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1. Introduction. Throughout this paper, by a ring we shall mean
“a ring with enough idempotents” in the sense of [4] and [26, p. 464], that
is, an associative ring R containing a set {eλ}λ∈Λ of pairwise orthogonal
idempotent elements eλ, λ ∈ Λ, such that

(1.1) R =
⊕
λ∈Λ

Reλ =
⊕
λ∈Λ

eλR.

We say that the ring R is unitary if it has an identity element 1. In this
case the set Λ is finite.

By a right R-module we shall always mean a right R-module M which
is unitary, that is, MR = M . We denote by Mod(R) the category of all
unitary right R-modules, and thus Mod(Rop) will stand for the category
of left R-modules. The full subcategory of Mod(R) formed by all finitely
generated projective modules will be denoted by proj(R).

A right R-module M is flat if the tensor product functor

M ⊗R (−) : Mod(Rop) → Ab

is exact. The full subcategory of Mod(R) consisting of all flat right R-
modules will be denoted by Fl(R). For convenience, we introduce the fol-
lowing definition.

Definition 1.2. A ring R =
⊕

λ∈Λ Reλ =
⊕

λ∈Λ eλR as in (1.1) is
right panoramic if the category Fl(R) of flat right R-modules is abelian, or,
equivalently, if Fl(R) is a Grothendieck category.

Right panoramic rings appeared first in the Jøndrup–Simson paper [15,
p. 29]. A characterization of unitary right panoramic rings was given later
in [7].

One of our main aims in this paper is to study the relationship between
right panoramic rings and locally finitely presented Grothendieck categories
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in connection with the following problem posed by Jøndrup and Simson in
[15, p. 29]:

Problem (JS). Assume that R is a right panoramic unitary ring such
that the right module RR is a direct sum of indecomposable right ideals. Find
a ring A and a right A-module UA satisfying the following conditions:

(i) Every finitely presented right A-module is a direct sum of indecom-
posable modules.

(ii) The number of isomorphism classes of finitely presented indecom-
posable right A-modules is finite.

(iii) The module UA is the direct sum of a complete set of representatives
of isomorphism classes of indecomposable finitely presented right A-modules.

(iv) The ring R is Morita equivalent to the endomorphism ring End(UA)
of UA.

An affirmative solution of the problem (JS) would mean that right pan-
oramic rings can be constructed in this specific way from module categories
Mod(A) over rings A satisfying the conditions (i)–(iii) above.

We note that if A is an artin algebra of finite representation type then
the ring End(UA) is the Auslander algebra of A (see [3, Section VI.5] and
[22, Section 11.2]).

Our results in this paper show that every right panoramic ring can be
constructed in a similar way from a locally finitely presented Grothendieck
category.

In Section 2 we collect preliminary results on panoramic rings. In par-
ticular, we show in Theorem 2.7 that a ring R =

⊕
λ∈Λ eλR =

⊕
λ∈Λ Reλ

is right panoramic if and only if the following conditions are satisfied:

(i) For every flat right R-module F the injective hull ER(F ) of F is a
flat module.

(ii) The ring R is left locally coherent.
(iii) The ring R is right locally weakly δR-coherent (see (2.6)).
(iv) The weak global dimension w.gl.dim R of R is either 0 or 2.
(v) For every λ ∈ Λ, the flat-dominant dimension of eλR is ≥ 2.

We also show in Corollary 2.11 that a ring R =
⊕

λ∈Λ Reλ =
⊕

λ∈Λ eλR
is both right and left panoramic if and only if R is left and right locally
coherent, w.gl.dim R ≤ 2, and the flat-dominant dimension of eλR is at
least two for every λ ∈ Λ.

The main result of Section 3 is Theorem 3.3 asserting that the map
R 7→ Fl(R) induces a one-to-one correspondence between Morita equiv-
alence classes of right panoramic rings R =

⊕
λ∈Λ Reλ =

⊕
λ∈Λ eλR and

equivalence classes of locally finitely presented Grothendieck categories. The
inverse correspondence is given by attaching to any family G = {Gλ}λ∈Λ of
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finitely presented strong generators of the locally finitely presented Grothen-
dieck category C the Gabriel functor ring RG (see 3.2) of the family G.

In Section 4 we discuss the problem (JS) stated above in connection
with panoramic rings and the correspondence R 7→ Fl(R) presented above.
In particular, we show in Theorem 4.1 that the map R 7→ Fl(R) defines
a one-to-one correspondence between Morita equivalence classes of unitary
right panoramic rings R such that RR is a direct sum of indecomposable
right ideals and equivalence classes of locally finitely presented Grothendieck
categories C with a finite family of indecomposable finitely presented strong
generators. We also show in Proposition 4.5 that there exists a one-to-one
correspondence R 7→ A = eRe between:

(a) Morita equivalence classes of right panoramic unitary rings R such
that:

(a1) There is an idempotent e ∈ R such that ReR is a minimal
finitely generated left faithful right ideal.

(a2) There exist primitive idempotents e1, . . . , en such that every
finitely generated projective right module is isomorphic to a
direct sum of the modules e1R, . . . , enR; and

(b) Morita equivalence classes of unitary rings A such that:
(b1) There are finitely many indecomposable finitely presented right

A-modules.
(b2) Every finitely presented right A-module is a direct sum of in-

decomposable modules.
By restricting this correspondence to semiperfect rings we get in The-

orem 4.6 a one-to-one correspondence between Morita equivalence classes
of right panoramic unitary semiperfect rings R and equivalence classes of
locally finitely presented Grothendieck categories C such that the number
of isomorphism classes of indecomposable finitely presented objects in C is
finite, and every finitely presented object of C admits a direct sum decom-
position that complements direct summands (see [1]).

Section 5 contains some concluding remarks and comments. We also
present some open problems related to right panoramic rings and to the
problem (JS).

2. Preliminary results on panoramic rings. We collect some known
facts related to right panoramic rings. We also extend here several results
given in [7] for unitary rings to arbitrary rings with enough idempotents.

First, we recall that the dominant dimension of a right R-module MR

(respectively, the flat-dominant dimension of MR) is ≥ 2 in case there exists
an exact sequence

0 → M → E0 → E1
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where E0, E1 are injective and projective (resp. injective and flat)
R-modules.

Let us start with the following reformulation of a theorem of Tachikawa
[25].

Theorem 2.1. Let R be a unitary right perfect ring. Then the following
conditions are equivalent.

(a) The ring R is right panoramic.
(b) R is a semiprimary QF-3 ring , the global dimension gl.dim R of R

is ≤ 2, and the dominant dimension of RR is ≥ 2.
(c) There exist a ring A of finite representation type and a finitely gen-

erated A-module UA such that every indecomposable right A-module is iso-
morphic to a direct summand of UA and the ring R is isomorphic to the
endomorphism ring End(UA).

There is a direct connection between the condition (c) of Theorem 2.1
and the problem (JS) of Jøndrup and Simson stated above. Namely, uni-
tary right perfect right panoramic rings appear in the way foretold in the
problem (JS).

The next two results we want to mention are proved in [7] for the par-
ticular case of unitary rings. But we are going now to state and prove them
in the more general setting of rings with enough idempotents. It will be
necessary to recall some definitions and notations.

For torsion theories and noncommutative localization, we refer to [24],
while for general properties of rings and modules, we shall use mainly the
terminology from [1] or [26].

Definition 2.2 ([11, p. 531] in the unitary case). A ring R =
⊕

λ∈Λ eλR
=

⊕
λ∈Λ Reλ (1.1) is called a right FTF-ring if the class of right R-modules

which are (isomorphic to) submodules of flat modules is the torsionfree
class for a hereditary torsion theory of Mod(R). In this case, the associated
torsion radical will be denoted by τR.

Definition 2.3 (see [26, p. 214]). Let R =
⊕

λ∈Λ eλR =
⊕

λ∈Λ Reλ be
a ring. R is right locally coherent if each eλR is coherent; or, equivalently,
if every finitely presented right R-module is coherent.

Proposition 2.4. A ring R =
⊕

λ∈Λ eλR =
⊕

λ∈Λ Reλ is right locally
coherent if and only if the direct product of any family of flat left R-modules
is a flat module.

P r o o f. The idea is similar to the usual one for unitary rings. The only
problem here comes from the fact that the product in the category Mod(R)
of unitary modules differs from the usual one, because the product

∏
i Li of

unitary modules Li is computed by taking first the abelian group product
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L of the modules Li and then, setting
∏

i Li = LR. But it is not hard
to prove that if MR is a unitary right module and RL is a non-unitary
left module, then the canonical homomorphism M ⊗R RL → M ⊗R L
is a surjection. Taking this into account, one sees that a unitary module
MR is finitely generated (respectively, finitely presented) in Mod(R) if and
only if the canonical homomorphism M ⊗R

∏
I Li →

∏
I(M ⊗R Li) is an

epimorphism (resp. an isomorphism) for any set I and any family {Li}i∈I

of unitary left R-modules, where the product
∏

I Li is understood as the
product in the category Mod(Rop). Then the proposition follows in a usual
way (for example, as in [26, 12.16 and 26.6]).

Proposition 2.5. A ring R =
⊕

λ∈Λ eλR =
⊕

λ∈Λ Reλ is a right FTF
ring if and only if the following two conditions are satisfied.

(i) For every flat right R-module F the injective hull ER(F ) is a flat
module.

(ii) The direct product of any family of unitary injective and flat right
R-modules is a flat R-module.

P r o o f. Apply the arguments used in the proof of [11, Proposition 2.1]
for unitary rings.

For every ring R =
⊕

λ∈Λ eλR =
⊕

λ∈Λ Reλ, there is a biggest hered-
itary torsion class in Mod(R) with respect to the condition that RR is
torsionfree (the Lambek torsion class). The corresponding radical will be
denoted by δR, and a right R-module XR is δR-torsion if and only if
HomR(X, E(eλR)) = 0, for each λ ∈ Λ. A module MR is said to be δR-
finitely generated if there exists a finitely generated submodule N of M such
that M/N is δR-torsion. Moreover, MR is said to be δR-finitely presented
if it is finitely generated and for any exact sequence

0 → K → P → M → 0

such that P is finitely generated, the module K is δR-finitely generated.
The same definitions are in use for any other torsion theory (such as τR for
a right FTF ring R).

Definition 2.6. A ring R =
⊕

λ∈Λ eλR =
⊕

λ∈Λ Reλ is called right
locally (resp. weakly) δR-coherent if for each λ ∈ Λ, every finitely generated
right ideal I ⊆ eλR (resp. such that eλR/I is δR-torsion) is δR-finitely
presented.

We start with the following characterization of arbitrary right panoramic
rings (compare with [7, Theorem 3] for the unitary case, and with [21,
Proposition 1.1], [14, Proposition 1.4]).

Theorem 2.7. A ring R =
⊕

λ∈Λ eλR =
⊕

λ∈Λ Reλ is right panoramic
if and only if the following conditions are satisfied :
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(i) For every flat right R-module F the injective hull ER(F ) is a flat
module.

(ii) The ring R is left locally coherent.
(iii) The ring R is right locally weakly δR-coherent.
(iii) The weak global dimension w.gl.dim R of R is either 0 or 2.
(iv) For every λ ∈ Λ, the flat-dominant dimension of eλR is ≥ 2.

Further , if R =
⊕

λ∈Λ Reλ =
⊕

λ∈Λ eλR is right panoramic then {eλR}λ∈Λ

is a family of finitely presented generators of the category Fl(R) and proj(R)
= fp(Fl(R)), where fp(Fl(R)) is the full subcategory of Fl(R) formed by all
finitely presented objects.

P r o o f. Suppose that R is right panoramic. Then {eλR}λ∈Λ is a family
of generators for the category Fl(R). We want to prove first that each eλR
is, indeed, a finitely presented object of Fl(R). To this end, consider a direct
system {Fi} in the category Fl(R). It is easy to see that {Fi} is a direct
system of flat right R-modules, and the direct limit lim−→Fi = F is again flat
(see [26, 36.1]). Therefore, F is also the direct limit of the system {Fi} in
the category Fl(R). Now, by applying the functor HomR(eλR,−) in the
category Mod(R), we get an isomorphism

lim−→HomR(eλR,Fi) ∼= HomR(eλR,F )

of abelian groups, because eλR is finitely presented. This implies that, in
the category Fl(R), there is an isomorphism

lim−→HomFl(R)(eλR,Fi) ∼= HomFl(R)(eλR, lim−→Fi).

It follows that eλR is a finitely presented object in Fl(R) (see [26, 25.2]) and
therefore {eλR} is a family of finitely presented generators of the category
Fl(R).

The Gabriel functor ring (see [5] and [6, p. 138])⊕
λ∈Λ

⊕
µ∈Λ

HomFl(R)(eλR, eµR) =
⊕
λ∈Λ

⊕
µ∈Λ

HomR(eλR, eµR)

of the family {eλR} is naturally isomorphic to
⊕

λ∈Λ

⊕
µ∈Λ eµReλ

∼= R.
Then, the construction of [7, Sec.1] shows that the functor

H =
⊕
λ∈Λ

Hom(eλR,−) : Fl(R) → Mod(R)

induces an equivalence between Fl(R) and the quotient category of Mod(R)
corresponding to a certain hereditary torsion theory σ of Mod(R). Since the
functor H is naturally isomorphic to the inclusion functor Fl(R) → Mod(R)
then σ is a hereditary torsion theory of Mod(R) such that the σ-closed
modules are precisely the flat right R-modules. As a consequence, a right
R-module MR is σ-torsionfree if and only if there exists an embedding of
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MR into a flat right R-module. This shows that R is a right FTF ring with
respect to the torsion theory τR = σ and (i) follows from Proposition 2.5.
Moreover, since flat right R-modules are the τR-closed modules, we infer
that the product of any family of unitary flat right R-modules is flat, so
that R is left locally coherent (by Proposition 2.4) and (ii) follows.

Next we prove (iv). Assume that

0 → K → F1 → F0 → X → 0

is an exact sequence in Mod(R) with F1 and F0 flat. By the foregoing
remarks, K is τR-torsionfree and embeds in a τR-closed object with τR-
torsionfree cokernel. Consequently, K is also τR-closed, by [24, Proposition
IX.4.2], and hence flat. This proves that w.gl.dim R ≤ 2. Moreover, if we
had w.gl.dim R = 1, then, for each XR we would have an exact sequence
0 → F1 → F0 → X → 0, where each Fi is flat. By [24, Proposition IX.4.2],
X is τR-torsionfree. But then the torsion theory τR is trivial and every
right R-module is flat, because every right R-module is τR-closed, so that
w.gl.dim R = 0, which is a contradiction. This proves that w.gl.dim R is
either 0 or 2.

Now we prove (iii). Fix µ ∈ Λ and set e = eµ. If I ⊆ eR is a finitely gener-
ated R-submodule of eR, and eR/I is δR-torsion, then HomR(eR/I,R) = 0.
Since eR/I is finitely presented then HomR(eR/I, F ) = 0 for every flat right
R-module F [26, 36.8]. This means that eR/I is τR-torsion.

Take an epimorphism

L′ =
⊕
λ∈Φ

eλR
ξ−→ I −→ 0

in Mod(R), where Φ is a finite set of (possibly repeated) indices of Λ. By
composing ξ with the inclusion I ⊆ eR, we get a morphism ζ : L′ → eR,
which is easily seen to be an epimorphism in the category Fl(R). By the first
part of the proof, L′ and eR are finitely presented in the category Fl(R),
and hence K = Ker ξ is finitely generated. Hence there is an exact sequence

0 → K ′ → L′ → eR → eR/I → 0

in the category Mod(R) and, by condition (iv), the module K ′ is flat. This
entails that K ′ = K is a finitely generated object in the category Fl(R).
But then, there is another finitely generated projective module L′′ with a
morphism ε : L′′ → K which is an epimorphism in Fl(R).

Let L := Im ε (in Mod(R)). Then L is finitely generated and, for any flat
right R-module F , HomR(K/L,F ) = 0. In particular, HomR(K/L,E(RR))
= 0 and therefore the module K/L is δR-torsion. Hence we infer that K is
δR-finitely generated. Since the sequence 0 → K → L′ → I → 0 is exact in
Mod(R), we conclude that I is δR-finitely presented.
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The proof of (v) is analogous to the proof of a corresponding property
in [7, Theorem 3].

In order to prove the converse we assume that R satisfies the conditions
(i)–(v). By (i), (ii) and Proposition 2.5, R is a right FTF ring, with the
torsion radical τR. Since any injective flat module is clearly τR-closed then
according to (v) each module eλR is also τR-closed, because the localization
functor preserves kernels. It follows that any finitely generated projective
module is τR-closed.

We now prove that direct limits of τR-closed modules are again τR-closed;
then, it will follow from [26, 36.5] that every flat right R-module is τR-closed.

We denote by Mod(R, τR) the quotient category of Mod(R) with re-
spect to τR (see [24]). We shall show that each eλR is finitely presented in
Mod(R, τR).

Note first that, since R is a right FTF ring, by hypothesis, an argument
analogous to [9, Proposition 1.3.6] shows that for each eλR, the filter of
submodules L ⊆ eλR such that eλR/L is τR-torsion, has a basis consisting
of finitely generated submodules of eλR. As in [24, Proposition XIII.1.1] we
show that each eλR is a finitely generated object of the category Mod(R, τR).

For any λ ∈ Λ, fix an epimorphism ξ : F → eλR in the category
Mod(R, τR), with F a finitely generated object, and set K := Ker ξ. By
applying the inclusion functor, we get an exact sequence

0 → K → F → L → 0

in Mod(R) with L ⊆ eλR. Note that F contains a finitely generated sub-
module F ′ such that F/F ′ is τR-torsion, and there exists an exact sequence

0 → K ′ → F ′ → L′ → 0

where K ′ ⊆ K, L′ ⊆ L and K/K ′, L/L′ are τR-torsion.
Consequently, without loss of generality, we may assume that F is finitely

generated also as a right R-module. The condition that ξ is an epimorphism
implies that HomR(eλR/L,F ′) = 0 for any flat right R-module F ′, because
all such modules F ′ are τR-torsionfree. In particular, HomR(eλR/L,E(RR))
= 0, by assumptions (i), (ii) and Proposition 2.5, and thus eλR/L is δR-
torsion. By our hypothesis (iii), the module L is δR-finitely presented.
By using the same arguments as in [7, Theorem 3], we get another exact
sequence

0 → X → Y → L → 0
with Y a finitely presented right R-module and X a δR-torsion module.
Hence we deduce that X is also τR-torsion, so that L is τR-finitely presented.
Then, K has to be τR-finitely generated and therefore it is a finitely gen-
erated object of the category Mod(R, τR). This means that eλR is finitely
presented.
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Suppose now that {Mi} is a direct system of τR-closed objects and let
M := lim−→Mi. There is also a direct limit MτR

of the system {Mi} in the
category Mod(R, τR). Since eλR is finitely presented, we have

lim−→HomMod(R,τR)(eλR,Mi) ∼= HomMod(R,τR)(eλR,MτR
) ∼= MτR

eλ.

But there exist analogous isomorphisms in Mod(R) with M and MτR
in-

terchanged. Hence we deduce that each canonical homomorphism Meλ →
MτR

eλ is an isomorphism. It follows that

M =
⊕
λ∈Λ

Meλ
∼=

⊕
λ∈Λ

MτR
eλ = MτR

.

This shows that direct limits of τR-closed objects are τR-closed and conse-
quently every flat right R-module is τR-closed.

It remains to prove that all τR-closed modules are flat, to conclude that
Fl(R) is equivalent to Mod(R, τR), and, hence, is a Grothendieck category.
But this follows from the condition (iv) in a similar way to [7, Theorem 3].

Now we shall show that, in some sense, condition (v) of Theorem 2.7 is
not essential.

Theorem 2.8. Assume that R is a unitary ring with the following prop-
erties:

(a) R is a right FTF ring.
(b) R is right weakly δR-coherent.
(c) The weak global dimension w.gl.dim R of R is ≤ 2.

If Q is the ring of quotients of R with respect to the hereditary torsion theory
τR (see [24]) then Q is a (unitary) right panoramic ring.

P r o o f. It is well-known (see e.g. [24, Chapter X.2]) that the quotient
category Mod(R, τR) of Mod(R) with respect to τR is also a quotient cate-
gory of Mod(Q), namely the quotient category corresponding to a hereditary
torsion theory, say τ∗R of Mod(Q). By [9, Teorema 2.3.4], Q is also a right
FTF ring, with corresponding torsion theory τ′R such that a right Q-module
XQ is τ′R-torsion (respectively, τ′R-torsionfree) if and only if XR is τR-torsion
(resp. τR-torsionfree). By [24, Proposition X.2.2], for any right ideal I of
Q, one has: Q/I is τ∗R-torsion if and only if R/R ∩ I is τR-torsion, and this
happens if and only if Q/I is τR-torsion in Mod(R). Now, our previous
remark shows that τ∗R = τ′R.

We now claim that every object XR of Mod(R, τR) is a flat right R-
module. This is clear for XR being injective, because τR-torsionfree objects
embed in flat modules. Now, if XR is not injective, then its injective hull
E(X) has to be flat and the factor module E(X)/X is τR-torsionfree. If we
apply the hypothesis that w.gl.dim R ≤ 2, we see that XR is also flat.
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We show next that all flat right Q-modules belong to the category
Mod(Q, τ∗R). This is true for the module QQ, as Q is the ring of quotients
of R, and hence, this is also true for every finitely generated projective
right Q-module. Now, the assumption that R is right weakly δR-coherent
implies, as in the proof of Theorem 2.7, that Q is a finitely presented ob-
ject of the category Mod(Q, τ∗R) = Mod(R, τR), and that direct limits in
Mod(Q) of τ∗R-closed objects are still τ∗R-closed. This implies that all flat
right Q-modules are τ∗R-closed, i.e., they belong to Mod(Q, τ∗R).

Finally, let us prove that every τ∗R-closed object is a flat right Q-module.
We have already seen that, if XQ is in Mod(Q, τ∗R) = Mod(R, τR), then XR

is flat. This means that there exists a direct system {Pi, fji}i∈I of finitely
generated projective right R-modules such that lim−→Pi

∼= XR. For each i ∈ I,
there exist a positive integer ni and a module Qi such that Pi ⊕Qi = Rni .
By applying the localization functor

a : Mod(R) → Mod(R, τR)

and keeping in mind that a(Rni) ∼= Qni , as a commutes with finite direct
sums, we see that a(Pi) = P ′

i is a finitely generated projective right Q-
module. Thus, there is a corresponding direct system {P ′

i ,a(fji)}, both in
the categories Mod(R) and Mod(Q).

Now, we may compute the direct limit of this system either in Mod(R) or
in the quotient category Mod(R, τR). The fact that direct limits of τR-closed
objects are τR-closed (that we have already seen, and depends on Q being
finitely presented in the quotient category), implies that these two limits
coincide. But the functor a is left adjoint and commutes with direct limits, so
that X ∼= a(lim−→Pi) ∼= lim−→(a(Pi)) in Mod(R). Hence there is an isomorphism
X ∼= lim−→P ′

i in any of these two categories. But then, X ∼= lim−→P ′
i also in

Mod(Q), as one sees by applying the restriction of scalars functor to this
last direct limit. And this shows finally that XQ is isomorphic to a direct
limit of finitely generated projective right Q-modules, from which it follows
that XQ is flat. This completes the proof.

We now conclude from the theorem above some important consequences
(see [7, Corollary 5] for the unitary case).

Corollary 2.9. A left and right locally δR-coherent ring R =
⊕

λ∈Λ Reλ

=
⊕

λ∈Λ eλR is right panoramic if and only if w.gl.dim R ≤ 2 and for each
λ ∈ Λ the flat-dominant dimension of eλR is ≥ 2.

P r o o f. The “only if” part follows from Theorem 2.7. In order to prove
the converse implication we note first that by the assumption on the flat-
dominant dimension of the eλR the injective hull E(eλR) is flat for all
λ ∈ Λ. At the same time, by [12, Proposition 1.6] (translating their proof
into the case of non-unitary rings) we may deduce that the left R-module
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E(Reλ) is flat for every λ ∈ Λ. An argument similar to that in [11, Propo-
sition 2.2] shows that R is a right FTF ring. Thus R is right panoramic by
Theorem 2.7.

We can also use the preceding result along with some new facts on FTF
rings to get a left-right symmetry of panoramic rings.

Corollary 2.10. Every right panoramic and right locally δR-coherent
ring R =

⊕
λ∈Λ Reλ =

⊕
λ∈Λ eλR is also left panoramic.

P r o o f. Since R is right panoramic, it is left locally (δR-)coherent, by
Theorem 2.7. By an obvious version of [10, Corollary 1.11] for non-unitary
rings, R is also a left FTF ring and the injective hull E(Reλ) is a flat module
for every λ ∈ Λ. Therefore R is left panoramic by Theorem 2.7.

Note that if the conditions in Corollary 2.10 do hold, then R has to be
in fact a left and right coherent ring. We will see in the next section that if
one does not assume this condition of being locally δR-coherent, then right
panoramic rings need not be left panoramic.

We finish this section by the following result.

Corollary 2.11. A ring R =
⊕

λ∈Λ Reλ =
⊕

λ∈Λ eλR is right and left
panoramic if and only if the following three conditions are satisfied :

(a) R is left and right locally (δR-)coherent ,
(b) w.gl.dim R ≤ 2, and
(c) the flat-dominant dimension of eλR is ≥ 2 for every λ ∈ Λ.

P r o o f. The sufficiency follows from Corollaries 2.10 and 2.11. The
necessity is an immediate consequence of Theorem 2.7, because every right
panoramic ring is left locally coherent.

3.Right panoramic rings and locally finitely presented Grothen-
dieck categories. We start with the following definition.

Definition 3.1. Let C be a locally finitely presented Grothendieck
category. A family {Gλ}λ∈Λ of finitely presented objects of C is called a
family of finitely presented strong generators in case every finitely presented
object of C is isomorphic to a direct summand of a finite direct sum of
objects Gλ.

If G is a finitely presented object of C such that {G} is a family of finitely
presented strong generators for C, we shall say that G is a strong finitely
presented generator of C.

It is clear that every locally finitely presented Grothendieck category C
has a family of finitely presented strong generators, namely the family of
representatives of isomorphism classes of all finitely presented objects in C
has this property (this is easily seen to be a set). However, even module
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categories over unitary rings could fail to have a strong finitely presented
generator (as is the case with the category of abelian groups).

Recall also the following construction (see [5], [26, p. 483] or [6, p. 138]).

Definition 3.2. Let X = {Xλ}λ∈Λ be a family of objects of an abelian
category C. The (Gabriel ) functor ring of the family X is the abelian group

RX =
⊕
λ∈Λ

⊕
µ∈Λ

HomC(Xλ, Xµ)

equipped with an obvious addition and with the multiplication induced by
the morphism composition in C.

We are able to prove now our basic result of this section (compare with
[19] and [20]).

Theorem 3.3. The map R 7→ Fl(R) induces a one-to-one correspondence
between:

(a) Morita equivalence classes of right panoramic rings R =
⊕

λ∈Λ Reλ =⊕
λ∈Λ eλR; and
(b) Equivalence classes of locally finitely presented Grothendieck cate-

gories.

The inverse correspondence is given by attaching to any family G = {Gλ}λ∈Λ

of finitely presented strong generators of the locally finitely presented
Grothendieck category C the Gabriel functor ring RG of the family G (see
3.2). The functor

(3.4) h• : C −→ Fl(RG),

C 7→ hC =
⊕

λ∈Λ HomC(Gλ, C), is an equivalence of categories.

P r o o f. If R is a right panoramic ring then, according to Theorem 2.7,
{eλR} is a family of finitely presented generators for the category Fl(R).
This shows that Fl(R) is a locally finitely presented Grothendieck category.
Thus, the equivalence class of Fl(R) will be the image of the Morita equiva-
lence class of R, because it is easy to see that for any pair R and S of Morita
equivalent right panoramic rings the categories of flat modules Fl(R) and
Fl(S) are equivalent.

All this shows that R 7→ Fl(R) defines a map from the Morita equiva-
lent classes of right panoramic rings R =

⊕
λ∈Λ Reλ =

⊕
λ∈Λ eλR to the

equivalence classes of locally finitely presented Grothendieck categories C.
It remains to show that this mapping is a bijection. In order to show

that this map is injective we suppose that R and S are right panoramic
rings and there exists an equivalence of categories

F : Fl(R) → Fl(S).
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What we need to do is to lift F to an equivalence of the categories Mod(R)
and Mod(S). To this end, we are going to determine all finitely presented
objects of the category Fl(R). We recall that there exists a localization
functor

a : Mod(R) → Fl(R)

which is a left adjoint of the inclusion functor, so that a preserves direct
limits.

Assume that R =
⊕

λ∈Λ eλR =
⊕

λ∈Λ Reλ. We know that each eλR is
a finitely presented object of the category Fl(R). Now, let X be a finitely
presented object in Fl(R). Since X is a flat right R-module, it is a direct
limit

X ∼= lim−→Mi

in the category Mod(R) of finitely presented projective modules and each
of the modules Mi is isomorphic to a direct summand of a finite direct sum
of objects of the form eλR. Since the functor a preserves direct sums, we
deduce that

X ∼= lim−→Mi

also in the category Fl(R), and that each Mi is isomorphic (also in Fl(R))
to a direct summand of a finite direct sum of objects of the form eλR. Now,
since X is finitely presented in Fl(R), there are isomorphisms

Hom(X, X) ∼= Hom(X, lim−→Mi) ∼= lim−→(Hom(X, Mi)).

Therefore, the isomorphism X ∼= lim−→Mi has a factorization through some
Mi. It follows that X is isomorphic to a direct summand of a finite direct
sum of modules of the form eλR. This describes (up to isomorphism) the
family of finitely presented objects of the category Fl(R). Indeed, this shows
that a restricts to an equivalence

proj(R) → fp(Fl(R))

between the category proj(R) of all finitely generated projective objects of
Mod(R) and the category fp(Fl(R)) of finitely presented objects of Fl(R).

On the other hand, the equivalence F : Fl(R) → Fl(S) carries finitely
presented objects of the category Fl(R) exactly onto the finitely presented
objects of the category Fl(S) and therefore induces a new category equiva-
lence

G : proj(R) → proj(S).

For each λ ∈ Λ we set G(eλR) = Nλ, and consider the projective right
S-module

PS :=
⊕
λ∈Λ

Nλ.
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Since every object of proj(R) is, in this category, a summand of a finite
direct sum of objects of the form eλR, we see that every object in proj(S)
is also a summand of a finite direct sum of Nλ’s. By applying this to S we
deduce that PS generates SS , and, therefore, PS is a projective generator of
the category Mod(S).

We also remark that, since G preserves finite direct sums and so does
the inclusion functor proj(R) → Mod(R), we have G(R) = PS . Since G is
an (additive) equivalence, there is a ring isomorphism End(PS) ∼= End(RR).

According to the notation and terminology of [8, p. 52] we denote by
f End(PS) the subring of End(PS) defined by the formula

α ∈ f End(PS) ⇔ α = g ◦ h, h : PS → Sn, g : Sn → PS , and

g(s1, . . . , sn) =
n∑

i=1

xisi for some fixed xi ∈ PS .

It is easy to see that an S-endomorphism α : PS → PS belongs to f End(PS)
if and only if Im α is contained in a finitely generated submodule of PS ,
that is,

α ∈ f End(PS) ⇔ Im α ⊆
⊕
λ∈J

Nλ with J ⊆ Λ, J finite.

Let E = End(PS) and let θ : E → End(RR) be the isomorphism induced
by the functor G defined above. Since this is the isomorphism induced by
G and G(eλR) = Nλ, it is easy to see that the image θ(f End(PS)) = R′ of
θ is described by the formula

β ∈ R′ ⇔ Im β ⊆
⊕
λ∈J

eλR, with J ⊆ Λ, J finite.

On the other hand, we may view R as a left ideal of the ring End(RR) in
an obvious way. Under this identification, it is clear that for every β ∈ R′,
there exists t ∈ R such that t fixes (acting on the left) all elements of Im β.
Hence βt = β and it follows that R′R = R′. Moreover, it is clear that if
t ∈ R, then t ∈ R′, because Im t = tR is contained in the finite direct sum⊕

λ∈J eλR of modules eλR, if t ∈
⊕

λ∈J eλR and J ⊆ Λ is finite. This
shows that RR′ = R. If we now apply [16, Proposition 1.3], we infer that
the rings R and R′ are Morita equivalent. On the other hand, in view of
the isomorphism θ the ring R′ is equivalent to f End(PS).

Finally, the ring f End(PS) is, in turn, equivalent to S, because the
natural mappings

P ⊗S Hom(P, S) → f End(PS), Hom(P, S)⊗E P → S

give a Morita context with surjective homomorphisms and [2, Theorem 2.2]
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applies. Consequently, the rings R and S are Morita equivalent, as we
required.

It remains to prove that the mapping R → Fl(R) is a surjection. For
this purpose we shall describe the inverse map.

Let C be a locally finitely presented Grothendieck category and let G =
{Gλ}λ∈Λ be a set of finitely presented strong generators. We have to con-
struct a ring R with enough idempotents in such a way that the category
Fl(R) is equivalent to the given category C. We take for R the functor ring
RG of the family G. It follows from [19, Sec. 3] and [20, Corollary 2.9] that the
functor h• : C−→ Fl(RG), C 7→ hC =

⊕
λ∈Λ HomC(Gλ, C), is an equivalence

of categories (see also [13] and [6, Proposition 1.3 and following comments]),
because it is easy to check that the functor Add(fp(C)op,Ab)−→ Mod(RG),
T 7→

⊕
λ∈Λ T (Gλ), is an equivalence of categories, where Add(fp(C)op,Ab)

is the category of additive contravariant functors from fp(C) to the category
of abelian groups. The equivalence carries flat functors to flat modules.

This shows that the mapping R 7→ Fl(R) is a bijection and its inverse
is given by C 7→ RG , where RG is the functor ring of a family G of finitely
presented strong generators of C. This finishes the proof.

We want to emphasize a couple of properties that can be derived from
the proof of Theorem 3.3, and so we present them now as a corollary.

Corollary 3.5. (a) In the one-to-one correspondence of Theorem 3.3,
given a locally finitely presented Grothendieck category C with a family G =
{Gλ}λ∈Λ of finitely presented strong generators, the (Morita equivalence
class of the) corresponding right panoramic ring is the functor ring RG of
the family G.

(b) The category equivalence h• : C → Fl(R) (see (3.4)) induces an
equivalence

h′• : fp(C) → proj(R)
from the category of finitely presented objects of C to the category of finitely
generated projective objects of Mod(R).

Corollary 3.6. There exists a right panoramic ring which is not left
panoramic.

P r o o f. Let C be a locally finitely presented Grothendieck category
which is not locally coherent. Let G = {Gλ}λ∈Λ be a family of finitely
presented strong generators of C. Let RG =

⊕
λ∈Λ eλR =

⊕
λ∈Λ Reλ be the

functor ring of the family G.
By Corollary 2.11, the category C is equivalent to the category Fl(RG),

and therefore the ring RG is right panoramic.
We claim that RG is not left panoramic. Assume to the contrary that RG

is also left panoramic. Then, by Corollary 3.5, RG is locally right coherent
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and therefore eλRG is a coherent object of Mod(RG) for every λ ∈ Λ. Let
L be a finitely generated subobject of eλRG in the category Fl(RG). There
is an epimorphism ε : M → L in the category Fl(RG), where M is a direct
sum of summands of modules of the form eµRG . By applying the inclusion
functor, we derive an epimorphism M → L′, where L′ ⊆ L. If

a : Mod(RG) → Fl(RG)

is the localization functor that corresponds to the torsion theory τRG of
Mod(RG) then a(L′) = L. Since L′ is finitely generated we derive an exact
sequence

M ′ → M → L′ → 0

in the category Mod(RG), where M ′ is a finitely generated projective mod-
ule. By applying the exact functor a we get an exact sequence

M ′ → M → a(L′) = L → 0

in the category Fl(RG). This shows that L is a finitely presented object
in Fl(RG), and therefore eλRG is a coherent object of the category Fl(RG).
Consequently, Fl(RG) is a locally coherent category and we get a contra-
diction. It follows that the ring RG is not left panoramic and the corollary
follows.

We want now to restrict the bijection of Theorem 3.3 to particular sub-
classes of right panoramic rings and of locally finitely presented Grothen-
dieck categories.

Corollary 3.7. The map R 7→ Fl(R) defines a one-to-one correspon-
dence between:

(a) Morita equivalence classes of right panoramic unitary rings R; and
(b) Equivalence classes of Grothendieck categories C with a finitely pre-

sented strong generator G.

The inverse map is defined by the formula C 7→ EndC(G).

P r o o f. Assume that R is a right panoramic and unitary ring. By
Corollary 3.5, the finitely presented objects of Fl(R) are exactly the finitely
generated projective right R-modules. Then the module RR is a finitely
presented strong generator of the category Fl(R) and therefore the corollary
is a consequence of Theorem 3.3.

R e m a r k 3.8. It follows from Theorem 3.3 and Corollary 3.7 that there
exist right panoramic rings which are not unitary, because there exist lo-
cally finitely presented Grothendieck categories without a finitely presented
strong generator.



FLAT MODULES 131

4. The problem (JS) and panoramic rings. We now discuss the
problem (JS) stated in [15] and presented in the introduction in connection
with our results on panoramic rings given in the previous sections. While
the following result cannot settle the problem (JS), it could help in finding
an answer.

Theorem 4.1. The map R 7→ Fl(R) defines a one-to-one correspondence
between:

(a) Morita equivalence classes of unitary right panoramic rings R such
that RR is a direct sum of indecomposable right ideals; and

(b) Equivalence classes of locally finitely presented Grothendieck cate-
gories C with a finite family of indecomposable finitely presented strong gen-
erators.

P r o o f. We shall apply the correspondence given in Theorem 3.3. For
this purpose we assume that R is a unitary and right panoramic ring,
and that RR =

⊕n
i=1 Ii is a direct sum of indecomposable right ideals

I1, . . . , In. The obvious equivalence F : proj(R) → fp(Fl(R)) shows that
every finitely presented object of the Grothendieck category C = Fl(R) is
isomorphic to a summand of a direct sum of finitely many objects of the
form F (I1), . . . , F (In). It follows that the modules F (I1), . . . , F (In) form
a family of finitely presented strong generators of the category Fl(R). By
our assumption F (I1), . . . , F (In) are indecomposable objects of Fl(R) and
therefore the category C = Fl(R) has the properties required in (b).

In order to finish the proof we take any locally finitely presented Grothen-
dieck category C as in (b), and assume that U = {U1, . . . , Un} is a set of
indecomposable finitely presented strong generators of C. If U = U1⊕. . .⊕Un

and R = EndC(U), then according to [19], [20] (see also [13]) the functor
C → Fl(R), C 7→ HomC(U,C), is an equivalence of categories, and therefore
the ring R corresponds to C in the bijective correspondence of Theorem 3.3.
It follows that Ii := HomC(U,Ui) is an indecomposable right ideal of R and
RR = I1 ⊕ . . .⊕ In. This finishes the proof.

Comparing Theorem 4.1 with the problem (JS) leads to the following
interesting question:

Is every category C with the properties stated in (b) of Theorem 4.1 nec-
essarily equivalent to a module category?

In connection with this question we could try to determine the panoramic
rings corresponding to module categories by the correspondence of Theo-
rem 3.3. The following observation will be useful.

Lemma 4.2. Assume that R =
⊕

λ∈Λ Reλ =
⊕

λ∈Λ eλR is a right pan-
oramic ring.
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(a) Every projective object of the Grothendieck category Fl(R) is projec-
tive as a right R-module.

(b) A projective module PR is a projective object of Fl(R) if and only if
PR has the following property :

(P1) Every proper submodule of PR is contained in a proper flat submod-
ule of PR.

(c) A projective object PR of Fl(R) is a projective generator of Fl(R) if
and only if the following condition holds:

(P2) Every nonzero right R-module X such that HomR(P,X) = 0 is of
flat dimension 2.

P r o o f. (a) Assume that P is a projective object of Fl(R). As {eλR}λ∈Λ

is a family of generators of Fl(R), there is an epimorphism π :
⊕

ω∈Ω(eωR)tω

→ P which splits, because P is projective in the category Fl(R). It follows
that π is also a splitting epimorphism in Mod(R) and hence P is a direct
summand of the module

⊕
ω∈Ω(eωR)tω . Then (a) follows.

(b) Suppose that P is a projective object in Fl(R) and 0 → L → P →
N → 0 is an exact sequence in Mod(R). Suppose also that L is not contained
in any proper flat submodule of P . Let α : N → F be a homomorphism,
with F a flat right R-module, and set C := Coker α. Consider the exact
sequence

0 → L′ → P → F → C → 0
in Mod(R). It follows from Theorem 2.7 that w.gl.dimR ≤ 2. Hence we
deduce that the module L′ is flat. Since L ⊆ L′ ⊆ P , our assumption yields
L′ = P and α = 0. This shows that HomR(N,F ) = 0 for any flat module F .

Let M → L be an epimorphism in Mod(R), where M is flat. Since
HomR(N,F ) = 0 for all flat modules F , the composed morphism β : M →
P is an epimorphism in the category Fl(R). Since P is projective in the
category Fl(R), β is splittable and, therefore β is an epimorphism of right
R-modules. Hence Im β = L = P and therefore L is not a proper submodule
of P , a contradiction. This shows that P has the property (P1).

To prove the converse in (b), assume that PR is a projective module in
Mod(R) and (P1) holds. Let β : M → P be an epimorphism in Fl(R). By
applying the inclusion functor Fl(R) → Mod(R), we get a homomorphism β,
with Im β = L ⊆ P . If the inclusion L ⊆ P is proper, we deduce from (P1)
that there exists a proper flat submodule L′ ⊂ P such that L ⊆ L′. But then,
the inclusion morphism L′ → P would be a factor of the epimorphism β in
the category Fl(R), and therefore this inclusion would be an isomorphism.
This implies that it would be also an isomorphism in Mod(R), and hence
L′ = P , which is a contradiction. It follows that the inclusion L ⊆ P is not
proper and β is an R-module epimorphism. Since P is projective in Mod(R)
the morphism β splits in both categories. This finishes the proof of (b).
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(c) Assume that PR is a projective generator in Fl(R), and let XR 6= 0
be any right R-module of flat dimension ≤ 1. Take a flat presentation

0−→ F1
α−→ F0 −→X −→ 0

of XR. Since X 6= 0, α is not an epimorphism in Mod(R). It follows that
α is not an epimorphism in Fl(R) (if it were, it would be an isomorphism
in both categories). Let β : F0 → F ′ be the cokernel of α in the category
Fl(R). Since P is a projective generator, there exists a non-zero morphism
h : P → F ′ which can be lifted to g : P → F0. But β factors through
π : F0 → X and therefore there exists a non-zero homomorphism P → X.
This shows that HomR(P,X) 6= 0 and (P2) holds.

To end the proof, we have to show that, if PR is a projective object
of Fl(R) such that (P2) holds, then P generates the category Fl(R). Let
β : F1 → F0 be a non-zero homomorphism of flat right R-modules. If
X := Im β, then obviously the flat dimension of XR is ≤ 1. By (P2), there
exists a non-zero morphism h : P → X. Since PR is projective in Mod(R),
h can be lifted to a morphism g : P → F1. It follows that β ◦ g 6= 0. This
shows that PR is a generator of the category Fl(R).

We may now address the question of which right panoramic rings arise
from module categories. For this purpose we recall that the filter of a torsion
theory γ of a category Mod(R) is the set of right ideals J of R such that R/J
is γ-torsion. A torsion theory γ is said to be generated by the right ideal I
in case the filter of γ consists precisely of all right ideals which contain I.
In such situation, a right R-module X is a γ-torsion module if and only if
XI = 0.

Proposition 4.3. There is a one-to-one correspondence between:

(a) Morita equivalence classes of right panoramic rings R =
⊕

λ∈Λ eλR =⊕
λ∈Λ Reλ for which the torsion theory τR is generated by a right ideal I,

that is, the trace on RR of a finitely generated projective right R-module PR;
and

(b) Morita equivalence classes of unitary rings A.

The correspondence is obtained by assigning R 7→ A = End(PR) and , its
inverse is defined by applying the correspondence of Theorem 3.3 to the
category C = Mod(A).

P r o o f. Suppose first that R, I and PR are as in statement (a). We will
show that PR is a projective generator of Fl(R). Since it is a finitely gen-
erated right R-module, it will also be finitely generated in Fl(R), because
{eλR}λ∈Λ is a family of finitely presented generators of Fl(R) by Theo-
rem 2.7, and PR is finitely generated by this family both in Mod(R) and in
Fl(R). This will prove that Fl(R) has a finitely generated projective gen-
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erator and hence Fl(R) is a module category equivalent to Mod(End(PR)),
by [24, Example 2, p. 233]. This will give a half of the proof.

To see that PR is a projective generator of Fl(R), we show that conditions
(P1) and (P2) of Lemma 4.2 hold.

In order to show (P1) we assume to the contrary that L ⊆ P is such
that L 6= P and L is not contained in a proper flat submodule of PR,
so that P/L is a τR-torsion module by [24, Proposition IX.4.2]. Hence
(P/L) · I = (PI + L)/L = P/L = 0. But this is a contradiction which
proves (P1) for PR.

Next, we show that also condition (P2) is fulfilled. Assume HomR(P,X)
= 0 for X 6= 0, and that there is a short exact sequence 0 → P1 → P0 →
X → 0, with P0 a projective module and P1 a flat module. By assumption,
every homomorphism from P to P0 lifts to P1. But, since I is the trace of
P , it is easy to see that the image of any homomorphism P → P0 is con-
tained in P0I. This shows that P0I ⊆ P1 ⊆ P0, so that P0/P1 is τR-torsion.
But, as P0 and P1 are both flat modules, they are τR-closed, from which it
follows that P0 = P1 by [24, Proposition IX.4.2] again, and thus X = 0, a
contradiction.

We are now set for the converse part of the proof. Start with a unitary
ring A and take a family U = {Uλ}λ∈Λ of representatives of the isomorphism
classes of finitely presented right A-modules. We shall show that if R is the
functor ring RU of the family U as in 3.2 then R has the properties required
in (a). We may assume that A = Uλ for some λ ∈ Λ, and, under the
equivalence h• : Mod(A) → Fl(R) (see (3.4)), A corresponds to a finitely
generated projective generator PR of Fl(R). It follows from Lemma 4.2 that
PR satisfies (P1). Since PR is a finitely generated object of Fl(R), there is an
epimorphism

⊕
λ∈F eλR → P in the category Fl(R), with F being a finite

set (with possibly repeated λ’s), and the image L of this homomorphism in
Mod(R) has to be such that P/L is τR-torsion. It follows from (P1) that
L = P . Hence P is a finitely generated right R-module. If I is the trace of
PR on RR, then obviously I is in the filter for τR, because PR is a generator
of the category Fl(R). Moreover, suppose that I ′ is in this filter, so that
R/I ′ is a τR-torsion module. If there is a homomorphism h : P → R/I ′,
then if L = Kerh, we would see that P/L is also τR-torsion. But, by (P1)
this implies that L = P and therefore HomR(P,R/I ′) = 0. It follows that
I ⊆ I ′, as required.

We may now characterize the right panoramic unitary rings that arise
from module categories with the conditions stipulated in [15]. To this end,
we introduce the following concept (compare with [27]).

Definition 4.4. Let R be a unitary ring. A right ideal I of R is said
to be left faithful if there is no non-zero r ∈ R such that rI = 0. Further, a
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finitely generated right ideal I will be said to be a minimal finitely generated
left faithful right ideal if I is left faithful, and I is contained in every left
faithful finitely generated right ideal I ′.

Now we are able to prove the following result.

Proposition 4.5. There exists a one-to-one correspondence between:

(a) Morita equivalence classes of right panoramic unitary rings R such
that :
(a1) There is an idempotent e ∈ R such that ReR is a minimal

finitely generated left faithful right ideal.
(a2) There exist primitive idempotents e1, . . . , en such that every

finitely generated projective right module is isomorphic to a di-
rect sum of the modules e1R, . . . , enR; and

(b) Morita equivalence classes of unitary rings A such that :
(b1) There are finitely many indecomposable finitely presented right

A-modules.
(b2) Every finitely presented right A-module is a direct sum of inde-

composable modules.

The correspondence is given by R 7→ A = eRe.

P r o o f. In view of Theorem 3.3 the proposition will follow from the
following two statements:

(1) If R is a right panoramic ring of the class described in (a) above,
then Fl(R) is equivalent to a module category Mod(A) and A is a ring as
described in (b).

(2) Conversely, if A is a ring as in (b) then there exists a finitely presented
strong generator U in Mod(A) such that EndA(U) is a right panoramic ring
satisfying the conditions (a1) and (a2) in (a).

In order to prove the statement (1) we first show that Fl(R) is a module
category. To this end, it is sufficient to show that the torsion theory τR
of Mod(R) is generated by the ideal ReR, which is the trace on R of the
finitely generated projective module eR. Then, by Proposition 4.3, we will
infer that Fl(R) ≈ Mod(A) for A = End(eR) ∼= eRe.

Let I ′ be a right ideal of RR that belongs to the filter of τR. Let us
show that ReR ⊆ I ′. We may assume that I ′ is finitely generated, in view
of [24, Proposition XIII.1.1], because it follows from Theorem 2.7 that R
is a finitely presented object of the quotient category Mod(R, τR) ≈ Fl(R).
Since Hom(R/I ′, R) = 0, the right ideal I ′ is left faithful and hence ReR ⊆ I ′

by our hypothesis. By the same reason ReR belongs to the filter of τR and
it generates the torsion theory τR.



136 J. L. GARCIA AND D. SIMSON

It follows that Fl(R) ≈ Mod(eRe) and according to Corollary 3.5, the
equivalence induces the equivalence proj(R) ≈ fp(Mod(eRe)). Since by our
hypothesis, all objects of proj(R) are direct sums of a finite number of in-
decomposable objects, it follows that there are only finitely many indecom-
posable finitely presented right eRe-modules, and every finitely presented
right eRe-module is a direct sum of indecomposables. This shows that the
ring A = eRe has the properties required in (1).

In order to prove the statement (2) we assume that A is a unitary
ring as stated, and we denote by UA the direct sum of representatives
of finitely many isomorphism classes of indecomposable finitely presented
right A-modules. By the hypotheses, UA is a finitely presented strong gen-
erator for Mod(A) and hence the correspondence of Theorem 3.3 shows that
R = End(UA) is the associated right panoramic ring. Again, the conditions
assumed on the finitely presented right A-modules imply that there exist
finitely many indecomposable objects e1R, . . . , enR of proj(R) such that
each finitely generated projective right R-module is a direct sum of modules
of the form e1R, . . . , enR, that is, it is isomorphic to a module

⊕n
i=1(eiR)mi ,

mi ≥ 0.
On the other hand, by Proposition 4.3, the torsion theory τR is generated

by a right ideal I which is the trace of a finitely generated projective module
PR. But we know that PR

∼=
⊕

i∈F (eiR)mi , where mi > 0 and F is a subset
of {1, . . . , n}. It follows that the trace of PR on R is just ReR, where
e =

∑
i∈F ei. It remains to show that ReR is a minimal finitely generated

left faithful right ideal of R.
Let I ′ be a finitely generated right ideal of R which is left faithful. Then

Hom(R/I ′, R) = 0, and hence, since R/I ′ is finitely presented, Hom(R/I ′, F )
= 0 for any flat right R-module F . This means that R/I ′ is τR-torsion
and therefore I ′ is in the filter of τR. It follows from Proposition 4.3 that
ReR ⊆ I ′. This proves (2) and finishes the proof of the proposition.

We finish this section by considering right panoramic rings which are ei-
ther semiperfect or right perfect. The second case is included in Tachikawa’s
situation (see [25] and Corollary 4.7 below).

Theorem 4.6. The map R 7→ Fl(R) defines a one-to-one correspondence
between:

(a) Morita equivalence classes of right panoramic unitary semiperfect
rings R; and

(b) Equivalence classes of locally finitely presented Grothendieck cate-
gories C such that the number of isomorphism classes of indecomposable
finitely presented objects of C is finite, and every finitely presented object of
C has a direct sum decomposition that complements direct summands.
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P r o o f. We shall prove the theorem by applying Theorem 3.3.
Assume first that R is right panoramic, unitary and semiperfect. Then

C = Fl(R) is a Grothendieck category such that fp(C) = proj(R). Then the
required condition on C is easily obtained from the fact that R is semiperfect,
by [1, Theorem 27.12].

Conversely, suppose that C is as in (b). Then the direct sum U of the
representatives of indecomposable finitely presented objects of C is clearly a
strong finitely presented generator for C. It follows from Corollary 3.6 that
End(U) = R is a right panoramic unitary ring, which is semiperfect by [1,
Theorem 27.12]. Hence the theorem follows from Theorem 3.3.

Finally, we consider the case in which the ring R is right perfect.

Corollary 4.7 (Tachikawa [25]). There is a one-to-one correspondence
between:

(a) Morita equivalence classes of right panoramic unitary right perfect
rings R;

(b) Morita equivalence classes of unitary rings A of finite representation
type.

P r o o f. We shall define the required correspondence by applying Propo-
sition 4.3.

First, we assume that R is a right panoramic and right perfect unitary
ring. By Theorem 2.7 and Proposition 2.5, R is a right FTF ring. Since every
flat right R-module is projective the torsion theory τR coincides with the
Lambek torsion theory δR. From the fact that R is a right FTF ring and from
[9, Proposition 2.4.1] it follows that R is a semiprimary ring. In particular,
R is left perfect, and by [24, Example 2, p. 192] the torsion theory τR = δR is
generated by an ideal of the form ReR. By Proposition 4.3, Fl(R) = Mod(A)
for a unitary ring A, and according to Theorem 3.3 the ring R is Morita
equivalent to the functor ring of the finitely presented right A-modules.
By [4], [19], [20], [13] the ring A is right pure semisimple, because R is
right perfect. Since fp(Mod(A)) ≈ proj(R), the number of the isomorphism
classes of indecomposable finitely presented right A-modules is finite and
therefore A is of finite representation type (see [19], [20]).

Conversely, assume that A is of finite representation type. Then A satis-
fies the hypothesis in (b) of Proposition 4.5, and therefore the corresponding
right panoramic ring R is unitary. Again by [20, Theorem 6.3], the right pure
semisimplicity of A implies that R is right perfect. This finishes the proof.

5. Concluding remarks and open problems. We start with an
example analogous to that of [7, Example].
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Example 5.1. Let k be a field and let A be a k-algebra that is not right
coherent (for instance, one could take A = B[t], the polynomial ring with
one indeterminate over the ring B =

∏
N Q[X, Y ], considered in [23]). It is

shown there that A is a non-coherent commutative ring, which is also an
algebra over the field k = Q of rational numbers.

Let T be the functor ring RG of the set G of representatives of isomor-
phism classes of finitely presented right A-modules (see 3.2). Then, T is
clearly a right panoramic ring, but, as we have seen in the proof of Corol-
lary 3.6, T is not left panoramic and T is not right locally coherent, because
A is not right coherent. As in the Example of [7, p. 89], we may construct
the unitary ring

R = T × k

with multiplication given by the formula (t1, a1) · (t2, a2) = (t1t2 + t1a2 +
t2a1, a1a2), where t1, t2 ∈ T and a1, a2 ∈ k. Note that T is a two-sided ideal
of R satisfying the conditions of [24, Proposition XI.3.13] and R/T ∼= k.
Arguing like in [7, p. 90], we infer that R is a right panoramic ring with
the identity element (0, 1). On the other hand, since T is not right locally
coherent, we may easily deduce that R is not right coherent, either. Then,
by Corollary 2.11, R is not left panoramic.

Summarizing the above we get the following.

Corollary 5.2. There exists a unitary ring which is right panoramic,
but not left panoramic and not right coherent.

As a consequence of Corollary 5.2 we get an analogous result on FTF
rings.

Corollary 5.3. There exists a unitary right FTF ring which is not a
left FTF ring.

P r o o f. Let R be a unitary right panoramic ring which is not left panor-
amic (Corollary 5.2). By Corollary 2.11, R is neither right δR-coherent, nor
right τR-coherent (notice that τR-coherence always implies δR-coherence,
because every τR-torsion module is δR-torsion). By [9, Proposition 2.2.9],
R is not a left FTF ring.

In a connection with the results above the following problem arises.

Problem 5.4. Find a right panoramic and semiperfect unitary ring R
such that Fl(R) is not a module category.

Note that every such a ring R is not right perfect, by a result of Tachikawa
[25]. Moreover, in this case the category Fl(R) has no projective generators,
because if it did, the torsion theory τR of Mod(R) would be generated by a
finitely generated right ideal which is the trace of a projective module; but
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then, it would also be the trace of a finitely generated projective module
and Fl(R) would be a module category.

By restricting the one-to-one correspondence of Theorem 4.6 we get the
following result.

Proposition 5.5. There is a one-to-one correspondence between:

(a) Morita equivalence classes of right panoramic unitary semiperfect
rings R with a minimal finitely generated left faithful right ideal ReR; and

(b) Morita equivalence classes of unitary semiperfect rings A such that
there are only finitely many isomorphism classes of indecomposable finitely
presented right A-modules and the endomorphism ring of every indecompos-
able finitely presented right A-module is a local ring.

P r o o f. Let R be as stated in (a). It follows from Proposition 4.5 and
Theorem 4.6 that the category C = Fl(R) which corresponds to R by the
correspondence in Theorem 4.6 is a module category over a unitary ring
A, there is only a finite number of indecomposable finitely presented right
A-modules and every finitely presented right A-module has a decomposition
that complements direct summands.

By [1, Proposition 12.10], the endomorphism ring of every indecompos-
able finitely presented right A-module is a local ring. It follows that A is a
semiperfect ring, and consequently A is of the type given in (b).

Conversely, assume that A is as in (b). It follows from Proposition 4.5
and Theorem 4.6 that the corresponding right panoramic ring R is unitary
semiperfect and has a minimal finitely generated left faithful right ideal.
This finishes the proof.

Proposition 5.5 suggests the following problem.

Problem 5.6. Find a semiperfect right panoramic unitary ring R with
a minimal finitely generated left faithful right ideal , such that R is not right
perfect. Equivalently , find a unitary semiperfect ring A such that :

(a) the number of finitely presented indecomposable right A-modules up
to isomorphism is finite,

(b) the endomorphism ring of any finitely presented indecomposable right
A-module is local ,

(c) the ring A is not of finite representation type.

Problem 5.6 is closely related with the central problem in [15], and is
also related to the following question that is dealt with in [18]:

Problem 5.7. Describe all unitary semiperfect rings R for which every
indecomposable finitely presented R-module has a local endomorphism ring.
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