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1. Introduction. Throughout, A denotes a commutative Noetherian
ring (with identity), I denotes an ideal of A and M denotes a finitely gen-
erated A-module. We shall use N to denote the set of positive integers.

This paper is concerned with the theory of local cohomology introduced
by A. Grothendieck [2], the theory of d-sequences introduced by Huneke [3]
and the theory of modules of generalized fractions introduced by R. Y. Sharp
and H. Zakeri [6].

In [8, Th. 2.4], Zakeri shows that the theory of d-sequences could be used
in the theory of modules of generalized fractions. He provides a connection
between local cohomology modules with respect to an ideal of A generated
by a d-sequence and modules of generalized fractions derived from a d-
sequence. In this note, we present a generalization of this theorem. We
provide a connection between local cohomology modules with respect to an
arbitrary ideal I of A and modules of generalized fractions derived from
a d-sequence in I (Theorem 3.4). Moreover, we show that calculation of
a local cohomology module with respect to an arbitrary ideal of A can be
reduced to calculation of a local cohomology module with respect to an ideal
generated by a d-sequence (Lemma 3.3).

2. Preliminaries. To prove the main theorem we need the following
definitions and theorems (here, n denotes an element of N).

2.1. Definition. Suppose a1, . . . , an is a sequence of elements of A. The
sequence a1, . . . , an is called a d-sequence on M if

(a1, . . . , ai)M : Mai+1ak = (a1, . . . , ai)M : Mak

for all i = 0, . . . , n− 1 and all k ≥ i + 1.

To define a d-sequence a1, . . . , an, Huneke used this condition together
with the condition that a1, . . . , an form a minimal generating set for
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(a1, . . . , an). In this paper, we use the above definition for d-sequences
without the minimality condition.

2.2. Definition (see [7, Th. 1.1(iv)]). Suppose a1, . . . , an is a sequence
of elements of A. The sequence a1, . . . , an is called an absolutely superficial
M -sequence if

[(a1, . . . , ai)M : Mai+1] ∩ (a1, . . . , an)M = (a1, . . . , ai)M

for all i = 0, . . . , n− 1.

2.3. Proposition (see [7, p. 46]). The sequence a1, . . . , an ∈ A is a
d-sequence on M if and only if a1, . . . , an is an absolutely superficial M -
sequence.

2.4. Definition (N. V. Trung [7, p. 38]). A sequence a1, . . . , an of
elements of A is called an I-filter regular M -sequence if ai 6∈ p for all
p ∈ Ass(M/(a1, . . . , ai−1)M) \ V (I) (for i = 1, . . . , n), where V (I) denotes
the set of primes of A containing I.

2.5.Theorem. Let a1, . . . , an be a d-sequence on M . Let a = (a1, . . . , an).
Then a1, . . . , an is an a-filter regular M -sequence.

P r o o f. This follows from Proposition 2.3 and [7, Th. 1.1(iv)].

2.6. Theorem. Let a1, . . . , an ∈ I be an I-filter regular M -sequence.
Then, for each k ≥ 0, there exists an ascending sequence of integers k ≤
m1 ≤ . . . ≤ mn such that am1

1 , . . . , amn
n is a d-sequence on M .

P r o o f. This follows from [7, Prop. 2.1] and Proposition 2.3.

2.7. Proposition. Let a1, . . . , an be a sequence of elements of A. Then
the following conditions are equivalent:

(i) a1, . . . , an is an I-filter regular M -sequence;
(ii) a1/1, . . . , ai/1 is a poor regular Mp-sequence in Ap for all p ∈

Supp(M) \ V (I) and i = 1, . . . , n;
(iii) aα1

1 , . . . , aαn
n is an I-filter regular M -sequence for all α1, . . . , αn ∈ N.

P r o o f. It is easy to see that (i) is equivalent to

Supp((a1, . . . , ai−1)M : Mai/(a1, . . . , ai−1)M) ⊆ V (I)

for all i = 1, . . . , n, and the equivalence of (i) and (ii) is an easy conse-
quence of the above fact. The equivalence of (i) and (iii) is a consequence
of elementary properties of regular sequences.

3. The results. Throughout this section, for a sequence of elements
a1, . . . , an of A and i ∈ N, we set

U(a)i = {(aα1
1 , . . . , aαi

i ) : there exists j with 0 ≤ j ≤ i such that
α1, . . . , αj ∈ N and αj+1 = . . . = αi = 0},
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where ar is interpreted as 1 whenever r > n. Then U(a) = (U(a)i)i∈N is a
chain of triangular subsets on A and we can, by [4, p. 420], construct the
associated complex C(U(a),M). We use Hi(C(U(a),M)), for i ∈ N∪{0}, to
denote the ith cohomology module of the complex C(U(a),M). Throughout,
we shall use Hi

I to denote, for i ∈ N ∪ {0}, the ith right derived functor of
ΓI where ΓI(M) =

⋃
n∈N(0 : MIn) for any A-module M .

3.1. Lemma (S. Goto and K. Yamagishi [1, (6.4)]). Let N be an A-mod-
ule (not necessarily finitely generated). Let n ∈ N and a1, . . . , an ∈ I be an
I-filter regular N -sequence. Then, for all i < n,

Hi
I(N) = Hi

(a1,...,an)(N).

P r o o f. Let 0 → N
d−1

−→ E0 d0

−→ E1 d1

−→ . . . → Ei di

−→ . . . be a minimal
injective resolution for N . Then, for all i ∈ N ∪ {0},

Ei =
⊕

p

µi(p, N)E(A/p),

where µi(p, N) is the ith Bass number of N at the prime ideal p of A and
E(A/p) is the injective envelope of A/p.

Let i < n and p ∈ Supp(N) ∩ V (a1, . . . , an) \ V (I). Then, by Proposi-
tion 2.7, Exti

Ap
(Ap/pAp, Np) = 0, and so, µi(p, N) = 0. Therefore

ΓI(Ei) =
⊕

p∈Supp(N)
p⊇I

µi(p, N)E(A/p)

=
⊕

p∈Supp(N)
p⊇(a1,...,an)

µi(p, N)E(A/p) = Γ(a1,...,an)(Ei)

for all i < n. Now we have

Ker ΓI(di) = Ker Γ(a1,...,an)(di), Im ΓI(di−1) = Im Γ(a1,...,an)(di−1)

for all i < n. Therefore Hi
I(N) = Hi

(a1,...,an)(N) for all i < n.

Now we can present the following theorem, using Lemma 3.1, the concept
of filter regular sequences and [8, Th. 2.4].

3.2. Theorem. Let M be a finitely generated A-module. Let n ∈ N and
let a1, . . . , an ∈ I be an I-filter regular M -sequence. Then, for all i < n,

Hi
I(M) ∼= Hi(C(U(a),M)).

P r o o f. By Lemma 3.1, Hi
I(M) = Hi

(a1,...,an)(M) for all i < n. By
Theorem 2.6, there exist 1 ≤ m1 ≤ . . . ≤ mn such that am1

1 , . . . , amn
n is a

d-sequence on M (in I). Now we have

Hi
(a1,...,an)(M) = Hi

(a
m1
1 ,...,amn

n )
(M)
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for all i ∈ N ∪ {0}. By [8, Th. 2.4], for all i < n,

Hi
(a

m1
1 ,...,amn

n )
(M) ∼= Hi(C(U(b),M)),

where U(b) = (U(b)i)i∈N is the chain of triangular subsets on A in which,
for all i ∈ N,

U(b)i = {(am1α1
1 , . . . , amiαi

i ) : there exists j with 0 ≤ j ≤ i such that
α1, . . . , αj ∈ N and αj+1 = . . . = αi = 0},

where ar is interpreted as 1 whenever r > n.
On the other hand, by using elementary properties of generalized frac-

tions or by applying [5, Th. 2.1], one can easily see that

Hi(C(U(b),M)) ∼= Hi(C(U(a),M))

for all i ∈ N ∪ {0}. Therefore, for all i < n,

Hi
I(M) ∼= Hi(C(U(a),M)).

In the following lemma, we show that for any ideal I of A and any positive
integer n, there exists a d-sequence a1, . . . , an ∈ I such that local cohomol-
ogy modules with respect to I are equal to local cohomology modules with
respect to (a1, . . . , an).

3.3. Lemma. Let M be a finitely generated A-module. Let n ∈ N. Then
there exist a1, . . . , an ∈ I which form a d-sequence on M and

Hi
I(M) = Hi

(a1,...,an)(M)

for all i < n.

P r o o f. We can find b1, . . . , bn ∈ I which form an I-filter regular M -se-
quence as follows. Since I 6⊆

⋃
p∈Ass(M)\V (I) p, there exists b1 ∈ I such that

b1 6∈ p for all p ∈ Ass(M) \ V (I). Again, since I 6⊆
⋃

p∈Ass(M/b1M)\V (I) p,
there exists b2 ∈ I such that b2 6∈ p for all p ∈ Ass(M/b1M) \ V (I). Pro-
ceeding in this way, we can find b1, . . . , bn ∈ I which form an I-filter regular
M -sequence. Now, by Lemma 3.1, Hi

I(M) = Hi
(b1,...,bn)(M) for all i < n.

On the other hand, by Theorem 2.6, there exist 1 ≤ m1 ≤ . . . ≤ mn such
that bm1

1 , . . . , bmn
n form a d-sequence on M . Let ai = bmi

i for all 1 ≤ i ≤ n.
Then Hi

I(M) = Hi
(a1,...,an)(M) for all i < n.

Now that Lemma 3.3 has been established, we can prove the main the-
orem of this paper by using [8, Th. 2.4].

3.4. Theorem. Let M be a finitely generated A-module. Let n ∈ N.
Then there exist a1, . . . , an ∈ I which form a d-sequence on M and

Hi
I(M) ∼= Hi(C(U(a),M))

for all i < n.
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