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MOMENTS OF SOME RANDOM FUNCTIONALS

BY

K. U R B A N I K (WROC LAW)

The paper deals with nonnegative stochastic processes X(t, ω) (t ≥ 0),
not identically zero, with stationary and independent increments, right-
continuous sample functions, and fulfilling the initial condition X(0, ω)
= 0. The main aim is to study the moments of the random functionalsT∞
0

f(X(τ, ω)) dτ for a wide class of functions f . In particular, a character-
ization of deterministic processes in terms of the exponential moments of
these functionals is established.

1. Preliminaries and notation. We denote by M the set of all
nonnegative bounded measures defined on Borel subsets of the half-line
R+ = [0,∞), and by P the subset of M consisting of probability mea-
sures. The probability measure concentrated at the point c is denoted by δc.
Given s ∈ (−∞,∞) we denote by Ps the subset of P consisting of measures

µ with finite moment ms(µ) =
T∞
0

xs µ(dx). Given M ∈ M by M̂ and 〈M〉
we denote the Laplace and the Bernstein transformation of M respectively,
i.e.

M̂(z) =

∞\
0

e−zx M(dx) and 〈M〉(z) =

∞\
0

1 − e−zx

1 − e−x
M(dx)

for z ≥ 0. For x = 0 the last integrand is assumed to be z.
Let µ ∈ P. By standard calculations we get the formulae

(1.1) m−s(µ) =
1

Γ (s)

∞\
0

µ̂(z)zs−1 dz (s > 0)

and

(1.2) mq(µ) =
q

Γ (1 − q)

∞\
0

1 − µ̂(z)

z1+q
dz (0 < q < 1).

In the sequel distr ξ will denote the probability distribution of a random
variable ξ.
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Let X be the class of nonnegative stochastic processes X = {X(t, ω) :
t ≥ 0}, not identically zero, with stationary and independent increments,
right-continuous sample functions and fulfilling the initial condition X(0, ω)
= 0. It is well known that to every process X from X there corresponds a
measure M from M with M(R+) > 0 satisfying the condition

(1.3) pt(z) = e−t〈M〉(z)

where pt = distr X(t, ω) (t ≥ 0). This uniquely determined measure M is
called the representing measure for X. We note that each measure M from
M with M(R+) > 0 is the representing measure for a process from X .

A stochastic process X from X is said to be deterministic if X(t, ω) =
ct with probability 1 for a positive constant c or, equivalently, cδ0 is the
representing measure for X.

A stochastic process X from X with the representing measure M is said
to be a compound Poisson process if

0 < c =

∞\
0

(1 − e−x)−1 M(dx) < ∞.

Setting for Borel subsets E of R+,

Q(E) = c−1
\
E

(1 − e−x)−1M (dx)

we have in this case Q ∈ P and

(1.4) pt = e−ct
∞∑

n=0

(ct)n

n!
Q∗n

where Q∗n for n ≥ 1 is the nth convolution power of Q and Q∗0 = δ0. The
set of all processes X satisfying (1.4) will be denoted by Poiss(c,Q).

Throughout this paper πs (s > 0) will denote the exponential distribu-
tion on R+ with parameter s, i.e. πs(dx) = se−sxdx. We shall often refer to
the following representation of processes X from Poiss(c,Q) ([2], Chapter
IV, 2):

X(t, ω) = 0 for t ∈ [0, ϑ0),(1.5)

X(t, ω) =

k∑

j=1

ξj for t ∈
[ k−1∑

j=0

ϑj ,

k∑

j=0

ϑj

)
(1.6)

for k ≥ 1 where the random variables ϑ0, ϑ1, . . . , ξ1, ξ2, . . . are independent,
ϑ0, ϑ1, . . . have probability distribution πc and ξ1, ξ2, . . . have probability
distribution Q.
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It is well known that for processes from X the potential

̺(E) =

∞\
0

pt(E) dt

is finite on bounded Borel subsets E of R+ ([1], Prop. 14.1). Moreover, the
Laplace transform of the potential is given by the formula

(1.7) ̺̂(z) = 〈M〉−1(z) (z > 0)

where M is the representing measure of the process in question.

2. Integral functionals. Denote by F the set of all nonnegative,
continuous, decreasing functions f defined on R+, not identically zero, sat-
isfying the condition

T∞
0

f(x) dx < ∞. Given r ∈ (0, 1] we denote by Fr the

subset of F consisting of functions fulfilling the condition
T∞
0

f r(x) dx < ∞.
Put (Taf)(x) = f(x + a). Obviously TaF ⊂ F for a ≥ 0.

Let X ∈ X . It was shown in [4] that for every f ∈ F the random
functional

[X, f ] =

∞\
0

f(X(τ, ω)) dτ

is well defined. Moreover, setting µa = distr[X,Taf ] (a ≥ 0) we have the
equation

(2.1) µ̂a(z) = 1 − z

∞\
0

f(a + y)µ̂y(z) ̺(dy)

where ̺ is the potential for the process in question ([3], Th. 2.4).

If X ∈ Poiss (c,Q), then, by (1.5) and (1.6), we have the formula

[X, f ] = f(0)ϑ0 +

∞∑

k=1

f(ξ1 + . . . + ξk)ϑk.

Consequently, introducing the notation

R
∞
+ = R+×R+×. . . , y = (y1, y2, . . .) ∈ R

∞
+ , Q∞(dy) = Q(dy1)Q(dy2) . . .

and

Φ(y, z) = (1 + c−1f(0)z)−1
∞∏

k=1

(1 + c−1f(y1 + . . . + yk)z)−1

we get the formula

(2.2) µ̂0(z) =
\

R+

Φ(y, z)Q∞(dy).
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Lemma 2.1. Let ̺ be the potential of a process X from X , f ∈ F ,
µa = distr[X,Taf ] and 0 < q < 1. Then

(2.3) m1−q(µ0) = (1 − q)

∞\
0

f(y)m−q(µy) ̺(dy).

P r o o f. We have, by (2.1),

(1 − µ̂0(z))z−1 =

∞\
0

f(y)µ̂y(z) ̺(dy).

Multiplying both sides of the above equation by (1 − q)Γ (q)−1zq−1 and
integrating from 0 to ∞ we get, by (1.1) and (1.2), the assertion of the
lemma.

Theorem 2.1. For every X ∈ X , f ∈ F and s > −1 we have

distr[X, f ] ∈ Ps.

P r o o f. Put µa = distr[X,Taf ] (a ≥ 0). By Lemma 2.2 and Corol-
lary 2.1 in [4] we conclude that

(2.4) ms(µ0) < ∞ for s ≥ 0.

Suppose that 0 < q < 1. Observe that Tyf ≤ f for y ≥ 0. Consequently,
[X,Tyf ] ≤ [X, f ], which yields the inequality m−q(µy) ≥ m−q(µ0). Apply-
ing (2.3) we get the inequality

m1−q(µ0) ≥ (1 − q)m−q(µ0)

∞\
0

f(y) ̺(dy).

Since, by (2.4), m1−q(µ0) < ∞, we have m−q(µ0) < ∞, which completes
the proof.

In what follows ea (a > 0) will denote the family of exponential functions,
i.e. ea(x) = e−ax. Obviously ea ∈ F .

Theorem 2.2. Let X ∈ X , a > 0, pa = distrX(a, ω) and νa =
distr[X, ea]. Then m−1(νa) = m1(pa).

P r o o f. Observe that Tyea = e−ayea, which yields the formula [X,Tyea]
= e−ay[X, ea]. Consequently, by (1.7) and (2.3) with f = ea, we have the
formula

m1−q(νa) = (1 − q)m−q(νa)̺̂((1 − q)a) = (1 − q)m−q(νa)〈M〉((1 − q)a)−1

where 0 < q < 1 and M is the representing measure for X. Now taking into
account (1.3) and letting q → 1 we get our assertion.

Example 2.1. Given 0 < α < 1 we denote by Zα the α-stable stochastic
process from X with 〈M〉(z) = zα. Obviously m1(pa) = ∞ for a > 0. If



MOMENTS OF SOME RANDOM FUNCTIONALS 105

νa = distr[Zα, ea], then, by Theorem 2.2, m−1(νa) = ∞. Thus distr[Zα, ea] 6∈
P−1, which shows that Theorem 2.1 cannot be sharpened.

Example 2.2. Let Y1 be a compound Poisson process from Poiss(1, π1).
Given f ∈ F we put λ = distr[Y1, f ]. It was shown in [3] (Example 3.1) that

(2.5) λ̂(z) = (1 + f(0)z)−1 exp
(
− z

∞\
0

(1 + f(u)z)−1f(u) du
)
.

In particular, setting f = ea (a > 0) we get λ̂(z) = (1 + z)−1−1/a. Thus
λ(dx) = e−x x1/a dx, which shows that distr[Y1, ea] ∈ Pr if and only if
r > −1 − 1/a.

Given 0 < s < 1 we put

(2.6) fs(x) = (1 + x1/s)−1.

It is clear that fs ∈ F . Setting λs = distr[Y1, fs] we have, by (2.5),

(2.7) λ̂s(z) = (1 + z)−1 exp(−csz(1 + z)s−1)

where cs = sπ/sin sπ. By (1.1) we get distr[Y1, fs] ∈ Pr for all r ∈ R.

3. Exponential moments. Given p > 0 we denote by Ap the subset
of P consisting of measures µ for which the exponential moment

np,r(µ) =

∞\
0

erx−p

µ(dx)

is finite for some r > 0. Let ξ be a nonnegative random variable. It is clear
that distr ξ ∈ Ap if and only if the Laplace transform of distr ξ−p can be
extended to an analytic function in a neighbourhood of the origin.

Lemma 3.1. Let p > 0 and s = p/(1 + p). Then µ ∈ Ap if and only ifT∞
0

µ̂(z)eczs

dz < ∞ for some c > 0.

P r o o f. Applying (1.1) we get the formula

np,r(µ) = 1 +
∞∑

k=1

rk

k!
m−kp(µ) = 1 +

∞\
0

µ̂(z)g(p, r, z) dz

where g(p, r, z) = przp−1 h(p, rzp) and

h(p, z) =

∞∑

k=0

zk

k!Γ (pk + 1 + p)
.

E. M. Wright proved in [5] and [6], Th. 1, that for some positive constants
ap and bp the limit

lim
z→∞

h(p, z)z(p+1/2)/(1+p) exp(−bpz
1/(1+p)) = ap
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exists. Consequently,

lim
z→∞

g(p, r, z) z(p+1/2)/(1+p) exp(−bpr
1/(1+p)zs) = pr1/(2+2p)ap,

which yields our assertion.

Lemma 3.2. Let X1 and X2 be processes from X with the representing

measures M1 and M2 respectively. If M1 ≥ M2 and distr[X1, f ] ∈ Ap for

some f ∈ F and p > 0, then distr[X2, f ] ∈ Ap.

P r o o f. Setting M3 = M1 − M2 we have M3 ∈ M. If M3(R+) >
0, then M3 is the representing measure of a process X3 from X . In the
remaining case M3(R+) = 0 we put X3 = 0. Without loss of generality
we may assume that the processes X2 and X3 are independent. Hence the
process Y = X2 + X3 belongs to X and M1 is its representing measure.
Consequently, distr X1(t, ω) = distrY (t, ω) for all t ≥ 0, which yields the
equality distr[X1, f ] = distr[Y, f ] for every f ∈ F . Moreover, [X2, f ]−p ≤
[Y, f ]−p, which yields the assertion of the lemma.

We are now in a position to prove the following rather unexpected result.

Theorem 3.1. Let p > 0, s = p/(1 + p), X ∈ X and

(3.1) f ∈ Fs.

If distr[X, f ] ∈ Ap, then the process X is deterministic.

P r o o f. Suppose the contrary. Then the representing measure M for
X is not concentrated at the origin. Thus M([a,∞)) > 0 for a certain
a > 0. Setting N(E) = M(E ∩ [a,∞)) for Borel subsets E of R+ we
get the representing measure for a process Y from X . By Lemma 3.2,
distr[Y, f ] ∈ Ap. Observe that Y is a compound Poisson process. Assume
that Y ∈ Poiss(q,Q) and put µ0 = distr[Y, f ]. By Lemma 3.1, we have

∞\
0

µ̂0(z) eczs

dz < ∞

for some c > 0. Using formula (2.2) we conclude that

(3.2)

∞\
0

Φ(y, z) eczs

dz < ∞

for Q∞-almost all y ∈ R
∞
+ . Denote by B1 the subset of R

∞
+ consisting of all

y fulfilling condition (3.2). By the strong law of large numbers we infer that

(3.3) lim
n→∞

1

n
(y1 + . . . + yn) =

∞\
0

xQ(dx)

for Q∞-almost all y = (y1, y2, . . .) ∈ R
∞
+ . Of course 0 <

T∞
0

xQ(dx) ≤ ∞.
Denote by B2 the subset of R

∞
+ consisting of all y fulfilling condition (3.3).
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Let u = (u1, u2, . . .) ∈ B1 ∩ B2. Given 0 < b <
T∞
0

xQ(dx) we can find an
index k0 > 1 such that

(3.4)
1

k
(u1 + . . . + uk) > b for k ≥ k0.

Since f ∈ Fs we may also assume that

(3.5) s−1q−s
∞∑

k=k0

f s(kb) < c/2.

Put

Ψ1(z) =

∞⋂

k=k0

(1 + q−1f(kb)z)−1,

Ψ2(z) = (1 + q−1f(0)z)−1
k0−1⋂

k=1

(1 + q−1f(u1 + . . . + uk)z)−1.

Since the function f is decreasing we conclude, by (3.4), that f(u1 + . . .
. . .+uk) ≤ f(kb) for k ≥ k0. Consequently, Φ(u, z) ≥ Ψ1(z)Ψ2(z). Applying
the inequality 1 + y ≤ exp s−1ys (y ≥ 0, 0 < s < 1) we get, by (3.5),

Ψ1(z) ≥ exp
(
− s−1q−szs

∞∑

k=k0

f s(kb)
)
≥ exp(−czs/2).

This yields, by (3.2),
T∞
0

eczs/2Ψ2(z)dz < ∞, which is a contradiction. The
theorem is thus proved.

We note that condition (3.1) of the above theorem is essential. In fact,
taking the process Y1 from Example 2.2 and the function fs (0 < s < 1)
defined by formula (2.6) we infer that fs ∈ Fr for r > s and fs 6∈ Fs.
Using (2.7) and Lemma 3.1 we conclude that distr[Y1, fs] ∈ Ap where s =
p/(1 + p).
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