Si,j), L(Si,j−1)[1]) = k,

Hom(L(O), L(O)) = k,

Hom(L(Si,j), L(Si,j)) = k,

and the other Hom-spaces vanish. Furthermore, it is easy to check that L in-
duces non-zero maps and therefore isomorphisms between the corresponding
one-dimensional Hom-spaces. Moreover, L(O) and the L(Si,j) form again a
generating system. Thus by Beilinson’s Lemma L is an equivalence.

C a s e (b). Y = T is a nonsingular elliptic curve. In this case one can
proceed in the same way working with the generating system consisting of
{O, {SP }P∈T} where SP is the simple sheaf concentrated at the point P for
any P ∈ T. One easily shows that L(O) ' O and L(SP ) ' SP for each
P ∈ T.

S t e p 3. Now we show that L = LU is an equivalence in case U is the
τ -orbit of a simple sheaf of finite length. We proceed similarly to the previous
step. In case Y = X is a weighted projective line we have to distinguish two
cases.

C a s e (a). Y = X and U is the τ -orbit of a simple sheaf Si,0 concentrated
at an exceptional point λi. Choosing again injective resolutions one easily
shows that L(O) = O(~xi), L(Si,j) = Si,j+1 and L(Si′,j) = Si′,j for i 6= i′

and that L induces isomorphisms between the one-dimensional Hom-spaces,
which do not vanish.
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C a s e (b). Y = X and U is the τ -orbit of a simple sheaf S concentrated
at an ordinary point.

In this case one easily proves that L(O) ' O(~c ) and L(Si,j) ' Si,j for
all i, j and proceeds as before.

C a s e (c). Y = T is a nonsingular elliptic curve and U is a simple
sheaf of finite length corresponding to a point P ∈ T. Working with the
same generating system as in step 2 one shows that L(O) = O(P ) and
L(SQ) = SQ for each point Q ∈ T and the assertion on L follows easily.

S t e p 4. In order to prove the theorem in the general case we apply the
method of telescopic functors developed in [11, Section 4]. Denote by L a
tubular mutation with respect to the τ -orbit of the structure sheaf and by
R a quasi-inverse functor of L. Furthermore, let S be a tubular mutation
with respect to the τ -orbit of St,0 in case Y = X is a weighted projective
line of genus one and, respectively, a tubular mutation with respect to an
arbitrary simple finite length sheaf in case Y = T is a nonsingular elliptic
curve. Moreover, let S−1 be a quasi-inverse functor of S. Now for each
q ∈ Q there is an equivalence Φq,∞ : Db(coh(Y)) → Db(coh(Y)) such that
the category of finite length sheaves C∞ is mapped to the category Cq of all
semistable sheaves of slope q. The functors Φq,∞ are compositions of R,S
and S−1; note that, in contrast to [11], here they are defined on Db(coh(Y)).
Now, let Uq be a τ -orbit of a quasi-simple sheaf of slope q. Denote by U∞ the
image of Uq under Φ−1

q,∞ and by LU∞ the corresponding tubular mutation.
Then the equivalence Φq,∞LU∞Φ−1

q,∞ satisfies the assertion, which finishes
the proof of the theorem.

2.6. The following corollary follows easily from the theorem by stability
arguments. It indicates how to calculate a left mutation L with respect
to the τ -orbit of the structure sheaf in the abelian category and shows in
particular that in this case L coincides on indecomposable sheaves X with
0 < µ(X) ≤ 1 with the functor considered in [11]. Here µ denotes the slope
of a sheaf.

Corollary 2.6. Let Y be a weighted projective line of genus one or
a nonsingular elliptic curve. Let X be an indecomposable sheaf on Y and⊕p

j=1 Hom(τ jO, X)⊗ τ jO canX−−−→ X the canonical map.

(a) If µ(X) > 1, then L(X) ' ker(canX)[1].
(b) If 0 < µ(X) ≤ 1, then L(X) ' coker(canX).
(c) If µ(X) = 0, then L(X) ' τ−1(X) provided X is in the same

Auslander–Reiten component as O, and L(X) ' X otherwise.
(d) If µ(X) < 0, then L(X) coincides with the middle term of the uni-

versal extension of X with respect to
⊕p

j=1 τ jO.
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2.7. Let R : Db(coh(Y)) → Db(coh(Y)) be a quasi-inverse functor of
the left mutation L considered in 2.6. Then we have triangles

R(X) → X can′X−−−→
p⊕

j=1

Hom•(X, τ jO)∗ ⊗ τ jO

for all X ∈ Db(coh(Y)), where ∗ denotes the usual duality with respect to
k. From Corollary 2.7 we infer

Corollary 2.7. Let Y be a weighted projective line of genus one or
a nonsingular elliptic curve. Let X be an indecomposable sheaf on Y and
X can′X−−−→

⊕p
j=1 Hom(X, τ jO)∗ ⊗ τ jO the co-canonical map.

(a) If µ(X) ≤ −1, then R(X) ' coker(can′X)[−1].
(b) If −1 < µ(X) < 0, then R(X) ' ker(can′X).
(c) If µ(X) = 0, then R(X) ' τ(X) provided X is in the same Auslander–

Reiten component as O and R(X) ' X otherwise.
(d) If µ(X) > 0, then R(X) coincides with the middle term of the co-

universal extension of X with respect to
⊕p

j=1 τ jO.
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