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MOMENTS OF SOME RANDOM FUNCTIONALS

BY

K. URBANIK (WROCLAW)

The paper deals with nonnegative stochastic processes X (t,w) (¢t > 0),
not identically zero, with stationary and independent increments, right-
continuous sample functions, and fulfilling the initial condition X (0,w)
= 0. The main aim is to study the moments of the random functionals
§o f(X(r,w))dr for a wide class of functions f. In particular, a character-
ization of deterministic processes in terms of the exponential moments of
these functionals is established.

1. Preliminaries and notation. We denote by M the set of all
nonnegative bounded measures defined on Borel subsets of the half-line
R, = [0,00), and by P the subset of M consisting of probability mea-
sures. The probability measure concentrated at the point ¢ is denoted by d..
Given s € (—00,00) we denote by Ps the subset of P consisting of measures

w with finite moment m(u) = Sgo 2% u(dr). Given M € M by M and (M)

we denote the Laplace and the Bernstein transformation of M respectively,

i.e.

M(z) =\ e M(dz) and (M)(z) =
0 0

for z > 0. For z = 0 the last integrand is assumed to be z.

Let 4 € P. By standard calculations we get the formulae

(11) mosli) = 7 VA s (5>0)
0

and

(1.2) my(p) = F(lq_ 5 | ! ;Egz) dz (0<q<1).
0

In the sequel distr& will denote the probability distribution of a random
variable &.
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Let X be the class of nonnegative stochastic processes X = {X(t,w) :
t > 0}, not identically zero, with stationary and independent increments,
right-continuous sample functions and fulfilling the initial condition X (0,w)
= 0. It is well known that to every process X from X there corresponds a
measure M from M with M (Ry) > 0 satisfying the condition

(1.3) pi(z) = e M) (2)

where p; = distr X (t,w) (¢ > 0). This uniquely determined measure M is
called the representing measure for X. We note that each measure M from
M with M(R,) > 0 is the representing measure for a process from X'.

A stochastic process X from X is said to be deterministic if X (t,w) =
ct with probability 1 for a positive constant ¢ or, equivalently, c¢dq is the
representing measure for X.

A stochastic process X from X with the representing measure M is said
to be a compound Poisson process if

0<c= OSo(l —e ") M(dz) < 0.
0

Setting for Borel subsets E of R,
QE)=c ' (1 —e )" M (dx)
E
we have in this case Q € P and

(1'4) Dy = e—ct Z (Ct)n Q*n

n!

n=0

where Q*" for n > 1 is the nth convolution power of Q and Q*° = §,. The
set of all processes X satisfying (1.4) will be denoted by Poiss(c, Q).

Throughout this paper 74 (s > 0) will denote the exponential distribu-
tion on R} with parameter s, i.e. m4(dz) = se”**dx. We shall often refer to
the following representation of processes X from Poiss(c, Q) ([2], Chapter
IV, 2):

(1.5) X(t,w)=0 for t € [0,v),
k k—1 k
(16) X(t,w) :ij for t € [Zﬁj, Z’L%)
j=1 Jj=0 J=0
for £k > 1 where the random variables ¥g,¥4,...,&1,&2, ... are independent,

Y9, Y1, ... have probability distribution 7. and &1,&s,... have probability
distribution Q.
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It is well known that for processes from X the potential

oo

o(E) = | pu(E)dt
0

is finite on bounded Borel subsets E of R ([1], Prop. 14.1). Moreover, the
Laplace transform of the potential is given by the formula

(L.7) o(z) = (M)7'(2) (x>0

where M is the representing measure of the process in question.

2. Integral functionals. Denote by F the set of all nonnegative,
continuous, decreasing functions f defined on R, , not identically zero, sat-
isfying the condition Sgo f(x)dx < oo. Given r € (0,1] we denote by F,. the
subset of F consisting of functions fulfilling the condition {;° f"(z) dz < oo.
Put (T, f)(x) = f(xz + a). Obviously T,F C F for a > 0.

Let X € X. It was shown in [4] that for every f € F the random

functional
o0

X, f1= | f(X(r,w))dr
0
is well defined. Moreover, setting pu, = distr[X, T, f] (a > 0) we have the
equation

oo

(2.1) fa(z) =1 =2 | fla+y)iy(2) o(dy)
0

where p is the potential for the process in question ([3], Th. 2.4).
If X € Poiss (¢, Q), then, by (1.5) and (1.6), we have the formula

(X, 1= FO)0+ Y f(&+ - + &)k
k=1

Consequently, introducing the notation
Rf:R+XR+X"'7 y:(ylquV")eRf? Qoo(dy):Q(dyl)Q(dyQ)

and
B(y,z) =1+ f0)2) " IO+l +. . +ur)2) !
k=1

we get the formula

(2.2) fio(z) = | Dy, 2) Q™ (dy).
Ry
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LEMMA 2.1. Let o be the potential of a process X from X, f € F,
e = distr[X, T, f] and 0 < ¢ < 1. Then

oo

(2.3) mi_q(io) = (1= q) | F(y)m_q(uy) o(dy).

0
Proof. We have, by (2.1),

(1= 7io(2))z"" = | f(®)iy(2) oldy).
0

Multiplying both sides of the above equation by (1 — ¢)I'(¢)~'2?"! and
integrating from 0 to co we get, by (1.1) and (1.2), the assertion of the
lemma.

THEOREM 2.1. For every X € X, f € F and s > —1 we have
distr[ X, f] € Ps.

Proof. Put u, = distr[X,T,f] (a > 0). By Lemma 2.2 and Corol-
lary 2.1 in [4] we conclude that

(2.4) ms(pp) < oo for s > 0.

Suppose that 0 < ¢ < 1. Observe that T, f < f for y > 0. Consequently,
(X, T, f] < [X, f], which yields the inequality m_q(p,) > m_q(po). Apply-
ing (2.3) we get the inequality

mi_g(p0) > (1 — q)m_q(mo) | () o(dy).

0
Since, by (2.4), mi_q(po) < oo, we have m_g4(p) < oo, which completes
the proof.

In what follows e, (a > 0) will denote the family of exponential functions,
ie. equ(r) =e . Obviously e, € F.

THEOREM 2.2. Let X € X, a > 0, p, = distr X(a,w) and v, =
distr[X, e,]. Then m_1(vy) = my(pa)-

Proof. Observe that Tye, = e~ *e,, which yields the formula [X, T, e,]
= e Y[X,e,]. Consequently, by (1.7) and (2.3) with f = e,, we have the
formula

mi—g(va) = (1 = @)m—g(va)o((1 = g)a) = (1 = @)m_q(va) (M)((1 — g)a) ™"

where 0 < ¢ < 1 and M is the representing measure for X. Now taking into
account (1.3) and letting ¢ — 1 we get our assertion.

EXAMPLE 2.1. Given 0 < a < 1 we denote by Z, the a-stable stochastic
process from X with (M)(z) = 2% Obviously mi(p,) = oo for a > 0. If
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v, = distr[Z,, e,], then, by Theorem 2.2, m_;(v,) = co. Thus distr[Z,, e,] Zi}
P_1, which shows that Theorem 2.1 cannot be sharpened.

EXAMPLE 2.2. Let Y] be a compound Poisson process from Poiss(1, ).
Given f € F we put A = distr[Y7, f]. It was shown in [3] (Example 3.1) that
(25)  Az) = (1+ f(0)2) exp ( —2 {1+ f(w)z) " f(w) du).

0
In particular, setting f = e, (a > 0) we get A(z) = (1 + z)~2~1/2. Thus
Mdz) = e™® x'/%dzx, which shows that distr[Y},e,] € P, if and only if
r>-1-1/a.

Given 0 < s < 1 we put

(2.6) folz) = (142257
It is clear that fs € F. Setting A\s = distr[Yy, fs] we have, by (2.5),
(2.7) Xs(z) = (14 2) texp(—cez(1 4 2)%71)

where ¢; = sm/sinsm. By (1.1) we get distr[Y7, fs] € P, for all r € R.

3. Exponential moments. Given p > 0 we denote by A, the subset
of P consisting of measures p for which the exponential moment

o0

npe(p) = | e p(de)
0

is finite for some r > 0. Let £ be a nonnegative random variable. It is clear
that distr{ € A, if and only if the Laplace transform of distr ™7 can be
extended to an analytic function in a neighbourhood of the origin.

LEMMA 3.1. Let p > 0 and s = p/(1 +p). Then p € A, if and only if
§o 1i(z)e” dz < oo for some ¢ > 0.

Proof. Applying (1.1) we get the formula

o0 k o0
r —~
() =14 rmokp(p) =1+ | A(2)g(p.r, 2) d2
k=1 " 0

where g(p,r,z) = przP~! h(p,rzP) and

Sk

h(p, 2) = .
(P, 2) ];J KT (pk + 1+ p)

E. M. Wright proved in [5] and [6], Th. 1, that for some positive constants
ap and b, the limit

lim h(p, Z)Z(p+1/2)/(1+p) exp(—bpzl/(lﬂ’)) =a,

zZ—00
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exists. Consequently,

lim g(p,r,z) »(P+1/2)/(1+p) exp(—bprl/(1+p)z5) — prl/(2+2p)ap,

which yields our assertion.

LEMMA 3.2. Let X1 and X5 be processes from X with the representing
measures My and My respectively. If My > My and distr[Xy, f] € A, for
some f € F and p > 0, then distr[Xs, f] € A,.

Proof. Setting M3 = M; — My we have M3 € M. If M3(Ry) >
0, then Mj3 is the representing measure of a process X3 from X. In the
remaining case M3(R;) = 0 we put X3 = 0. Without loss of generality
we may assume that the processes Xo and X3 are independent. Hence the
process Y = X5 + X3 belongs to X and M; is its representing measure.
Consequently, distr X (t,w) = distr Y (¢t,w) for all ¢ > 0, which yields the
equality distr[Xy, f] = distr[Y, f] for every f € F. Moreover, [Xa, f]7P <
[Y, f]7P, which yields the assertion of the lemma.

We are now in a position to prove the following rather unexpected result.
THEOREM 3.1. Let p >0, s=p/(1+p), X € X and

(3.1) ferFs.

If distr[X, f] € A,, then the process X is deterministic.

Proof. Suppose the contrary. Then the representing measure M for
X is not concentrated at the origin. Thus M([a,00)) > 0 for a certain
a > 0. Setting N(E) = M(E N [a,00)) for Borel subsets E of R, we
get the representing measure for a process Y from X. By Lemma 3.2,
distr[Y, f] € A,. Observe that Y is a compound Poisson process. Assume
that Y € Poiss(q, Q) and put po = distr[Y, f]. By Lemma 3.1, we have
oo
S fio(2) e dz < o0
0
for some ¢ > 0. Using formula (2.2) we conclude that
oo
(3.2) S B(y,z) e dz < oo
0
for Q°°-almost all y € RY. Denote by B; the subset of R consisting of all
y fulfilling condition (3.2). By the strong law of large numbers we infer that

o0

(3.3) lim l(yl +o ) = S x Q(dx)

n—oo N, o

for @>-almost all y = (y1,y2,...) € R, Of course 0 < {° 2 Q(dz) < <.
Denote by B; the subset of R consisting of all y fulfilling condition (3.3).
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Let u = (u1,ug,...) € By N By. Given 0 < b < {° 2 Q(dz) we can find an
index kg > 1 such that

1
(3.4) E(u1+...+uk)>b for k > k.
Since f € Fs we may also assume that
(3.5) sl Y fo(kD) < /2.
k=ko
Put
W(z)= [ (g fkD)2) 7,
k=ko
ko—1
Wo(z) = (L+q ' f(0)2) [ (L4+q " flur+... +up)z) ™"
k=1

Since the function f is decreasing we conclude, by (3.4), that f(u; + ...
oot ug) < f(kb) for k > ko. Consequently, ®(u, z) > ¥y (2)¥2(z). Applying
the inequality 1 +y < exps~!y® (y >0, 0 < s < 1) we get, by (3.5),

Wi(2) Z exp (=577 Y f(kD)) > exp(—e2*/2).
k=ko

This yields, by (3.2), Sgo e 2W,(2)dz < oo, which is a contradiction. The

theorem is thus proved.

We note that condition (3.1) of the above theorem is essential. In fact,
taking the process Y; from Example 2.2 and the function fs (0 < s < 1)
defined by formula (2.6) we infer that fs € F,. for r > s and fs & Fs.
Using (2.7) and Lemma 3.1 we conclude that distr[Y7, fs] € A, where s =

p/(1+p).
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