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ON NONDISTRIBUTIVE STEINER QUASIGROUPS
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A. W. M A R C Z A K (WROC LAW)

A well known result of R. Dedekind states that a lattice is nonmodular
if and only if it has a sublattice isomorphic to N5. Similarly, a lattice is
nondistributive if and only if it has a sublattice isomorphic to N5 or M3

(see [11]). Recently, a few results in this spirit were obtained involving the
number of polynomials of an algebra (see e.g. [1], [3], [5], [6]). In this paper
we prove that a nondistributive Steiner quasigroup (G, ·) has at least 21
essentially ternary polynomials (which improves the recent result obtained
in [7]) and this bound is achieved if and only if (G, ·) satisfies the identity
(xz · yz) · (xy)z = (xz)y · x. Moreover, we prove that a Steiner quasigroup
(G, ·) with 21 essentially ternary polynomials contains isomorphically a cer-
tain Steiner quasigroup (M, ·), which we describe in Section 1.

1. Introduction. A Steiner quasigroup is an idempotent commuta-
tive groupoid (G, ·) satisfying the condition (xy)y = x. Recall that Steiner
quasigroups are in one-to-one correspondence with Steiner triple systems
and, as has been shown by M. Reiss in 1859, an n-element Steiner quasigroup
exists if and only if n ≡ 1 or 3 (mod 6) (see e.g. [2]). The least nontrivial
(with more than one element) Steiner quasigroup is G3 = ({0, 1, 2}, ·), where
the binary operation “·” can be described as x · y = 2x + 2y (mod 3).
Note that G3 is medial (i.e. satisfies the identity xy · uv = xu · yv) and
consequently, it is distributive (i.e. satisfies the conditions (xy)z = xz · yz
and z(xy) = zx ·zy). Clearly, G3 is the unique 3-element Steiner quasigroup
and the following holds.

(1.i) Every nontrivial Steiner quasigroup contains an isomorphic copy of

G3 as a subgroupoid.

The least nondistributive Steiner quasigroup is G7 = ({0, 1, . . . , 6}, ·),
where the operation “·” has a well known graphical representation given in
Figure 1. This 7-element Steiner quasigroup is unique up to isomorphism.

In order to construct the quasigroup (M, ·) mentioned at the beginning,
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Fig. 1. The product of two elements lying on the circle, on a side or on a height of the
triangle is the third element lying on that part of the triangle.

we first give a similar graphical representation for the 9-element Steiner
quasigroup. Let G9 = ({0, 1, . . . , 8}, ·) be a groupoid with the operation “·”
given by the square in Figure 2. Note that G9 is isomorphic to the product
G3×G3. It is the unique (up to isomorphism) 9-element Steiner quasigroup.
Obviously, it is medial and hence distributive (see also [8]).

Fig. 2. The product of two elements—lying on a side, a symmetry line of the square or
on a triangle with two vertices lying in the centers of adjacent sides and the third vertex
at the common point of two remaining sides of the square (e.g. the triangle [0, 3, 5])—is
defined as the third element lying on the same part of the figure.

Now consider the set M = { e0, e1, e2, d0, d1, d2, f0, f1, f2, g0, g1, g2,
h0, h1, h2, p0, p1, p2, c0, c1, c2, a0, a1, a2, q0, q1, q2} and consider the bi-
nary operation illustrated in Figure 3. Elements with the same indices
form a 9-element Steiner subquasigroup with the binary operation given by
Figure 2. The product of elements having two different indices is an element
with the third index. The product of two elements lying in the same position
in two different squares is defined as the element in the same position in the
third square, e.g., e0 · e1 = d2. For every such product we define two more
products by permutation of indices. In the above example we get e1 ·e2 = d0

and e2 · e0 = d1. The remaining products of elements with different indices
are given by the following Steiner triples:

[e
σ(0), pσ(1), cσ(2)], [eσ(0), aσ(1), qσ(2)], [dσ(0), hσ(1), aσ(2)],

[d
σ(0), cσ(1), qσ(2)], [gσ(0), hσ(1), cσ(2)], [gσ(0) , pσ(1), aσ(2)]
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for any permutation σ ∈ S3. For example, using the first triple, we get
c0 · p2 = e1, e2 · c1 = p0. It is not difficult (although tedious) to check that
(M, ·) is a Steiner quasigroup satisfying the identity

(1.ii) (xz · yz) · (xy)z = (xz)y · x.

We have done it using a computer. Since, e.g., (e0 · e1)e2 = d2 · e2 = f2 and
(e0 · e2)(e1 · e2) = d1 · d0 = g2, (M, ·) is nondistributive. Further, we prove
that p3(M, ·) = 21 (see (ii) of Theorem).

Fig. 3. The binary operation of the Steiner quasigroup (M, ·)

Let A = (A,F ) be an algebra. By pn(A) we denote the number of
essentially n-ary polynomials over A (i.e., polynomials depending on all
their variables) for n > 0 and let p0(A) be the number of constant unary
polynomials over A. We say that an algebra A represents the sequence
(a0, a1, . . . , an, . . .) if an = pn(A) for all n.

Let f be an n-ary polynomial of an algebra A = (A,F ). We say that the
polynomial f admits a permutation σ or a permutation σ is admissible for
f , if for every a1, . . . , an ∈ A we have f(a

σ(1), . . . , aσ(n)) = f(a1, . . . , an).
The set G(f) of all permutations admissible for f is a subgroup of Sn called
the symmetry group of f .

Recall that a nontrivial Steiner quasigroup (G, ·) represents the sequence
(0, 1, 1). If (G, ·) is distributive, then p3(G, ·) = 3 (see Lemma 4.6 of [4]).
Assume that (G, ·) is nondistributive. Then J. Dudek and J. Ga luszka show
in [7] that p3(G, ·) ≥ 15. We improve this result. Since we have checked
that p3(G7) is more than 51, the fact that there exists a Steiner quasigroup
with only 21 essentially ternary polynomials was a surprise. One can also
regard the result below as a small contribution to Problem 8 of G. Grätzer
and A. Kisielewicz of [9]. In this paper we prove the following

Theorem. If (G, ·) is a nondistributive Steiner quasigroup, then

(i) p3(G, ·) ≥ 21,
(ii) p3(G, ·) = 21 if and only if (G, ·) satisfies the identity

(xz · yz) · (xy)z = (xz)y · x,



138 A. W. MARCZAK

(iii) if p3(G, ·) = 21, then (G, ·) contains isomorphically the Steiner quasi-

group (M, ·) as a subgroupoid.

2. Proof of Theorem. In the proof of the Theorem we consider some
special ternary polynomials and we examine their symmetry groups using
the well known fact that

(2.i) If f is an (essentially) n-ary polynomial in an algebra A, then there

exist n/cardG(f) different (essentially) n-ary polynomials obtained

from f by permuting its variables.

Note that

(2.ii) If (G, ·) is a nontrivial Steiner quasigroup, then a ternary polyno-

mial ϕ(x, y, z) of (G, ·) does not admit any 3-element cycle permu-

tation of its variables.

Indeed, if ϕ is not an essentially ternary polynomial in a nontrivial Steiner
quasigroup (G, ·), then the identity

(2.iii) ϕ(x, y, z) = ϕ(y, z, x)

implies immediately that (G, ·) is trivial, a contradiction. Suppose that ϕ
is essentially ternary. Since the identity (2.iii) is not satisfied in G3, the
condition (1.i) implies that the identity (2.iii) is not satisfied in (G, ·) either.

P r o o f o f (i). Let (G, ·) be a nondistributive Steiner quasigroup. Using
Lemmas 3.2 and 4.1 of [4] we infer that the polynomials

f(x, y, z) = (xy)z, g(x, y, z) = xz · yz, h(x, y, z) = (xz)y · x

are essentially ternary and pairwise distinct.
Note that both f and g are symmetric in x and y. It follows, in view

of (2.ii), that they admit no other transposition of variables. Consequently,
there are precisely 6 pairwise distinct polynomials obtained from f and g
by permuting variables. Now consider two cases according to whether G(h)
is trivial or not.

First, assume that G(h) is nontrivial. Then, in view of Lemma 4.5 of [4],
(G, ·) satisfies the identity

(2.iv) (xz)y · x = (yz)x · y,

and consequently, p3(G, ·) ≥ 9.
To improve this, consider the polynomial

p(x, y, z) = (xz)y · zy.

Observe that

(2.v) If (G, ·) is a Steiner quasigroup, then the identities (2.iv) and

(xz)y · zy = (yz)x · zx are equivalent.



STEINER QUASIGROUPS 139

In fact, by (xy)y = x we get (yz)x = x(zy) = z(zx) · zy = ((zy)y · zx) · zy.
Applying (2.iv) we have (yz)x = ((zx)y · zy) · zx and hence

(xz)y · zy = (yz)x · zx.

Conversely, putting xz instead of z in the last identity we get

zy · (xz)y = ((xz)y)x · z.

The polynomial ((xz)y)x · z admits the same transpositions as p(x, y, z),
thus we obtain

((yz)x)y · z = ((xz)y)x · z.

Finally, by the identity (xy)y = x we have condition (2.iv), which completes
the proof of (2.v).

Since p(x, y, z) = p(y, x, z), the polynomial p does not admit any other
transposition of its variables, because of (2.ii). Observe that the polynomial
p depends on x and y, because the assumption p(x, y, z) = p(z, z, z) = z
implies a contradiction (xz)y = y. The polynomial p depends on z, since
p(x, y, z) = p(x, y, x) = xy gives (xz)y = xy · zy, a contradiction. Thus p is
essentially ternary. Note that the assumption p(x, y, z) = ϕ(x, y, z) implies
a contradiction xy = p(x, y, x) = ϕ(x, y, x) = y for every polynomial ϕ ∈
{f, g, h}. Thus p is a new polynomial. Using (2.i) we obtain p3(G, ·) ≥ 12.

Now consider the polynomials

a(x, y, z) = (xz · yz)z, c(x, y, z) = (zx)y · (zy)x,

introduced in Sections 5 and 7 of [4]. Using Proposition 2 and 4 of [4] we infer
that the polynomials are essentially ternary. Obviously, both of them admit
the transposition (x, y). Using (2.ii) we infer thatG(a) = G(c) = {id, (x, y)}.
The polynomials a and c are not equal to any of the polynomials considered
above. Indeed, for every ϕ ∈ {f, g, h} the identity c(x, x, z) = ϕ(x, x, z)
is z = xz, a contradiction, and the assumption c(x, y, z) = p(x, y, z) gives
(zy)x = zy, also a contradiction. Similarly, the assumption a(x, x, z) =
ψ(x, x, z) for ψ ∈ {f, g, h, c} implies x = z, a contradiction, and if we suppose
that a(xz, y, z) = p(xz, y, z), then we also get a contradiction: h(z, x, y) =
g(z, x, y). This proves that p3(G, ·) ≥ 18.

Finally, consider the polynomial

q(x, y, z) = (xy · xz) · (xz)y.

Note that q admits the transposition (x, y). Indeed, by (xy)y = x we get

x · (xz)y = y · (zy)x,

((xz)y · xz)(xy) · (xz)y = ((zy)x · zy)(xy) · (zy)x,

((xy · xz) · (xz)y)(xy) = ((xy · zy) · (zy)x)(xy),

(xy · xz) · (xz)y = (xy · zy) · (zy)x.
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Using (2.ii) we have G(q) = {id, (x, y)}. The assumption that q does not
depend on x implies that q(x, y, z) = q(z, y, z) = z(zy) · zy = z and hence
we obtain a contradiction xy · xz=(xz)y · z. Since q(x, y, z)=q(y, x, z), the
polynomial q depends also on y. Similarly, we show that q depends on z and
consequently it is essentially ternary. The polynomial q differs from every
polynomial considered earlier. Indeed, the identities q(x, y, z) = f(x, y, z),
q(x, y, z) = p(x, y, z) and q(x, y, z) = c(x, y, z) give contradictions immedi-
ately. The assumption q ∈ {g, h} implies that x = q(x, y, x) = ϕ(x, y, x) = y
for ϕ ∈ {g, h}. If q = a, then we have x = q(x, y, x) = a(x, y, x) = xy, a
contradiction. Applying (2.i) we get p3(G, ·) ≥ 21, as required.

It remains to consider the case where the identity (2.iv) does not hold
and cardG(h) = 1. Using (2.i) we obtain 6 different essentially ternary
polynomials by permuting the variables of the polynomial h. They are not
equal to any of the polynomials obtained from (xy)z and xy · xz because of
the difference of the symmetry groups. Thus p3(G, ·) ≥ 12. Consider the
essentially ternary polynomial p. By means of (2.v) we get cardG(p) = 1.
Using (2.i) we obtain 6 different polynomials from p. It is easy to check that
none of them is equal to any of the polynomials obtained from h. It follows
that p3(G, ·) ≥ 18. When considering the polynomials a and c we do not use
the identity (2.iv). Thus we get immediately p3(G, ·) ≥ 24, which completes
the proof of (i).

P r o o f o f (ii). Let (G, ·) be a Steiner quasigroup with p3(G, ·) = 21.
Take

r(x, y, z) = (xz · yz) · (xy)z.

Since r(x, y, z) = r(y, x, z) and r(y, y, z) = yz we infer that r is essentially
ternary. By means of (2.ii) we get G(r) = {id, (x, y)}. It is easy to see
that r 6∈ {f, g, p, c, a, q}. According to (2.i) the assumption p3(G, ·) = 21
implies that in the groupoid (G, ·) the polynomials r and h are equal, hence
(G, ·) satisfies the condition (1.ii). Conversely, assume that a nondistributive
Steiner quasigroup (G, ·) satisfies the identity (1.ii). Using Marczewski’s
description of the set A

(3)(G, ·) (see [10]) and the identities of the groupoid

(G, ·) we prove that A
(3)
4 (G, ·) = A

(3)
3 (G, ·), where

A
(3)
3 (G, ·) = {x, y, z, xy, yz, zx, (xy)z, (yz)x, (zx)y, xz · yz, yx · zx,

zy · xy, (xz)y · x, (yx)z · y, (zy)x · z, (xz)y · zy, (yx)z · xz,

(zy)x · yx, (zx)y · (zy)x, (xy)z · (xz)y, (yz)x · (yx)z,

(xz · yz)z, (yx · zx)x, (zy · xy)y, (xy · xz) · (xz)y,

(yz · yx) · (yx)z, (zx · zy) · (zy)x }

and hence p3(G, ·) = 21 (see the proof of (i)). The calculations here are
rather routine. We illustrate them only with two most elaborate examples,
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obtaining as a by-product some identities that will be used later. First, we
show that the polynomial

b(x, y, z) = (xz · yz) · xy

considered in Section 6 of [4] and belonging to the set A
(3)
3 (G, ·) is equal to

the polynomial c(x, y, z) ∈ A
(3)
3 (G, ·), i.e.

(2.vi) (xz · yz) · xy = (zx)y · (zy)x.

Indeed, putting zx instead of x in the identity (2.iv) we get zy·xz = (yz·xz)y
and hence

(2.vii) xz · yz = (xy · xz)y.

Now, using (2.iv) and (2.vii) we obtain

(xz · yz) · xy = (xy · xz)y · xy = (y(xz) · xy)y = (yx · (zx)y)y

= ((zx)y · x)y · (zx)y = ((zy)x · y)y · (zx)y

= (zy)x · (zx)y.

In the second example we consider the polynomial (zy · xy) · ((yx)z)y ∈

A
(3)
4 (G, ·), a product of two different elements of the set A

(3)
3 (G, ·), and we

prove that it belongs to the set A
(3)
3 (G, ·) and

(2.viii) (zy · xy) · ((yx)z)y = (zx)y · (zy)x.

Indeed, the identity (2.iv) implies that

(xz)y = ((yz)x)y · x = ((yz)x · (yx)x)x

= (x(yx) · x(zy))x = (x(zy) · yx)x · x(zy)

and hence x(zy) · (xz)y = (x(zy) · yx)x. Putting xy instead of x in the last
identity we obtain (xy ·zy) · ((xy)z)y = (xy ·zy)x ·xy and then, using (2.vii),
we have (xy · zy) · ((xy)z)y = (xz · yz) · xy. Now, by the identity (2.vi) we
get the statement (2.viii).

P r o o f o f (iii). Let (G, ·) be a Steiner quasigroup with p3(G, ·) =

21. Denote by (Ĝ, ·) the subgroupoid of (G, ·) generated by three elements

a, b, c ∈ G such that (Ĝ, ·) is nondistributive. By means of (ii) the Steiner

quasigroup (Ĝ, ·) satisfies the identity (1.ii) and hence

Ĝ = {a, b, c, ab, bc, ca, (ab)c, (bc)a, (ca)b, ac · bc, ba · ca, cb · ab, (ac)b · a,

(ba)c · b, (cb)a · c, (ac)b · cb, (ba)c · ac, (cb)a · ba, (ca)b · (cb)a,

(ab)c · (ac)b, (bc)a · (ba)c, (ac · bc)c, (ba · ca)a, (cb · ab)b,

(ab · ac) · (ac)b, (bc · ba) · (ba)c, (ca · cb) · (cb)a}.

We check that any equality of arbitrary two elements of the set Ĝ implies
that (Ĝ, ·) is either a 3- or a 9-element Steiner quasigroup and hence it is
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distributive. In the proof of this fact we apply the following remarks.

(2.ix) If (Ǧ, ·) is a Steiner quasigroup generated by two different elements,
then card(Ǧ, ·) = 3.

(2.x) If a Steiner quasigroup (Ǧ, ·) with p3(Ǧ, ·) = 21 is generated by three

different elements a, b, c and [a, b, c] forms a distributive triple (i.e.,
(ab)c = ac · bc), then card(Ǧ, ·) = 9.

The proof of the first remark is obvious. In the proof of (2.x) we need
an observation that (2.iv) implies the identity

(2.xi) ((xy)z)x · xy = (xz · xy)x.

Now, we prove that the condition (ab)c = ac · bc implies that (bc)a = ba · ca
and (ca)b = cb · ab. Indeed, the assumption that [a, b, c] forms a distributive
triple implies that (ab)c · a = (ac · bc)a. By (2.vii) we get (ab)c · a = ab · cb
and consequently [(ab)c]a · ab = cb. Now, using (2.ix) we get (ac · ab)a = cb
and hence ac ·ab = a(cb). Thus [b, c, a] forms a distributive triple. Similarly,
multiplying both sides of the equality (ab)c = ac · bc by the element b we
prove that ab · cb = (ac)b. Applying the identities (xy)y = x and (2.vii),
we get immediately that Ǧ = {a, b, c, ab, ac, bc, (ab)c, (ac)b, (bc)a} and the
binary operation of the Steiner quasigroup (Ǧ, ·) is given by the following
Figure 4.

Fig. 4. The graphical representation of the Steiner quasigroup (Ǧ, ·).

The proof of remark (2.x) is complete.

Now we can demonstrate that card(Ĝ, ·) = 27. This fact is proved in
several steps. We start from

(2.xii) If a = (ab)c · (ac)b or a = (ab · cb) · (ab)c, then card(Ĝ, ·) ≤ 9, and

if a is equal to another element of the Steiner quasigroup (Ĝ, ·),

then card(Ĝ, ·) ≤ 3.

If a = (ab)c · (ac)b, then by (2.vi), a = cb · (ba · ca) and hence (bc)a =

ba·ca. Applying (2.x) we infer that card(Ĝ, ·) ≤ 9. Similarly the assumption
a = (ab · cb) · (ab)c implies that ab · cb = (ab)c · a, (ab · cb)a = (ab)c and
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hence by (2.vii), ac · bc = (ab)c. Thus card(Ĝ, ·) ≤ 9. If a is equal to one

of the remaining elements, we prove that (Ĝ, ·) is generated by at most two

different elements and in consequence using (2.ix) we obtain card(Ĝ, ·) ≤ 3.
By means of (2.xii), we infer that a is not equal to any of the remaining

elements of (Ĝ, ·). The same statement is true for b and c.

Now let us take the element ab ∈ Ĝ \ {a, b, c} and note that

(2.xiii) If ab = (ac)b · cb or ab = (ac · bc)c, then card(Ĝ, ·) ≤ 9, and if a

is equal to another element of the Steiner quasigroup (Ĝ, ·), then

card(Ĝ, ·) ≤ 3.

The assumption ab = (ac)b · cb implies that ab · cb = (ac)b. Hence by

(2.x), card(Ĝ, ·) ≤ 9. Similarly, ab = (ac · bc)c implies the same statement.

We prove that if ab is equal to one of the remaining elements of (Ĝ, ·),

then the groupoid (Ĝ, ·) is generated by at most two different elements and

card(Ĝ, ·) ≤ 3. By (2.xiii), ab is not equal to any of the remaining elements

of (Ĝ, ·) and similarly ac and bc have the same property.

Now we deal with the element (ab)c ∈ Ĝ \ {a, b, c, ab, ac, bc} and we
observe that

(2.xiv) If (ab)c = ac · bc or (ab)c = (ac)b · a, then card(Ĝ, ·) ≤ 9, and if a

is equal to another element of the Steiner quasigroup (Ĝ, ·), then

card(Ĝ, ·) ≤ 3.

The assumption (ab)c = ac · bc implies immediately that card(Ĝ, ·) ≤ 9.
The equation (ab)c = (ac)b · a gives (ab)c = (ac · bc) · (ab)c and hence

card(Ĝ, ·) ≤ 9. Since (Ĝ, ·) is nondistributive, (ab)c, (bc)a and (ca)b are not

equal to any of the remaining elements of (Ĝ, ·).

Consider the element ac · bc ∈ Ĝ \ {a, b, c, ab, ac, bc, (ab)c, (bc)a, (ca)b}.
We have

(2.xv) If ac ·bc = (ac)b ·a, then card(Ĝ, ·) ≤ 9, and if a is equal to another

element of the Steiner quasigroup (Ĝ, ·), then card(Ĝ, ·) ≤ 3.

If ac · bc = (ac)b · a, then ab · cb = (ac · bc)a = (ac)b and by (2.x) we

obtain card(Ĝ, ·) ≤ 9. For the other equalities using (2.ix) we prove that

card(Ĝ, ·) ≤ 3. Similarly, ab·ac and ab·cb differ from the remaining elements

of (Ĝ, ·).

Now we take (ac)b·a ∈ Ĝ and an element ϕ(a, b, c) ∈ Ĝ\{a, b, c, ab, ac, bc,
(ab)c, (bc)a, (ca)b, ac · bc, ba · ca, cb · ab}. We prove that

(2.xvi) The equality (ac)b · a = ϕ(a, b, c) implies that card(Ĝ, ·) ≤ 3.

The above remark implies that in the nondistributive Steiner quasigroup
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(Ĝ, ·) the element (ac)b · a and also (ab)c · a and (ab)c · b are not equal to
any of the remaining elements.

Now suppose that the element (ac)b · cb ∈ {(ba)c · ac, (cb)a · ba, (ca)b ·
(cb)a, (ab)c · (ac)b, (bc)a · (ba)c, (ac · bc)c, (ba · ca)a, (cb · ab)b, (ab · ac) · (ac)b,
(bc · ba) · (ba)c, (ca · cb) · (cb)a}. In this case we obtain

(2.xvii) If (ac)b·cb = (ac·bc)c, then card(Ĝ, ·) ≤ 9, and if a is equal to an-

other element of the Steiner quasigroup (Ĝ, ·), then card(Ĝ, ·)≤ 3.

Observe that if (ac)b · cb = (ac · bc)c = [a(bc)]c · bc, then (ac)b = (bc)a · c

and card(Ĝ, ·) ≤ 9 as above. We show that any other equality implies

card(Ĝ, ·) ≤ 3. Thus (ac)b · cb, (ba)c · ac and (cb)a · ba differ from the
remaining elements of the considered set.

The consideration of the element (ca)b · (cb)a proves that for every
ψ(a, b, c) ∈ {(ab)c · (ac)b, (bc)a · (ba)c, (ac · bc)c, (ba · ca)a, (cb · ab)b,
(ab · ac) · (ac)b, (bc · ba) · (ba)c, (ca · cb) · (cb)a} we have

(2.xviii) The equality (ca)b · (cb)a = ψ(a, b, c) implies that card(Ĝ, ·) ≤ 3.

Since (Ĝ, ·) is nondistributive, (ca)b · (cb)a and also (ab)c · (ac)b and (ab)c ·
(bc)a do not belong to the above set.

Similarly, considering the elements (ac ·bc)c and (ab ·ac) · (ac)b, we prove
that

(2.xix) If (ac · bc)c ∈ {(ba · ca)a, (cb · ab)b, (ab · ac) · (ac)b, (bc · ba) · (ba)c,

(ca · cb) · (cb)a}, then card(Ĝ, ·) ≤ 3.

(2.xx) If (ab·ac)·(ac)b ∈ {(bc·ba)·(ba)c, (ca·cb)·(cb)a}, then card(Ĝ, ·)≤ 3.

Hence also (ab · ac)a and (ab · cb)b differ from the remaining elements and
(ab · ac) · (ab)c 6= (ac · bc) · (ac)b.

Now, it is easy to see that (Ĝ, ·) is isomorphic to the Steiner quasi-
group (M, ·) described in Section 1. Thus any Steiner quasigroup (G, ·) with
p3(G, ·) = 21 contains an isomorphic copy of (M, ·) as a subgroupoid. This
completes the proof of the Theorem.
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