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BORDISM OF SPIN MANIFOLDS WITH LOCAL ACTIONS
OF TORI IN LOW DIMENSIONS

BY

PIOTR M I K R U T (WROC LAW)

0. Introduction. The notion of a local action of tori on a manifold is a
generalization of an action of a torus. Tori, possibly of different dimensions,
act on open subsets of the manifold and these actions fit together in such a
way that when two open sets meet the torus acting on one of them injects
homomorphically into the torus acting on the second one. If we assume that
each of these actions is without fixed points then the local action coincides
with a T-structure introduced by Mikhael Gromov in the paper [G]. (See
also Definition 1.5 in [CG]). Here we assume that a local action may admit
fixed points.

Manifolds with such a structure can be classified up to a structure pre-
serving bordism. Let us denote by ΩS

n the bordism group of oriented n-
manifolds with the structure S, where we put S = t for T-structure, S = pol
for T-structure with polarization, S = l.a.t. for local actions of tori and
S = l.a.t., spin for local actions of tori with a spin structure.

In low dimensions there are the following results:

• Ωt
3
∼= Z2, torΩpol

3
∼= Z12 × Z2, Ωpol

3 /tor ∼= Z(0,1/2) ([HJ]);
• Ωt

4
∼= 2Z, Ωl.a.t.

4
∼= Z ([Mi1]);

• Ωl.a.t.,spin
4

∼= 16Z ([Mi2]).

In dimension 4 an isomorphism is given by signature.
In this paper we complete the list of bordism groups in low dimensions

in the case of spin manifolds. We prove:

Theorem. The bordism groups of compact spin manifolds admitting local
actions of tori in dimensions 1, 2 and 3 are the following :

Ωl.a.t.,spin
1

∼= Z Ωl.a.t.,spin
2

∼= Z2 Ωl.a.t.,spin
3

∼= Z2.
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The calculation of the first two groups is just an exercise. Thus, the
main result is the calculation of the third group. The methods we use are
partly combinations of those for oriented manifolds with local actions of
tori as in [HJ], [Mi1] and for spin manifolds with S1 actions as in [B]. The
important feature of spin manifolds is encoded in the property described in
Lemma 3.7 and in the notion of an admissible isotropy subgroup (0.5, 0.6)
which is related to notions of odd and even circle actions and is a simple
consequence of the fact that Ωspin

1 = Z2.

Definition 0.1. We say that a smooth manifold M admits a local
action of tori if there is a covering {Uα}α∈Λ of M by open sets such that for
each α ∈ Λ there is a torus T kα which acts smoothly and effectively on Uα:

θα : T kα × Uα → Uα

and if Uαβ := Uα ∩ Uβ 6= ∅ then up to changing the roles of α, β we have
kα ≤ kβ and there exists a monomorphism

ξαβ : T kα → T kβ

such that the following diagram is commutative:

T kα × Uαβ Uαβ

T kβ × Uαβ Uαβ

ξαβ×idUαβ

��

θα //

idUαβ

��θβ //

Moreover, if Uα ∩ Uβ ∩ Uγ 6= ∅ then ξβγξαβ = ξαγ (kα ≤ kβ ≤ kγ).
An atlas of the local action of tori is the collection of the sets and maps

〈{Uα}α∈Λ; {θα}α∈Λ; {ξαβ}(α,β)∈Λ0〉.

Here Λ0 is the set of those pairs (α, β) for which ξαβ is defined.
We say that a local action of tori is pure if kα does not depend on α.

Compare with Definition 1.6 in [CG].

Definition 0.2. We say that two spin manifolds M1, M2 admitting
local actions of tori are cobordant if there is a spin manifold W admitting
local action of tori such that

∂(W ) = M1 −M2.

Moreover, the spin structure and local actions of tori on M1, M2 are restric-
tions of the spin structure and local actions of tori on W .

Notation 0.3. We use the notation T 1 if we think of the circle as a
Lie group or a principal orbit of an action of T 1. The circle treated as a
manifold is denoted by S1.
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Notations 0.4. Let us denote by M (k) the union of those Uα for which
kα is equal to an integer k. It is an open submanifold of M . If m ∈ M (k)

then the orbit of m (denoted by [m]k) for the local T k action is the orbit of
m for an action θα such that m ∈ Uα and kα = k. According to Definition
0.1, [m]k does not depend on α. Let X(k) denote the orbit space of M (k)

with the quotient topology, which is determined by transversal slices. (See
the slice theorem [Br], II.4.4).

Let us denote by $k the quotient map M (k) → X(k), and let a connected
component of M (k) be denoted by M

(k)
i , where i is an index. Set M (k,l) =

M (k) ∩M (l). If m ∈ M (k,l), k ≤ l then there is a map $k
l sending [m]k to

[m]l, i.e. $l = $k
l $k.

Let us denote by

• Fix(l)
k the k-dimensional stratum of the fixed point set in M (l);

• Fin(l)
k the k-dimensional stratum consisting of the orbits with finite

isotropy subgroups;
• Pr(l) the stratum consisting of the principal orbits.

Definition 0.5. A T 1 action on a connected spin manifold M is called
even if it lifts to a T 1 action on the spin bundle. Otherwise it is called
odd . A T k action on a connected spin manifold M is called even if for each
subgroup T 1 < T k the action of T 1 is even. Otherwise it is called odd . A
local T k action on a connected spin manifold M is called even (odd) if for
each local chart Uα the action θα is even (odd).

Definition 0.6. Let i be the dimension of the acting torus. A subgroup
T 1 < T i, the action of which is odd, is called admissible. Let ε : Zi

2 → Z2

be a homomorphism defined as follows. A subgroup T 1 < T i represents
an element of H1(T i, Z2) ∼= Zi

2. The element of Zi
2 maps to zero if T 1

representing it is not admissible. Otherwise, the element maps to 1. The
map is well defined, i.e. it is independent of the choice of a representa-
tive T 1. In the case where the action is odd the homomorphism ε is non-
trivial.

R e m a r k 0.7. A subgroup T 1 < T i is an isotropy subgroup with the
corresponding stratum of codimension 2 iff its action is odd, i.e. it is admis-
sible.

1. 1-manifolds

Theorem 1.1. The bordism group of compact spin 1-manifolds with local
actions of tori is isomorphic to Z and is generated by T 1 with the non-
bounding spin-structure.
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P r o o f. A compact 1-manifold with a local action of tori is equivariantly
diffeomorphic to a disjoint sum of T 1’s with the canonical T 1 action. T 1

with the bounding spin structure bounds D2 and the T 1 action and spin
structure obviously extend to D2. We only have to check that T 1 with the
non-bounding spin structure has infinite order. This follows from the fact
that any compact 2-manifold with boundary admitting a local action of tori
is diffeomorphic to a disjoint sum of manifolds equivariantly diffeomorphic to
[0, 1]×T 1 or to D2. Thus, if some non-zero multiple of T 1 with non-bounding
spin structure bounds a 2-manifold then the 2-manifold is diffeomorphic to
a multiple of [0, 1] × T 1. Looking at the orientations of the components of
the boundary we arrive at a contradiction.

2. 2-manifolds

Theorem 2.1. The two-dimensional spin bordism group of manifolds
with local actions of tori is isomorphic to Z2 and is generated by T 2, i.e., a
torus with the non-bounding spin structure and standard action of T 2.

P r o o f. An oriented 2-manifold with local action of tori is equivariantly
diffeomorphic to a disjoint sum of several copies of S2 and T 2. Both of them
are spin manifolds. It follows from the slice theorem ([Br]) that S2 with local
action of tori is equivariantly diffeomorphic to S2 with the standard action
of T 1. It bounds D3 with the standard action of T 1. The unique spin
structure on S2 extends to a spin structure on D3.

T 2 has essentially two spin structures: the bounding and non-bounding
one. Up to a bordism, changing only the atlas on T 2, we can assume that
T 2 is a single orbit of the T 2 action.

In case of a bounding spin structure we can choose the filling to be
D2 × T 1 and the action of T 2 on T 2 obviously extends to the action of T 2

on D2 × T 1.
Thus, we have proved that a compact spin 2-manifold with a local action

of tori is spin bordant with a disjoint sum of T 2’s with non-bounding spin
structures.

The disjoint sum of two copies of such T 2 is spin bordant with T 2 with
the bounding spin structure. Let us first observe that by means of a bordism
we can change the T 2 action into a T 1 action by choosing a T 1 < T 2. In
this way we obtain a manifold M consisting of two copies of the trivial T 1

bundle over S1. By Lemma 3.7, which we prove in the next section, we
can construct a bordism between the manifold M and a trivial T 1 bundle
over S1 having the bounding spin structure. The bordism corresponds to a
connected sum of the bases of the trivial T 1 bundles over S1. The orientation
and (non-bounding) spin structure on two copies of the trivial T 1 bundle
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over S1 extends to the 3-manifold giving the orientation and (bounding)
spin structure on the remaining component of the boundary.

A slightly different argument goes as follows. According to [B] the base
of an even free T 1 action on a spin manifold inherits a spin structure. Then
we use the result ΩSpin

1 = Z2.

3. 3-manifolds. Some methods used in this section resemble methods
used in the oriented case. See [HJ]. The spin case is less flexible since we
have to take care of the spin structure on the trace of the bordism. One of
the obstructions to a spin surgery operation is the necessity of preserving the
admissibility of isotropy subgroups corresponding to codimension 2 strata.

R e m a r k 3.1. Any 3-dimensional compact manifold M admits a spin
structure. M (3) is a disjoint sum of tori T 3. We can assume that M (3) ∩
(M (1) ∪ M (2)) = ∅. T 3 has eight spin structures. The standard SL3(Z)
action on T 3 permutes these structures. There are two orbits for this action.
They are distinguished by the Rokhlin invariant. The first one consists of
the spin structures on T 3 which bound a spin structure on T 2 ×D2. Thus,
T 3 with one of these spin structures, as a manifold with a local action of
tori, represents zero in the bordism group. The second orbit consists of the
non-bounding spin structure on T 3. We change the atlas by replacing the
action of T 3 on itself by an action of a subgroup T 1 < T 3. After the change
T 3 is included in M (1). Thus, we can assume that M (3) = ∅.

R e m a r k 3.2. Any Seifert orbit in M (1) has a tubular neighbourhood on
which the T 1 action can be extended to an effective T 2 action. Thus after
suitable change of the atlas the neighbourhood can be included in M (2).
Thus, we can assume that the local action on M (1) is semi-free, i.e. its
isotropy subgroups are all trivial or equal to T 1.

Lemma 3.3. A spin 3-manifold with a local action of tori satisfying the
above assumptions is spin bordant to a spin 3-manifold M that satisfies the
above assumptions and the additional condition:

• All connected components of M (1) have even local T 1 action.

P r o o f. Let M
(1)
j be a connected component of M (1) with an odd local

T 1 action. In each principal orbit of M
(1)
j (with T 1 invariant parallelization

in a neighbourhood) the inherited spin structure corresponds to the non-zero
element of H1(T 1, Z2). Since the local action is odd we can apply a method
similar to that for a semi-free circle action. See [B]. Here we use a method
better adapted to local actions. It can be generalized to the case where the
dimension of the acting torus is greater than the dimension of the orbit space
under suitable conditions on orbit types. The construction goes as follows.
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Let us find a triangulation of X
(1)
j such that the closure of each stratum

consisting of points with non-trivial isotropy subgroups is a subcomplex.
Such a triangulation exists since the orbit space has a natural structure of a
smooth manifold with boundary ([Br]). The interior of each top dimensional
simplex 42 corresponds to principal orbits. For each such simplex let us
make a surgery over a point in the interior of 42:

M ′ = (M − (D2
1 × T 1)) ∪∂ (S1 ×D2

2)

where T 1 corresponds to the acting torus and the action on the second set
is given by the standard action on D2.

D2
1 is a smooth disk included in the interior of 42. The gluing map is

chosen to preserve the actions.
If two simplices 42

1, 42
2 intersect along 41, their common face in the

original triangulation, then the interior of 41 corresponds to principal orbits
bounded from both sides by a 1-dimensional stratum of fixed points after
the surgery. A similar situation occurs when 41 in the original triangulation
lies in the boundary of the orbit space, i.e., corresponds to a 1-dimensional
stratum of fixed points. We make a surgery over a point in the interior of 41

which “makes a corridor” between D2
1 and D2

2 in the first case or between
D2 and “the outside” of X(1) in the second:

M ′ = (M − (D1 × S2)) ∪∂ (S0 ×D3).

The action of T 1 on the first set is by the standard action on S2. D1 cor-
responds to 41 with a neighbourhood of the boundary deleted. The action
on the second set is by the standard rotation of D3. After the construction
we have obtained a disjoint sum of spheres S3, smooth suspensions of S2,
corresponding to vertices of the triangulation lying in the principal part or
on Fix(1)

1 . They are T 1 equivariantly spin null bordant. The remaining part
of M (1) is a neighbourhood of ∂(M (2)) diffeomorphic to a disjoint sum of
trivial D2 bundles over S1 with the standard action of T 1 on fibers. M (2)

intersects the boundary of the bundle. The local T 2 action can be extended
to the whole D2 bundle.

Lemma 3.4. A spin 3-manifold with a local action of tori satisfying the
above assumptions is spin bordant with a spin 3-manifold M that satisfies
the above assumptions and the additional condition:

• All connected components of M (2) have even local T 2 action.

P r o o f. A connected component of M (2) with an odd T 2 local action
can be changed by means of a bordism to a disjoint sum of at most two
copies of T 1 ×D2.

Such a component is diffeomorphic to one of the following:

• A T 2 bundle over S1,
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• A T 2 bundle over (0, 1),
• (0, 1]×T 2/ ∼, where ∼ corresponds to collapsing a subgroup T 1 < T 2

over {1},
• [0, 1]× T 2/ ∼, where ∼ corresponds to collapsing a subgroup T 1

1 < T 2

over {0} and a subgroup T 1
2 < T 2 over {1}.

Except for the first case, the local T 2 action is an action. In the first
two cases let us choose an admissible subgroup T 1

1 < T 2 and a splitting
T 2 = T 1

1×T 1
2 and perform a T 2 equivariant surgery killing the free homotopy

class of the loop given by an orbit of T 1
1 :

(M (2) − T 2 ×D1) ∪∂ D2 × T 1
2 × S0.

Here D1 ⊂ S1 in the first case or D1 ⊂ (0, 1) in the second. After the
surgery in the first case we obtain the fourth case and in the second the
third one.

In the third case let us denote by T 1
1 the subgroup acting on the nearby

component of M (1) and let T 1
2 be the isotropy subgroup. T 1

2 is admissible
by 0.7.

In the fourth case let T 1
1 and T 1

2 denote the isotropy subgroups. They
are both admissible.

There is a chain of admissible subgroups T 1
α1

, . . . , T 1
αk

such that in the
third case T 1

α1
∩T 1

1 = {1} and T 1
αk

= T 1
2 or T 1

αk
∩T 1

2 = {1} and in the fourth
case T 1

α1
= T 1

1 and T 1
α2

= T 1
2 . Moreover, we can assume that in both cases

T 1
αi
∩ T 1

αi+1
= {1}. Now by a surgery similar to that in [HJ], Section 4, we

can decompose by means of a spin bordism the component of M (2) into a
disjoint sum of several copies of S3 and D2×S1 in the third case and disjoint
sum of spheres S3 in the fourth case. The subgroups T 1

αi
(i = 1, . . . , k) are

the corresponding isotropy subgroups. For each component D2×S1 of M (2)

obtained, the T 1 locally acting on the nearby component of M (1) acts on
the boundary of D2 × S1. The T 1 action extends to the whole of D2 × S1.
Moreover, since we have assumed that T 1

α1
∩ T 1

1 = {1}, we will not obtain
any orbit with a non-trivial isotropy subgroup.

S3 with the standard action of T 2, which is odd, is spin null bordant:
S3 = ∂D4, where D4 is a smooth cone over S3.

R e m a r k 3.5. We have proved so far that M = M (1) ∪ M (2) consists
only of even parts. Moreover, M (1) and M (2) consist only of principal orbits.

By means of an equivariant spin surgery corresponding to connected sum
on X(1), M (1) can be made connected.

Fact 3.6. If we trivialize a part of T 1 fibering over some simple closed
curve S1 on the base as (−1, 1) × S1 × T 1 with the tangent frame corre-
sponding to the splitting then the curve on the base space can be killed by
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spin surgery (an inverse of the local connected sum on the base):

M ′ = (M −D1 × S1 × T 1) ∪∂ S0 ×D2 × T 1

if the element of H1((−1, 1) × S1 × T 1; Z2) representing the induced spin
structure acts non-trivially on the homology class of S1.

Using an argument from [B], Proposition 2.2, we know that (−1, 1)×S1

inherits a spin structure from M . The core {0}×S1 inherits a spin structure
from (−1, 1)×S1. The surgery above can be performed if the spin structure
on the core is the bounding one.

Lemma 3.7. Assume that a 2-manifold Y diffeomorphic to S2 with three
disjoint open disks deleted is included in X(1). Then at least one boundary
loop inherits a bounding spin structure.

P r o o f. If all three boundary loops inherit non-bounding spin structures
then we obtain a relation

3T 1 = 0 in Ωspin
1

where T 1 is a generator of Ωspin
1 = Z2. This is a contradiction.

Corollary 3.8. With the same assumptions made, the 3-manifold is
spin bordant to a manifold satisfying the assumptions and having the follow-
ing property :

A connected component of M (1) is diffeomorphic to one of the following :

• (−1, 1)× S1 × T 1;
• A T 1 bundle over S2;
• A T 1 bundle over RP 2 with a section.

In each case the local action of T 1 is even.

P r o o f. By 3.6 and 3.7 we can decompose X(1) into minimal pieces. We
obtain (−1, 1) × S1 and X, where X has no boundary. According to 3.5
the boundary tori in each component of ∂(M (2)) with boundary inherit a
non-bounding spin structure T 2. Thus, the two pieces D2, RP 2−D2 do not
occur.

If a component of M (1) has no boundary then it is a T 1 bundle over
X with an even T 1 action on the fibers. There is a section of the bundle
outside a small disk D2. ∂(D2) inherits a bounding spin structure and the
surgery described in 3.6 can be performed. We obtain a T 1 bundle over X
with a section and a T 1 bundle over S2.

Similarly as in [B], Proposition 2.2, we can show that X inherits a pin−

structure. A pin− structure on X determines a spin structure on a T 1 bundle
over X associated with the orientation sheaf. A pin− bordism relation
between the orbit spaces corresponds to a spin bordism relation of the total
spaces. By [KT], Ωpin−

2 is generated by RP 2 with one of its pin− structures.
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Thus, we can assume that each connected component of X(1) having no
boundary and different from S2 is equal to RP 2.

R e m a r k 3.9. A connected component of M (2) admits an even T 2 ac-
tion. Thus, it is a T 2 bundle over (−1, 1) or over S1. In the second case the
component of M (2) can be assumed to be disjoint from M (1). In the first
case we have two possibilities:

• The component intersects one component of M (1) with the orbit space
X(1) diffeomorphic to (−1, 1) × S1. We obtain a connected component of
M , which is diffeomorphic to a T 2 bundle over S1.

• The component intersects two components of M (1) with orbit spaces
diffeomorphic to (−1, 1) × S1. In this case the corresponding connected
component of M is diffeomorphic to a T 2 bundle over S1. It is a sum of
a chain of components of M (1), each with an orbit space diffeomorphic to
(−1, 1) × S1, and of components of M (2), each with an orbit space diffeo-
morphic to (−1, 1).

In both cases the canonical T 2 local action on the T 2 bundle is compatible
and thus bordant to the original local action on the component of M .

3.10. Generators and relations. After suitably changing the atlas we
obtain the following set of generators:

(1) A T 1 bundle over S2;
(2) A T 2 bundle over S1 with a monodromy A from SL2(Z);
(3) A T 1 bundle over RP 2 with a section.

All of them are assumed to have even local actions.

(1) A T 1 bundle over S2. By means of the surgery described in 3.6 we
can show that it is bordant to a disjoint sum of products T 1 × S2, several
copies of the T 1 bundle over S2 with Euler number ±2 and several copies of
the T 1 bundle over S2 with Euler number ±1. We have T 1×S2 = ∂(T 1×D3)
and this filling is spin.

The T 1 bundle over S2 with Euler number ±2 can be pictured as T 2 ×
[0, 1]/∼ where ∼ corresponds to collapsing orbits over {0} by the subgroup
(1, 0) and over {1} by the subgroup (1,±2). Both subgroups are admissible
if we think of the T 2 action. The action of T 1 corresponds to the subgroup
(1, 1). The total space is diffeomorphic to RP 3 and thus admits two spin
structures, one with an odd and one with an even action of T 1 ∼= (1, 1). The
manifold is the boundary of the D2 bundle over S2 with Euler number ±2
given as T 2 × [0, 1] × [0, 1/2]/∼, where ∼ corresponds to collapsing orbits
over {0} × [0, 1/2] by the subgroup (1, 0) and over {1} × [0, 1/2] by the
subgroup (1,±2) and over [0, 1]× {0} by the subgroup (0, 1). See [OR] for
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the convention of this notation. All 1-dimensional isotropy subgroups are
admissible for the action of T 2. Thus the filling is spin.

The T 1 bundle over S2 with Euler number ±1 is S3 and thus admits a
unique spin structure. It bounds D4, the smooth cone over S3. The action
and the spin structure obviously extend.

(2) The T 2 bundle over S1 with a monodromy A from SL2(Z). Let
N denote the manifold, and let A be expressed as a product of parabolic
matrices having trace 2: A = A1 · . . . · Ak. Let X be S2 with k + 1 dis-
joint open disks deleted. Construct a T 2 bundle over X with monodromy
group included in SL2(Z) such that the corresponding monodromy matri-
ces along boundary loops are A, A−1

k , . . . , A−1
1 . Let M be the manifold thus

obtained. The boundary of M consists of the disjoint sum of the manifolds:
N and N1, . . . , Nk. Each Ni, as the total space of a T 2 bundle over S1

with parabolic monodromy matrix having trace 2, is diffeomorphic to the
total space of a T 1 bundle over T 2, where T 1 corresponds to the eigenspace
(with eigenvalue 1) of the monodromy matrix. Let us note that the matrix
A ∈ SL2(Z) having trace 2 has eigenvalue 1 since it is conjugate in SL2(Z)
to

(
1 k
0 1

)
for some k ∈ Z.

Let us choose a T 2 invariant framing (e1, e2, e3) on N such that e1 is a
horizontal vector field and (e2, e3) is the frame tangent to fibers.

The bundle tangent to M has a splitting into the Whitney sum of the
bundle tangent to the fibers and the horizontal bundle, i.e., the lift of the
bundle tangent to the base. Let us choose a horizontal vector field e4 on N
tangent to M and transversal to N . The frame (e1, e2, e3, e4), as a section
over N of the tangent frame bundle to M compatible with the splitting, can
be extended over the whole manifold M to a section (e1, e2, e3, e4) of the
tangent frame bundle to M compatible with the splitting. This is due to the
fact that the orbit space is homotopy equivalent to S1 ∨ . . .∨ S1. In partic-
ular, M as a parallelizable manifold admits spin structures parametrized by
H1(M ; Z2). The T 2 action on N is even. Thus, the element s of H1(N ; Z2)
corresponding to the spin structure on N according to the framing (e1, e2, e3)
acts trivially on elements of im(H1(T 2) ↪→ H1(N)). The element s is in the
image of the map H1(M ; Z2)→H1(N ; Z2) induced by the inclusion N⊂M .
Thus, the spin structure on N is induced from a spin structure on M .

We have just proved that N is spin bordant as a manifold with a local
action of tori to a disjoint sum of N1, . . . , Nk with spin structures induced
from M . Each of the latter is bordant to a T 1 bundle over T 2 with an even
T 1 local action, which we can see by changing the atlas of the local action.
This case was treated above.

From (1) and (2) above we see that the set of generators can be reduced
to the following single generator:
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(3) A T 1 bundle over RP 2 admitting a section, with an orientable total
space. From [KT] we know that RP 2 with the pin− structure has order 8
in Ωpin−

2 . Thus the bordism group of spin 3-manifolds with local actions of
tori is a cyclic group Zs, where s divides 8.

The T 1 bundle over RP 2 admitting a section with orientable total space
cannot bound a spin 4-manifold with a local action of tori. The argument is
similar to that in [HJ] in the proof of Theorem 7.2. Assume that there is a
filling W . Let W0 be a connected component of W (1) which meets the bound-
ary of W . The local T 1 action on W0 extends the local T 1 action on ∂(W )
and thus is even. Thus, the set of fixed points consists only of isolated points
and the orbit space of W0 is a topological 3-manifold. All boundary compo-
nents of W0 except ∂(W ) admit local T 2 actions and compatible local T 1 ac-
tions. They are either T 2 bundles over S1 with parabolic monodromy or lens
spaces. This follows from the slice theorem and the description of 3-manifolds
with T 2 actions in [OR]. In each case the orbit space of the local T 1 action is a
surface which bounds. Since RP 2 does not bound we obtain a contradiction.

The double of the T 1 bundle over RP 2 is spin bordant to a T 1 bundle over
RP 2 # RP 2 with a section. The bordism can be obtained by performing a
connected sum of orbit spaces, which corresponds to a T 1 equivariant surgery
on the total spaces. RP 2 # RP 2 admits a non-orientable T 1 fibration over
S1 and the homotopy class of a fibre cannot be killed by pin− surgery since
the double of RP 2 is not zero in Ωpin−

2 . The T 1 bundle over RP 2 # RP 2

with a section is diffeomorphic to a T 2 bundle over S1 with monodromy
−I. The local T 2 action is compatible with the local T 1 action. The local
action of T 2 is even. From (2) we know that the manifold is spin bordant to
a disjoint sum of T 2 bundles over S1 with parabolic monodromy of trace 2
with even local actions of T 2. Each such bundle as a T 1 bundle over T 2 is
spin bordant to the trivial T 1 bundle over T 2. If the induced spin structure
on the base bounds, the manifold bounds. Thus, we have to consider only
the trivial T 1 bundle over T 2, i.e., T 3 with a spin structure such that the
canonical T 3 action is even. Let us denote the spin manifold T 3. By [KT]
the induced pin− structure on the base torus represents 4 in Z8

∼= Ωpin−
2 .

Thus we obtain a relation in Zs:

2 ≡ 4k

for some integer k. If k is even then 2 ≡ 0 and s = 2. If k is odd then 2 ≡ 4
and s = 2.

We finally obtain

Theorem 3.11. Ωl.a.t.,spin
3

∼= Z2, i.e., the bordism group of compact spin
3-manifolds with local action of tori is isomorphic to Z2 and is generated by
the non-orientable T 1 bundle over RP 2 with a section.
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Let M be a compact spin 3-manifold with a local action of tori. Let X
denote a surface which is constructed from components of X(1) correspond-
ing to even local action by collapsing each boundary component to a point.
Then from the method of the proof that Ωl.a.t.,spin

3
∼= Z2 we can deduce the

following:

Theorem 3.12. If M is a compact spin 3-manifold with a local action of
tori then its bordism class in Ωl.a.t.,spin

3
∼= Z2 coincides with χ(X) mod 2,

where χ denotes the Euler characteristic.
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