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Ergodic theory, and particularly its measure-theoretic part, was devel-
oped to model physical systems; but a growing part of it is devoted to the
building of new “hand-made” systems, generally to provide a specific exam-
ple, or, in the vast majority of cases, counter-example; the object of this
survey (which, in a reduced form and in French, was originally a part of the
author’s habilitation thesis) is the study of a special class of these examples,
rich enough to allow us to see general structures and common properties.

When Ornstein finally cracked the problem of isomorphism of Bernoulli
shifts ([ORN1]), he also, independently but using related techniques, wrote
a less noticed paper ([ORN2]), producing an example of a transformation
with no square root; this paper had perhaps more consequences than the
isomorphism theorem, as it gave a new life to a class of systems which had
been defined by Chacon ([CHA1]) as “a class of geometric constructions”,
and was then formalised under the name “class one” before being eventually
called “rank one” ([ORN-RUD-WEI]). Later it was also useful to speak of
rank two, three . . . , and also to use some related notions like local or joining
rank. Most of these systems admit a very simple constructive definition, and,
all together, they form a very rich zoo of examples and counter-examples,
to meet almost all needs of the ergodicians, while the class is small enough
to allow some general results. This field is still very active nowadays, as the
multiple bibliographic references less than five years old testify.

The aim of this survey is, first, to gather, in a very scattered existing
literature, all the definitions related to these notions of rank, to describe the
relations between them and their basic properties; this may sometimes look
“technical”, but the lack of such a dictionary was, in the author’s humble
opinion, deeply felt, and was the prime reason for writing this study. Then
we aim to give at least a general, though necessarily not exhaustive, overview
of the richness of the zoo; and finally, both to see how the definitions work
and to emphasize that these classes are also “natural”, to show how these
notions apply to several classical systems. As even these modest aims tended
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to produce a lengthy paper, we gave ourselves two severe restrictions: we
do not give proofs, except in the not so rare cases when they do not appear
anywhere in the literature and are much needed; and, though the notions we
describe have been extended to wider fields, such as systems with an infinite
measure, or non-measure-preserving systems, or actions of R, Zn and Rn,
we restrict ourselves to finite measure-preserving actions of Z.

Before beginning the core of this work, we gather the fundamental no-
tions which are needed in the sequel.

0.1. Measure-theoretic dynamical systems. Throughout this sur-
vey, we shall deal with measure-theoretic dynamical systems and they
will be finite measure-preserving. So, unless otherwise stated, we con-
sider systems of the form (X,A, T, µ) where X is a Lebesgue space, A its
Lebesgue σ-algebra, T an invertible mapping, and µ a probability measure
such that Tµ = µ. All sets, mappings, partitions . . . considered are tacitly
assumed to be measurable, and all relations, equalities, etc. . . involving
only measurable (as opposed to continuous) quantities are tacitly assumed
to hold only almost everywhere. In this category, we use the notion of
measure-theoretic isomorphism:

Definition 1. Two systems (X,A, T, µ) and (X ′,A′, T ′, µ′) are mea-
sure-theoretically isomorphic if there exist X1 ⊂ X, X ′

1 ⊂ X ′, and a
(bimeasurable) bijection φ from X1 to X ′

1 such that µ(X1) = µ′(X ′
1) = 1,

φµ = µ′ and T ′φ = φT .

We shall use freely the fact that a system is defined up to measure-
theoretic isomorphism.

In particular, it is possible to reduce measure-theoretic ergodic theory to
the study of sequences over a finite alphabet; as soon as we have a partition
P of X (all partitions will be supposed finite unless otherwise stated),
we may look at the P -names; the P -name PN(x) of a point x under the
transformation T is the sequence such that PN(x)i = j whenever T ix ∈
Pj ; the P -n-name of a point x is the sequence (PN(x)i, 0 ≤ i ≤ n), the
positive P -name is the sequence (PN(x)i, i ≥ 0). And T may be seen as
the shift on the P -names, (Ty)n = yn+1, n ∈ Z. Krieger’s theorem ([KRI1],
[KRI2]) ensures that, provided the entropy is finite, which will always be the
case here, there always exists a generating partition (see 0.2.3), and so every
system may be represented as the shift on some set of symbolic sequences.

0.2. A small glossary of measure-preserving ergodic theory. All
our systems will be interesting by their situation regarding the “classical”
properties of measure-preserving dynamical systems; we feel our duty to give
here the appropriate definitions, though we beg the reader to refer to these
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only in case of urgent need. In the main course of this study, new notions
will also be introduced; they will be written in bold if defined explicitly, and
in italics if the reader is referred to a later part of the text, or to existing
literature (i.e. any book of ergodic theory, for example [COR-FOM-SIN], if
no precise reference is given).

We recall that N is the set of nonnegative integers and N? is the set of
positive integers.

0.2.1. Distances, words. Let us recall two notions of distance which we
shall often use (and which are of course related through the association of
P -names to points): the distance between partitions,

|P − P ′| =
∑

i

µ(Pi 4 P ′i ),

and the Hamming distance between finite sequences,

d((x1, . . . , xn), (y1, . . . , yn)) =
1
n

#{i ∈ {1, . . . , n} : xi 6= yi}.

We also recall that a finite sequence x1 . . . xn, over a finite or infinite alpha-
bet, is called a word, or a block of length n; the concatenation of two
words is denoted multiplicatively. In the set {0, 1}Z, we call the sets of the
form (xi1 = a1, . . . , xik

= ak) cylinders.

0.2.2. Ergodicity, mixing, rigidity. A system is ergodic if, when a set
A satisfies µ(A4 TA) = 0, then µ(A) = 0 or 1. This is equivalent to saying
that the associated spectral operator on L2(X), UT f = f ◦ T , has 1 as a
simple eigenvalue. If UT has no eigenvalue except 1, T is weakly mixing.

T is strongly mixing if for every set A and every set B, µ(A ∩ TnB)
tends to µ(A)µ(B) as n → ∞. It is mixing of order p if µ(T k1A1 ∩
. . .∩ T kpAp) tends to µ(A1) . . . µ(Ap) as (k1, k2− k1, . . . , kp − kp−1) tend to
infinity independently (it is an old open question whether mixing of order 2
implies mixing of higher order).

On the opposite side, T is rigid if there exists a sequence kn such that
µ(T kn 4A) → 0 for every A ⊂ X.

0.2.3. Partitions, entropy. A partition P refines a partition Q if each
atom of Q is a union of atoms of P ; this is an order relation, and we denote
by P ∨ Q the supremum of P and Q; P is called a generating partition
if the partitions

∨n
i=−n T

iP increase to the whole σ-algebra A.
The entropy of a partition P = (P1, . . . , Pk) is defined by

h(P ) = −
k∑

i=1

µ(Pi) logµ(Pi);

the mean entropy of a partition P is
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h(P, T ) = lim
n→∞

1
n
h
( n−1∨

i=0

T iP
)
.

The (measure-theoretic) entropy of the system is the supremum of
h(P, T ) over the set of all partitions, or else the entropy of any generat-
ing partition.

0.2.4. Induction, Kakutani equivalence, Loose Bernoulli. For a map
T , a set A of positive measure and a point x in A, we define the return
time τA(x) of x in A as the smallest positive integer n such that Tnx
is in A again; this time is finite almost surely (by Poincaré’s recurrence
theorem) and we may define the induced transformation TA of T on A
by TA(x) = T τA(x)x; it preserves the induced measure on A defined by
µA(E) = µ(E)/µ(A) for E ⊂ A.

Two systems (X,T ) and (Y, S) are Kakutani-equivalent if there exist
subsets A of X and B of Y , of positive measure, such that TA = SB up
to measure-theoretic isomorphism. Now, among the systems of entropy
zero, we define the class of Loosely Bernoulli, or LB systems to be the
smallest class which is closed under Kakutani equivalence and contains all
the irrational rotations.

0.2.5. Factors, centralizer, joinings, Veech simplicity. A factor of a
system (X,A, T, µ) is the same system restricted to a T -invariant sub-σ-
algebra B: we say that two points are equivalent if they are not separated
by the sets of B, and we let T act on the quotient set; if every equivalence
class has p elements, we say that the factor has fiber p. A map is prime if
it has no nontrivial factor.

The centralizer of T is the set of all measure-preserving maps S such
that TS = ST (if T is ergodic, we get the same set if we require only that
S preserves the equivalence class of the measure and ST = TS); it is called
trivial if it reduces to the powers Tn.

A joining of two systems (X,T, µ) and (Y, S, ν) is an ergodic measure
on X × Y , invariant under T × S and whose marginals are µ and ν. Two
systems are disjoint (in the sense of Furstenberg) if their only joining is
the product measure.

A system has minimal self-joinings if the only joinings of this sys-
tem with itself are the product measure µ × µ and measures of the form
%(A×B) = µ(A∩TnB). A system with minimal self-joinings is prime, and
its centralizer reduces to its powers.

A system has minimal self-joinings of order p if for every p-uple
(k1, . . . , kp) of positive integers, the ergodic measures which are invariant for
T k1×. . .×T kp , and have µ as marginals, are all the products of diagonal mea-
sures, that is, measures defined by ν(A1×. . .×An) = µ(T l1A1∩. . .∩T lnAn).
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A system is simple (in the sense of Veech) if its self-joinings are the
product measure and measures of the type µ(A ∩ S−1B) for elements S
of the centralizer; this is a weaker property than the minimal self-joinings,
since it allows T to have factors, and a big centralizer, which is the case
for example if T is rigid. Simplicity of order p is defined like minimal
self-joinings of order p by replacing, in the definition of diagonal measures,
T l1 , . . . , T lp by arbitrary elements S1, . . . , Sp of the centralizer.

0.2.6. Horocycle flows. The horocycle flow can be defined as the left
multiplication by the matrix

ht =
(

1 t
0 1

)
on some compact quotient group of SL2R, for example SL2R/SL2Z. These
define of course many different horocycle flows, but they will have the same
properties as far as we are concerned.

0.2.7. Spectral properties. The map T , or its associated spectral opera-
tor, has discrete spectrum if the space L2(X) is generated by eigenvectors
of UT (see 0.2.2).

The cyclic space generated by an element f of L2(X), denoted byH(f),
is the closed linear space generated by the Un

T f , n ∈ Z. The spectral type
of f is the measure σf on the torus S1 defined by σ̂f (n) = (Un

T f, f). There
is a standard decomposition of L2(X) in a finite or infinite orthogonal sum
of cyclic spaces H(fi), where σfi+1 is absolutely continuous with respect to
σfi ; the number of cyclic spaces and the equivalence classes of the spectral
types σfi are invariants of the spectral system (L2(X), UT ). The maximal
spectral type is the first measure σf1 ; we say that T has singular, resp.
absolutely continuous spectrum if the maximal spectral type is singular,
resp. absolutely continuous with respect to the Lebesgue measure on the
torus (if none of these cases occurs, we say T has mixed spectrum); if
there are p cyclic spaces in the decomposition, p = 1, 2, . . . ,∞, we say that
T has spectral multiplicity equal to p; if p = 1 we say that T has simple
spectrum (in L2).

The notions of multiplicity and simple spectrum may be extended to
the spaces Lq(X) for every q > 0: we just define the cyclic spaces with the
Lq-topology, and require that p cyclic spaces generate Lq(X).

0.2.8. Minimality and unique ergodicity. A topological system (that is,
a continuous map acting on a topological space) (X,T ) is minimal if every
orbit under T is dense in X. It is uniquely ergodic if there exists only one
probability measure invariant underT . Unique ergodicity implies minimality
if the invariant measure gives nonzero measure to every nonempty open set.
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1. RANK ONE

1.1. The lecturer’s nightmare: how to define a rank one system.
Though it is easy to define any particular rank one system (see 1.4), several
different definitions of what is a rank one system appear in the literature;
they are (modulo one small snag, see 1.1.4 and 1.3.1) all equivalent, each of
them may be useful in some context, and none of them is short and easy to
explain. We try to give them all, and emphasize the links between them, as
this is sadly missing in the existing literature.

1.1.1. Nonconstructive geometric definition. The class of systems now
known as the rank one systems appeared gradually between 1970 and 1975;
it evolved from the notion of periodic approximation used previously by
the Russian school ([KAT-STE]) by a weakening of the requirements; after
the first examples by Chacon ([CHA1]), Ornstein ([ORN2]) gave the first
definition of the rank one systems as a coherent family of systems.

Definition 2 (NG). A system is of rank one if for any partition P of
X and any positive ε, there exist a subset F of X, a positive integer h and
a partition P ′ of X such that:

• the T kF , 0 ≤ k ≤ h− 1, are disjoint,
• |P − P ′| < ε,
• P ′ is refined by the partition formed by the sets F , TF , . . . , Th−1F ,

and X \
⋃h−1

i=0 T
iF .

We then say that (F, TF, . . . , Th−1F ) is a Rokhlin tower (or stack),
of height h, approximating P ; as we need to approximate arbitrarily sharp
partitions in a nonatomic space, it follows from the definition that the towers
must be arbitrarily high and fill a part of the space of measure arbitrarily
close to one.

1.1.2. Nonconstructive symbolic definition. The translation of this defi-
nition in a symbolic setting is not immediate, it was done in ([deJ2]):

Definition 3 (NS). A system is of rank one if for every partition P
of X, every positive ε, and every natural l, there exists a word B of length
l(B) greater than or equal to l such that, for all n large enough, on a subset
of X of measure at least 1 − ε, the P -n-names of points are of the form
δ1W1 . . . δpWpδp+1 with l(δ1) + . . .+ l(δp) < εn and d(Wi, B) < ε for all i.

1.1.3. Constructive geometric definition. These nonconstructive defini-
tions were of course satisfied by the first examples of Chacon ([CHA1]);
conversely, it was shown in [BAX] or [FER0] that each rank one system can
be explicitly built by a sequence of nested Rokhlin towers generating the
whole σ-algebra; this may be written as:



SYSTEMS OF FINITE RANK 41

Definition 4 (CG). A system is of rank one if there exist sequences of
positive integers qn, n ∈ N, and an,i, n ∈ N, 1 ≤ i ≤ qn − 1, such that, if hn

is defined by

h0 = 1, hn+1 = qnhn +
qn−1∑
j=1

an,i,

then

(1.1)
∞∑

n=0

hn+1 − qnhn

hn+1
<∞,

and subsets of X, denoted by Fn, n ∈ N, by Fn,i, n ∈ N, 1 ≤ i ≤ qn, and by
Cn,i,j , n ∈ N, 1 ≤ i ≤ qn − 1, 1 ≤ j ≤ an,i (if an,i = 0, and if i = qn, there
are no Cn,i,j), such that for all n:

• (Fn,i, 1 ≤ i ≤ qn) is a partition of Fn,
• the T kFn, 1 ≤ k ≤ hn − 1, are disjoint,
• ThnFn,i = Cn,i,1 if an,i 6= 0 and i < qn,
• ThnFn,i = Fn,i+1 if an,i = 0 and i < qn,
• TCn,i,j = Cn,i,j+1 if j < an,i,
• TCn,i,an,i = Fn,i+1 if i < qn,
• Fn+1 = Fn,1,

and the partitions {Fn, TFn, . . . , T
hn−1Fn, X \

⋃hn−1
k=0 T kFn} are increasing

to A.

If the qn and an,i are known, it is easy to build sets Fn,i and Cn,i,j

and a transformation T satisfying all the above rules: the sets are chosen
to be intervals (open or closed; being in a measure-theoretic setting we are
not concerned by the set of endpoints which is of measure zero), and we
build a piecewise affine T by simply following the instructions; this defines
T by stages: at stage n, T is defined everywhere except on the top of
the last column (which is Thn−1Fn,qn

); the last condition ensures that this
eventually defines a measure-theoretic system, and, given the sequences qn
and an,i the system defined is unique up to measure-theoretic isomorphism.
Note that the condition (1.1) ensures that the total measure is finite, but
that without it every system would be of rank one, as was pointed out to
the author by Arnoux. Note also that for a given rank one mapping T we
can find sequences qn and an,i but they are by no means unique.

1.1.4. Constructive symbolic definition. The constructive definition
translates in the symbolic setting ([KAL]) but we have an equivalent defi-
nition only when the system is totally ergodic, that is, when every power
Tn is ergodic; this is nowadays the most widely used definition of rank one
(for what may happen with non-totally ergodic systems, see 1.3.1):
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Definition 5 (CS). A totally ergodic system is of rank one if there exist
sequences of positive integers qn, n ∈ N, and an,i, n ∈ N, 1 ≤ i ≤ qn − 1,
satisfying (1.1) such that, if we define the words Bn on the alphabet {0, 1}
by

(1.2) B0 = 0, Bn+1 = Bn1an,1Bn1an,2Bn . . . Bn1an,qn−1Bn,

then T is the shift on the set X of sequences (xn) of {0, 1}Z such that for
every pair of integers s < t, (xs . . . xt) is a subsequence of Bn for some n.

This definition does not state the measure but, again because of (1.1),
the topological system defined above admits only one nonatomic invariant
probability measure, the measure µ which gives to the cylinder set (x1 =
a1, . . . , xp = ap) a measure equal to the limit as n goes to infinity of the
frequency of occurrences of the word a1 . . . ap in the bloc Bn. The definition
given in [KAL] contains this expression, the simplified definition we give
above appears in [deJ-KEA], [deJ-RUD] for particular cases. Note that
there may be other invariant measures, the measure δ1 which gives mass
one to the sequence identically equal to 1, and all convex combinations of
µ and δ1. Similarly, the topological system defined above is not minimal
whenever the numbers an,j are not bounded, but the only nondense orbit is
then reduced to the sequence identically equal to 1.

A rank one system is completely known if we know the recursion for-
mula (1.2) giving Bn+1. The digit 1 in it is often replaced by the letter s,
for spacer. The words Bn are called the n-blocks.

1.2. First properties and the reduced geometric definition. A
rank one system is ergodic and of entropy zero ([CHA1] or [BAX]).

This allows us to give a useful new definition of rank one systems:

Definition 6 (RG). A system is of rank one if for any subset A of X
and any positive ε, there exist a subset F of X, a positive integer h and a
subset A′ of X such that:

• the T kF, 0 ≤ k ≤ h− 1, are disjoint,
• µ(A4A′) < ε,
• µ(

⋃h−1
i=0 T

iF ) > 1− ε,
• A′ is measurable with respect to the partition formed by the sets

F, TF, . . . , Th−1F , and X \
⋃h−1

i=0 T
iF .

This is simply the nonconstructive geometric definition, but restricted
to two-set partitions; it looks weaker, but is in fact equivalent, as h has to
be arbitrarily large; this allows us to approximate by towers also partitions
of the form

∨n
i=−n T

iP for any partition P of X in two sets; this is enough
to prove that the system has entropy zero, and so, by Krieger’s theorem,
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has a generating partition with two elements, and thus every partition can
be approximated by towers.

Every rank one system is Loosely Bernoulli ([ORN-RUD-WEI]). The
LB property has also a “technical” definition which may be found in [FEL]
and will not be given here; it uses some new distance between names. The
LB class includes all rank one systems, and, as we shall see, most related
systems, but also systems like the time-one map of the horocycle flow. Every
rank one is Kakutani-equivalent to every other rank one, and induces every
irrational rotation.

Every factor of a rank one system is of rank one ([deJ2] as an easy
consequence of the nonconstructive symbolic definition).

1.3. First examples, and the last definition

1.3.1. Von Neumann–Kakutani’s transformation. It is defined in [voN],
and is also called van der Corput’s transformation, or dyadic odome-
ter. We can define it by

T

(
1− 1

2n
+ x

)
=

1
2n+1

+ x for 0 ≤ x <
1

2n+1
, n ∈ N,

or, isomorphically, as the translation Tx = x + 1 on the group of dyadic
integers, or as a vehicle odometer: we take X = {0, 1}N and, if x = (x0, . . .)
with xi = 1 for all i < k and xk = 0, then Tx = (x′0, . . .) with x′i = 0 for all
i < k, x′k = 1, and x′l = xl for all l > k. We put on X the product measure
giving mass 1/2 to 0 and 1 on each copy of {0, 1}.

It is clear that T satisfies the constructive geometric definition with all
the qn equal to 2 and all the an,i equal to 0. However, if T did satisfy the
constructive symbolic definition with these same parameters, it would have
the recursion formula Bn+1 = BnBn, which gives a periodic sequence, while
T is ergodic and hence aperiodic; in fact, it is not known whether T , which
is not totally ergodic, satisfies the constructive symbolic definition with any
family of parameters; which explains why it is not a satisfactory definition
of rank one in this case.

T is in some sense the simplest rank one system; it has discrete spectrum,
the eigenvalues being all the dyadic rationals.

1.3.2. The general odometer. It is defined for any sequence qn of positive
integers, by taking X to be the set

∏
n∈N{0, . . . , qn−1}; if x = (x0, . . .) with

xi 6= qi − 1 for all i < k and xk = qk − 1, then Tx = (x′0, . . .) with x′i = 0
for all i < k, x′k = xk + 1, x′l = xl for all l > k.

T preserves a finite measure, has a discrete spectrum, and satisfies the
constructive geometric definition with all the an,i equal to zero. Conversely,
every rank one system may be written as a Rokhlin–Kakutani tower
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over an odometer, and this is used in [HOS-MEL-PAR] as a definition of
rank one systems:

1.3.3. Definition by towers over odometers

Definition 7 (TO). A system (X,T, µ) is of rank one if there exists
an odometer (Y, S, ν) and a map n from Y to N? such that:

• n(y) depends only on k(y) = inf{i : yi 6= qi − 1},
• n is integrable,
• X = ((y, z) ∈ Y × Z : z ≤ n(y)− 1),
• µ is the measure defined by ν and the counting measure on Z,
• T (y, z) = (y, z + 1) if z < n(y)− 1,
• T (y, n(y)− 1) = (Sy, 0).

1.3.4. The irrational rotations. Like the odometers, they are translations
of compact groups preserving the Haar measure; they will be studied at
length in 3.1, but it is already useful to know that they are of rank one.

1.4. The famous rank one systems: a guided tour of the zoo

1.4.1. Chacon’s map

Bn+1 = BnBn1Bn

This is, of course, the constructive symbolic definition, given by the recursion
formula; note that this definition is self-similar, the recursion formula is the
same for all n; in fact, this map falls into the great family of substitutions,
which deserve a whole section (3.3) of this study.

Chacon’s map, with its very short and easy definition, hides a wealth
of properties which make it a central point in ergodic theory: it is the
first known example of a weakly mixing map which is not strongly mixing
([CHA2]); it was shown later to be prime and to have trivial centralizer
([deJ3]); in fact, it is the simplest known transformation to have minimal
self-joinings of all orders ([deJ-RAH-SWA]), and so is a good (cheap) fuel
for the counter-example machine, see 1.5.3. It is worth mentioning that the
proof of minimal self-joinings for Chacon’s map uses the presence of isolated
spacers between blocks Bn; a similar property, called the R-property, was
used in [RAT2] to compute the joinings of the horocycle flows, and was
the basis of the famous papers of Ratner which culminate in the proof of
Ragunathan’s conjecture ([RAT3]).

Chacon’s map also has a property of partial rigidity: for every set A,
there exists a sequence rn such that lim inf µ(T rnA ∩ A) ≥ (2/3)µ(A); this
implies that T has singular spectrum (Friedman, unpublished). Let us also
mention that its Cartesian square has been the object of still unfinished
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studies; it is not known whether it is LB or not, and [deJ-KEA] contains a
deep result about the explicit determination of its generic points.

1.4.2. Generalized Chacon’s maps

Bn+1 = Brn
n 1Bsn

n

with rn and sn sequences of positive integers and (rn, sn) 6= (1, 1) for in-
finitely many values of n. They share some of the properties of Chacon’s
map, particularly the weak mixing and the absence of strong mixing; if we
let the sequences rn and sn vary suitably, we get a continuum of rank one
systems which are nonisomorphic, and even disjoint in the sense of Fursten-
berg (Fieldsteel, unpublished, quoted in [deJ-RAH-SWA]).

One particular case, rn = sn = 2n, was investigated by del Junco and
Rudolph ([deJ-RUD]); their map is shown to be rigid, prime and simple.

1.4.3. Katok’s map

Bn+1 = Bpn
n (Bn1)pn

for a sequence pn growing fast enough (the only published reference is
[GER]).

Though it is almost immediate that a rank one is LB, Katok’s map is
the only known zero-entropy map whose Cartesian square is still LB. This
square has other interesting properties (see 2.2 and 2.4.1). Katok’s map is
also weakly mixing and rigid.

1.4.4. Ornstein’s mixing rank one

Bn+1 = Bn1an,1Bn1an,2Bn . . . Bn1an,qn−1Bn

It is proved in [ORN2] that if we fix a sequence qn growing fast enough and
if we draw the an,i at random in an equidistributed way between two reason-
able (taking (1.1) into account) integers Kn and Ln, then with arbitrarily
high probability the rank one map T thus defined will be strongly mixing.
The proof was simplified in [POL] and [RUD]. So, in a way, strongly mixing
maps are generic in the class of rank one maps, though there is no explicit
example of Ornstein’s rank one maps.

“The” Ornstein map has been shown to have a trivial centralizer
([ORN2]) and to be prime ([POL]). One version of it, which uses an a priori
smaller set of possible parameters, is mixing of all orders and has minimal
self-joinings of all orders ([RUD]). However, all this was proved later to be
true for all mixing rank one systems (see 1.5.2). One version of Ornstein’s
map has a non-LB Cartesian product ([ORN-RUD-WEI]); one version has
singular spectrum (Thouvenot, unpublished); see also 1.6.2 for the general
problem of the singularity of the spectrum.
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1.4.5. Smorodinsky–Adams’ maps

Bn+1 = BnBn1Bn11Bn111Bn . . . 1n−2Bn

This is the simplest explicit example of mixing rank one map ([ADA] proving
a conjecture of Smorodinsky); others can be found more generally by taking
(1.2) with an,i = i−1, 1 ≤ i ≤ qn−1 (the so-called staircase construction)
for many (explicit) sequences qn: in [ADA-FRI] the construction is done for
sequences qn having any prescribed polynomial growth, and in [ADA] for
any qn such that (1.1) is satisfied and

qn/(log hn)1−a → 0

as n→∞, for some a > 0. They have singular spectrum ([KLE]).

1.4.6. King’s teratology. In [KIN1], two examples are built, which have
surprising properties for nonrigid rank one systems (though they are trivially
satisfied by irrational rotations); one is a weakly mixing rank one T such
that T k is still of rank one for any k 6= 0; the other is a weakly mixing rank
one system which is a denumerable cartesian product of (necessarily weakly
mixing rank one) systems Ti, i ∈ N. Both T and the Ti are built with
recursion formulas using long concatenations of blocks Bn with few isolated
spacers.

In [FRI-KIN] an example is built (derived from Chacon’s map) of a
rank one system which is lightly mixing, that is, lim infn→∞ µ(TnA ∩B)
> 0 whenever µ(A)µ(B) > 0, but not partially mixing, which would be
lim infn→∞ µ(TnA ∩B) ≥ αµ(A)µ(B) for some α > 0.

1.4.7. Smooth models. Though it is not our purpose to enter here the
vast problem of smooth representations of abstract systems, it is worth
mentioning that, among the examples in [ANO-KAT] of C∞ transformations
which may be realized on any two-dimensional compact manifold, there are
rigid weakly mixing rank one systems.

Other smooth examples may be found among Anzai skew products,
that is, extensions of irrational rotations by R or S1 with the Lebesgue
measure ([ANZ]); after [IWA-SER] proved that many of these systems have
rank one, [KWI-LEM-RUD] built an example of an Anzai skew product
which is of rank one, real analytic and of nondiscrete spectral type; these
properties are in fact generic among Anzai skew products ([IWA2]).

1.5. Measure-theoretic properties of rank one systems

1.5.1. The weak closure theorem

Theorem 1 (WCT). If T is of rank one, then every element of its
centralizer is a weak limit of powers of T ([KIN1]).
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This creates a dichotomy among rank one systems; if T is not rigid, the
centralizer is trivial, while it is uncountable when T is rigid ([KIN1]). This
justifies the interest of rigid rank one systems, with their richer structure;
they have been classified in [FRI-GAB-KIN].

A related problem is to find all measure-preserving maps such that ST =
T−1S, assuming of course that T is isomorphic to T−1; it was proved in
[GOO-deJ-LEM-RUD] that this relation implies S2 = I whenever T is of
rank one, or has the weaker property (see 1.6.1) of simple spectrum. For a
system satisfying the conclusion of the WCT, this relation implies S4 = I.

1.5.2. Mixing rank one systems. It was shown successively that all mix-
ing rank one systems have a trivial centralizer ([AKC-CHA-SCH]), are prime
([FER0]), and, finally, that they have minimal self-joinings of all orders
([KIN3]), which includes the previous properties. They are also mixing of
order 3 ([KAL]), and, by the same proof, mixing of all orders; it is worth
noticing that they form one of the very few classes of systems for which an
answer to the old question about mixing of all orders is known.

1.5.3. The counter-example machine. Let T be a map with minimal self-
joinings of all orders, which is true of Chacon’s map or of every mixing rank
one system (these and some horocycle flows are the only known examples).
Let K be a finite or countable set, XK and TK the cartesian products of K
copies of X and T respectively, π a compact permutation of K (that is, a
permutation in which every cycle has finite length), l a map from K to Z;
then we define the map U(π, l) on XK by

U(π, l)(x1, . . . , xn, . . .) = (T l(π1)xπ1, . . . , T
l(πn)xπn, . . .).

Then [RUD] describes completely the centralizer and factors of the U(π, l),
and all possible isomorphisms between them, or elements of their centralizer
(roughly, they are not trivial, but no more than we expect them to be: ele-
ments of the centralizer are some U(α,m) satisfying some cocycle relations,
factors are given by subgroups of the centralizer or subsets of the coordi-
nates, etc . . . ). This allows one, by choosing suitably π and l, to build a
virtually unlimited number of counter-examples, among which:

• a map with a cubic root but no square root,
• two nonisomorphic maps T and S such that Sn is isomorphic to Tn

for every n except −1 and +1,
• a map with a continuum of nonisomorphic square roots,
• a map T which has no roots while T 2 has roots of any order,
• two maps which are weakly isomorphic (each one is a factor of the

other) but not isomorphic,
• a map with a continuum of nonisomorphic factors with fiber two,
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• two maps which are weakly disjoint (they have no common factor)
but not disjoint.

1.6. Spectral properties of rank one systems

1.6.1. Simple spectrum. We give here a proof of the following theorem
due to Thouvenot; it is stated with another proof in [CHA3] but only for
p = 1.

Theorem 2. A rank one system has simple spectrum in every Lp.

P r o o f. We want to show that Lp(X) = H(g) for some function g; or
else, that ⋂

n,p

{g : d(fn,H(g)) < 1/p} 6= ∅

for a dense sequence of functions fn; by Baire’s theorem, it is enough to
show that for given f and ε, the set {g : d(f,H(g)) < ε} is dense; so we
take f and a function k, which we may both suppose to have norm one; the
definitions (NG) and (CG) imply easily the existence of a function φ such
that d(f,H(φ)) < ε and d(k,H(φ)) < ε.

Hence ‖k−P (UT )φ‖p < ε for some polynomial P ; hence ‖k−Q(T )φ‖p <
2ε for some polynomial Q which has no zero on the unit circle, which implies
that Q(T ) is invertible and its inverse can be approximated by polynomials
in T . So, if we take g = Q(T )φ, we have ‖k−g‖p < 2ε and d(f,H(g)) < 2ε.

The converse of this theorem is false as we shall see in 2.4.2; however, it is
true that discrete spectrum (which implies simple spectrum) plus ergodicity
imply rank one ([deJ1]).

1.6.2. Spectral type. It is generally a difficult question to compute the
maximal spectral type of a given system; for rank one systems, there is
an algorithm, given in [HOS-MEL-PAR] in a more general setting (see also
[CHO-NAD1]) to compute the spectral types of some particular functions,
namely the indicator functions of the bases of the towers; as they are dense
in L2(X), these give access to the maximal spectral type ([CHA3]).

So let T be a rank one system defined by (1.2); let Bn be the word
b1 . . . bhn ; (1.2) ensures that Bn+1 begins by Bn. Let A be the set defined
in (CS) by (x0 = 0) (which means in (CG) the basis of the first tower; the
computations are the same for the nth tower); let τ be its spectral type. It
is easy to show, simply by identifying Fourier coefficients, that τ is a (vague)
limit of the measures 1

N |AN |2dλ, where λ is the Lebesgue measure on the
torus and AN (x) =

∑
1≤k≤N,bk=0 e

ikx. This, together with (1.2), gives τ as
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a generalized Riesz product:

dτ = lim
N→∞

1
hN

∏
n≤N

∣∣∣qn−1∑
j=0

ei(jhn+cn,j)
∣∣∣2dλ,

where cn,0 = 0 and cn,j = an,1 + . . .+ an,j .
This expression was used in [CHO-NAD2] to compute the eigenvalues

of rank one systems, and, spectacularly, in [BOU] to show that all known
versions of Ornstein’s map have singular spectrum, though this is not yet
known to be true for every mixing rank one system; it was also used in
[KLE-REI] to prove that rank one systems with a bounded sequence qn
have singular spectrum.

2. GENERALIZATIONS OF RANK ONE AND RELATED NOTIONS

2.1. Finite rank. The class of rank one systems, as we saw, does
contain some natural systems, namely the two families of rotations: the
odometers and the irrational rotations. But it appeared quickly ([ORN-
RUD-WEI]) that, if we accept systems that can be approximated by two,
three or r Rokhlin towers instead of one, we keep most properties but we
include in our field two fundamental families of systems, the substitutions
and the interval exchanges; hence the interest of defining a finite rank:

Definition 8 (NG). A system is of rank at most r if for every partition
P of X and every positive ε, there exist r subsets Fi of X, r positive integers
hi and a partition P ′ of X such that

• (T jFi, 1 ≤ i ≤ r, 0 ≤ j ≤ hi − 1) are disjoint,
• |P ′ − P | < ε,
• P ′ is refined by the partition formed by the sets (T jFi), 1 ≤ i ≤ r,

0 ≤ j ≤ hi − 1, and X \
⋃

1≤i≤r,0≤j≤hi−1 T
jFi.

A system is of rank r if it is of rank at most r and not of rank at most
r − 1. A system is of infinite rank if no such finite r exists.

This definition admits a symbolic translation, which is a straightforward
generalization of the (NS) definition of rank one; there are also constructive
definitions, but they are somewhat tedious and are never stated except on
examples; for once, we shall not make any exception to this rule.

Except for the aforementioned natural systems, we know one finite rank
system which has been built completely “by hand”; it can be found in
([GOO-deJ-LEM-RUD]); it satisfies the weak closure theorem and is conju-
gate to its inverse by an isomorphism S such that S4 is the identity but S2

is not (see 1.5.1).
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2.2. Local rank and covering number. It was remarked, as far back
as [KAT-SAT], that most of the structure of finite rank systems does not lie
in the fact that r Rokhlin towers approximate everything, but in the fact
that one Rokhlin tower approximates everything on 1/r of the space. To
formalize this weaker definition led to some new examples of the constructive
sort, which are rich enough to justify the inclusion here of this apparently
purely technical notion, first formalized in [FER1]:

Definition 9 (NG). A system is of local rank one if there exists a
positive number a such that for every partition P of X and every positive
ε, there exist two subsets F and A of X, a positive integer h and a partition
P ′ of A such that

• (T jF, 0 ≤ j ≤ h− 1) are disjoint,
• A =

⋃h−1
j=0 T

jF ,
• µ(A) > a,
• |P ′ − P\A| < ε,
• P ′ is refined by the partition {F, . . . , Th−1F}.

The supremum of all possible a’s in this definition is called the covering
number of the system ([KIN1]) and is written F ?(T ), or simply F ?.

Note that T is of local rank one iff F ?(T ) > 0, and of rank one iff
F ?(T ) = 1; it is also easy to show that if T is of rank r, then F ?(T ) ≥ 1/r;
local finite rank would be the same as local rank one (in Ryzhikov’s papers,
F ? is called simply the local rank, and hence what we call local rank one
becomes positive local rank).

The local rank one also has a symbolic translation, but no constructive
definition.

The first local rank one systems which are not known to be of finite rank
are the Cartesian square of Katok’s map (see 1.4.3) with covering number
at least 1/4 ([GER]), and the author’s own example (see 2.4.2 and [FER1]).
The examples built in [FIL-KWI] show that the covering number behaves
independently of the rank, given that F ? ≥ 1/r.

2.3. Metric properties

2.3.1. General properties. A system of rank r has at most r ergodic
components ([KIN3]).

An ergodic system of finite rank or local rank one has zero entropy.
A factor of a system of local rank one has local rank one; a factor of a

system of rank r has rank at most r.
Finite rank ([ORN-RUD-WEI]) or local rank one ([FER1]) imply the

Loosely Bernoulli property.
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The Weak Closure Theorem fails even for rank two systems (see the
Morse substitution in 3.3.3 for a counter-example). In fact, for any integers
r ≥ 2 and m ≥ 1, it is possible to find a transformation T of rank r such
that m is the cardinality of the quotient group of the centralizer of T by the
weak closure of the powers of T ([BU-KWI-SIE], [KWI-LAC]).

There exists one measure-theoretic property ensuring a system is bigger
than a local rank one system: it is a strengthened form of mixing called the
Vershik property (see [ROT] for a detailed study). It is proved in [FER1]
that the Vershik property excludes local rank one, and hence that the class
of Loosely Bernoulli systems, which has a nonempty intersection with the
Vershik class, contains strictly the class of local rank one systems.

2.3.2. Mixing, and joining rank. For mixing transformations, the rank
of T k is k times the rank of T for any k > 0 ([KIN2]).

The structure of mixing systems of finite rank or local rank one has been
studied in depth in [KIN3]. In this paper, the notion of joining rank is
defined: a system has joining rank at most r if every measure on X× . . .×X
(r copies), invariant under T×. . .×T , has at least one trivial two-dimensional
marginal, that is, a marginal equal to the product measure or carried by
some graph of I×Tn. For a mixing system, the joining rank is at most 1/F ?,
which implies a generalization of the results in 1.5.2 (the number of factors is
bounded, the centralizer is finite modulo the powers of T ), and implies that
mixing systems of local rank one are factors of finite extensions of systems
with minimal self-joinings; furthermore, this structure is a canonical one
([KIN-THO]). This result extends also to some partially mixing (see 1.4.6
for a definition) systems.

The difficult questions of mixing of higher order are not completely
solved, and are linked to the more general problems of self-joinings of higher
orders; it is shown in [RYZ1] that mixing finite rank systems are mixing of
all orders; this result is still true for mixing systems with F ? > 1/2, or for
local rank one systems satisfying already some weakened form of mixing of
order 3 called 1+ε-mixing; this is done by showing these systems have some
form of simplicity of order 3 ([RYZ2]).

2.4. Spectral properties

2.4.1. Rank versus spectral multiplicity. The spectral multiplicity (L2)
is not greater than the rank ([CHA3]).

This result generalizes in two different directions:

• the L2-spectral multiplicity is not greater than 1/F ? (this result, at-
tributed to the Russian school, was first published in [KIN3]).

• the Lp-spectral multiplicity is not greater than the rank, for any p > 0
(Thouvenot, proof as in 1.6.1).
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This implies for example that the Cartesian square of Katok’s map
(1.4.3) has spectral multiplicity at most 4; this is the only known Carte-
sian square with finite multiplicity.

The pair (multiplicity, rank) takes values in the upper half (r ≥ m) of
N2. Mentzen ([MEN1]) conjectured that for each possible pair, there exists
a dynamical system realizing it; for the moment, the conjecture is proved for
(1, 1) ([CHA1]), (1, 2) ([deJ2]), (1, n) ([MEN1]), (2, n) ([GOO-LEM]), (n, n)
([ROB1], [ROB2]), (n, 2n) ([MEN2]) and (p−1, p) for prime p ([FER-KWI]);
recently it was shown ([FER-KWI-MAU]) that it is true for all the pairs
(d, n), for any n ≥ 2 and any divisor d of ψ(n), where, if n = 2α0pα1

1 . . . pαr
r

is the decomposition of n into prime factors (α0 ≥ 0, r ≥ 0 and αi ≥ 1 for
1 ≤ i ≤ r), then

ψ(n) = LCM(2, 2α0−2, pαi−1
i (pi − 1); 1 ≤ i ≤ r)

if α0 ≥ 2 and

ψ(n) = LCM(1, pαi−1
i (pi − 1); 1 ≤ i ≤ r)

if α0 = 0, 1.
As a corollary of the last result, for fixed d, the set of possible n in the

pairs (d, n) is of density one.

2.4.2. Simple spectrum versus rank. The question whether simple spec-
trum is equivalent to rank one has been answered by the following chain of
counter-examples:

• rank one systems have simple spectrum,
• the classical Morse sequence (see 3.3.3) has simple spectrum, is not of

rank one, is of finite rank ([deJ2], a different proof comes from the compu-
tation of the covering number in [FER3]),

• the example in [FER1] has simple spectrum, is not of finite rank, is of
local rank one,

• in [LEM-SIK], there is a system of simple spectrum, not of local rank
one, but Loosely Bernoulli,

• the final (to date) example of the chain, with simple spectrum but not
Loosely Bernoulli, will be defined in 2.6 ([FER2]).

2.4.3. Spectral type. We recall that an old problem attributed to Banach
is to find a system with simple spectrum together with Lebesgue spectral
type; the results in 1.6.2 leave little hope to achieve that with rank one
systems, but some weaker results have been obtained by allowing bigger
multiplicities. The computation in 1.6.2 can be generalized, by using matrix
Riesz products; this was used in [QUE] to provide, with the Rudin–Shapiro
substitution (see 3.3.3), the second known example of a system with finite
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spectral multiplicity (two, in this case) and a Lebesgue component in the
spectrum.

This example, and also the first one due to [MAT-NAD], are of rank four,
and not weakly mixing; a continuum of nonisomorphic weakly mixing sys-
tems with spectral multiplicity two, a Lebesgue component in the spectrum,
and rank four, was built in [AGE]; another continuum of systems with these
spectral properties was then built in [GOO], this time with the additional
property that each one is isomorphic to its inverse; such constructions were
generalized in [LEM3] in the framework of Toeplitz extensions: there exist
finite rank systems with a Lebesgue component of multiplicity n in their
spectrum for any even n (this result appears also in [AGE]).

2.5. Dictionary of other related notions

2.5.1. Exact, uniform rank. If, in the definition of finite rank, we add
the requirement that all the hi should be equal, we get uniform finite
rank. If a system of finite rank admits one explicit construction where
there are no spacers, we speak of finite rank without spacers; if also, in
this construction, the measure of every tower is always bigger than some
a > 0, then the system is of exact finite rank. These notions may be
considered as rather poor: the exact finite rank excludes mixing ([ROS]),
and every system of uniform and exact finite rank is a finite extension of an
odometer ([MEN3]).

2.5.2. Rank one with flat stacks. It is defined by adding to the definition
(NG) the condition that

µ(F 4 ThF ) < ε.

This is equivalent to one of the notions of periodic approximation in [KAT-
STE]. Odometers, but also del Junco–Rudolph’s map (see 1.4.2), and irra-
tional rotations (see 3.1.1) are of rank one with flat stacks.

2.5.3. Compact rank. The closure of the class of local rank one systems
for the inverse limit topology on transformations defines the compact rank.
This notion, due to Thouvenot, has the following geometric definition:

Definition 10. A system is of compact rank if for any partition P
of X and any positive ε, there exist two subsets A and F of X, a positive
integer h and a partition P ′ of A such that:

• the T kF , 0 ≤ k ≤ h− 1, are disjoint,
• A =

⋃h−1
i=0 T

iF ,
• µ(A) ≥ ε,
• |P ′ − P\A| < ε,
• P ′ is refined by the partition formed by the sets F , TF , . . . , Th−1F ,

and X \
⋃h−1

i=0 T
iF .
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This notion, though clearly weaker than local rank one, still implies the
LB property: a proof of this may be found in [RAT1] though compact rank
does not appear explicitly in the paper; to prove that the horocycle flow is
LB, Ratner shows that one of its natural cross-sections is of compact rank
(but of course, the final result implies that the horocycle flow has any LB
system as a cross-section).

2.5.4. Joining rank. See 2.3.2.

2.5.5. Approximate transitivity. This notion, also called propriété
d’approximation convexe in some French texts, is defined in [CON-
WOO] in a more general context, and may be seen as an L1 version of
rank one:

Definition 11. (X,T ) is approximately transitive if for any finite
set E of functions in L1+(X) of norm one, for every ε > 0, there exists
an element φ in L1+(X) such that every element of E is at a distance not
greater than ε from the closed convex hull of (φ ◦ Tn, n ∈ Z), in the L1

topology.

This property is weaker than rank one, and even strictly weaker as it is
implied by funny rank one (see 2.6). It implies simple spectrum in L1.

2.5.6. Rank by intervals. Let (X,T ) be a topological system, on the in-
terval [0, 1] for example; if, for some Borelian measure µ, the system (X,T, µ)
is of rank one, we can approximate any partition by a Rokhlin tower; how-
ever, its basis, and hence all it levels, are only measurable sets, and may be
topologically very unpleasant (with empty interiors, for example). If we can
approximate any partition, in the sense of the (NG) definition, by a tower
whose basis F is an interval, we say that T is of rank one by intervals; we
may notice that this is a mixed notion, involving both the measure-theoretic
and topological structures. Similarly, we may define local, finite, funny rank
by intervals.

2.6. Funny rank. The notion of funny rank one was introduced by
Thouvenot, and is discussed extensively in [FER2].

Definition 12. A system is of funny rank one if for every partition
P of X and every positive ε, there exist a subset F of X, positive integers
h and k1, . . . , kh and a partition P ′ of X such that

• the T kiF, 1 ≤ i ≤ h, are disjoint,
• |P ′ − P | < ε,
• P ′ is refined by the partition formed by the sets T k1F , . . . , T khF , and

X \
⋃h

i=1 T
kiF .
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There is no equivalent symbolic definition, nor any constructive defini-
tion. By replacing the sequence (0, 1, . . . , h − 1) by (k1, . . . , kh) in 2.1 and
2.2, we can also define systems of funny finite rank and funny local
rank, along with a funny covering number, denoted by T ?; but these
notions have been used as yet mainly in conjectures.

Funny rank one implies ergodicity, zero entropy, simple spectrum Lp for
every p > 0 (same proof as in 1.6.1). It also implies approximate transitivity
([CON-WOO]). Also, the spectral multiplicity (L2) is not greater than 1/T ?.

Funny rank one is mainly used for its spectral properties; in [FER2] there
is an example of a non-LB funny rank one system.

Conversely, it is probable that simple spectrum L2 is not equivalent to
funny rank one, as there should exist systems with 1/2 < T ? < 1; however,
to get a precise estimate for T ?, or to show directly a given system is not of
funny rank one, is a difficult problem; in [FER3], it is proved that for the
classical Morse sequence, T ? ≥ 5/6, while F ? = 2/3. The question, due to
Thouvenot, whether funny rank one is equivalent to simple spectrum Lp for
every p > 0, is still completely open.

2.7. Other constructions by cutting and stacking. The geometric
method of construction described in (CG) is called a contruction by cut-
ting and stacking. It can be generalized, not only to a finite number of
towers (finite rank), but also to an unbounded number of towers: a complete
symbolic definition of these may be found in [ROT], and a geometric one
in [FER2]; a very similar kind of construction, though worded differently, is
what Vershik calls an adic system ([VER-LIV]). In fact, every system may
be built in this way, and most examples in ergodic theory were explicitly
built by cutting and stacking; among those, we may mention the famous
Ornstein example of a non-Bernoulli K-automorphism ([ORN3]).

3. RANK PROPERTIES OF CLASSICAL SYSTEMS

3.1. Irrational rotations

Tx = x+ α mod 1

for an irrational number α, on the setX = R/Z. We shall use the well-known
fact that irrational rotations are minimal. It is also well known, since [deJ1]
or before, that, as measure-theoretic systems, rotations are of rank one, and
this is of little use for their study. To see if they satisfy some of the finer
notions, however, gives some insight into the arithmetic properties of the
number α.
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3.1.1. Rank properties

Theorem 3. Every irrational rotation is of rank one with flat stacks.

P r o o f (Del Junco, unpublished; a similar proof using a different vocab-
ulary appears in [IWA1]). Let P be a generating partition for the system,
which we can choose to be a partition of the circle in two intervals; ε and s
are given, and we choose K such that

(3.1) ∀x, ∃0 ≤ l < K : |T lx− 1| < ε/s,

which is an easy consequence of the minimality of T and the compactness
of X. We also choose an m� K such that

|Tm1− 1| < ε/s.

Let B be the P -m-name of the point 1.
We now look at the P -N -name of the point 1 forN large enough: the first

m symbols form the word B; then |Tm+i1−T i1| = |Tm1−1| < ε/s. Hence,
if we have chosen m large enough, the ergodic theorem ensures that the next
m symbols, from m+1 to 2m, will form a word B′ such that d(B,B′) < ε/s,
the following m symbols will form a word B” such that d(B,B”) < 2ε/s,
and, up to the index sm, the P -name of 1 is formed by words Bi such that
d(B,Bi) < ε. When we reach the index sm, we use (3.1) to find j < K such
that |T sm+j1 − 1| < ε/s, and we continue as after the mth symbol. Thus
we can write the P -N -name of 1, but also of any point in view of (3.1), as a
sequence of cycles of at least s− 1 blocks ε-close to B, separated by strings
of at most K symbols, hence T satisfies the (NS) definition, for the chosen
generating partition, and so for any partition; the additional condition of flat
stacks is ensured by the fact that s is any prescribed integer, independently
of ε.

3.1.2. Rank properties by intervals

Theorem 4. Every irrational rotation is of funny rank one by intervals.

P r o o f. Let I = [a, b[ be an interval of small length l. For given ε, we
choose n1 = 0, n2 an integer such that 0 < Tn2a − b < ε/l, . . . , ni+1 an
integer such that Tni+1I is an interval, disjoint from

⋃i−1
j=0 T

jI and situated
at most ε/l to the right of this union. We get, in no more than 1/l steps,
a Rokhlin “funny” tower I, Tn1I, . . . , TnpI filling more than 1 − ε of the
space, and approximating any interval; hence a generating partition formed
by two intervals can be approximated in this way, and so any partition can
be approximated.

Theorem 5. Every irrational rotation is of rank at most two by intervals.
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To prove this theorem, we look at the rotation T on the fundamental
domain X ′ = [0, 1[; it has the following form:

Tx =
{
x+ α if x ∈ [0, 1− α[,
x+ α− 1 if x ∈ [1− α, 1[.

We shall see in the next section that, in this form, T is an exchange of two
intervals, and so this theorem is a particular case of our Theorem 7 (see
3.2), to the proof of which we refer the reader.

Theorem 6. If α has unbounded partial quotients, the rotation of argu-
ment α is of rank one by intervals, with flat stacks.

P r o o f. In this case, if pn/qn are the reduced continued fractions of α,
we have, after restricting n to a subsequence,

q2n

∣∣∣∣pn

qn
− α

∣∣∣∣ → 0

and we can take the Rokhlin towers of basis

Fn =
[
qn

∣∣∣∣pn

qn
− α

∣∣∣∣, 1
qn

− qn

∣∣∣∣pn

qn
− α

∣∣∣∣[,
which approximate a generating partition formed by two intervals, and so
any partition.

The converse of this theorem is true, and straightforward, thanks to the
hypothesis of flat stacks; it is not known, however, whether the rank one
by intervals of the rotation is equivalent to the unbounded partial quotients
of α.

3.2. Interval exchanges. An exchange of s intervals is defined
in the following way: given s real numbers li > 0 with

∑s
i=1 li = 1, and

a permutation π on s letters, let X be the interval [0, 1[, partitioned into
s semi-open intervals Ii, of lengths l1, . . . ls (in that order), and also into
s semi-open intervals Ji of lengths lπ−11, . . . lπ−1s (in that order); T is the
piecewise affine map sending each Ii onto Jπi. We take as measure µ any
one of the (possibly several) T -invariant nonatomic measures.

As explained in 3.1.2, an irrational rotation is an exchange of two inter-
vals.

Interval exchange maps have been extensively studied, since [KEA2]; for
example, they provide the first example of nonuniquely ergodic minimal map
([KEY-NEW]); [deJ4] builds an exchange of four intervals which is simple;
though this does not enter the framework of this study, let us mention that
any transformation can be realized as an exchange of an infinite number of
intervals ([ARN-ORN-WEI]).
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Theorem 7. An ergodic exchange of s intervals is of rank at most s by
intervals, without spacers.

P r o o f. It is proved in [RAU2] that there exists a sequence of nested
intervals Dn, of length tending to zero, on which the induced map of T is
still an exchange of s intervals (these are obtained by the so-called Rauzy
induction, which generalizes the continued fraction approximation for irra-
tional rotations [RAU1]). If D is one of these intervals, it is then partitioned
in s intervals Fk on which the return time to D is a constant hk; hence the
T iFk, 1 ≤ k ≤ s, 0 ≤ i ≤ hk − 1, form s Rokhlin towers filling all the
space; this, applied to each Dn, gives a sequence of s Rokhlin towers, made
of intervals, filling all the space X, such that each level at stage n + 1 is
a union of levels of towers at stage n, and generating the whole σ-algebra;
hence the result is proved by a (CG) argument.

A deep result of [VEE] uses the Rauzy induction, together with Teich-
müller spaces, to show, among other things, that generically (for any fixed
primitive permutation π, and for the Lebesgue measure on the simplex of
possible vectors of lengths) an ergodic interval exchange map is of rank one
by intervals.

3.3. Substitutions

3.3.1. Symbolic systems, languages, complexity. Many systems are pro-
duced by putting a measure on some (topological) symbolic system,
where X is a closed subset of {0, 1}N, with the product topology, and T is
the (one-sided) shift, T (u0, u1, . . . , un, . . .) = (u1, u2, . . . , un, . . .). Among
these symbolic systems, the simplest ones are the systems defined by a
sequence: if u = (un, n ∈ N), we take for T the shift and for X the closure
of the orbit of u under T .

A word w1 . . . wk is said to occur at place i in the sequence u if ui =
w1, . . . , ui+k−1 = wk; the language of length n, Ln(u), is the set of all
words of length n occurring in u; the complexity of u is the function
pu(n) = #Ln(u), n ∈ N.

The minimality of the topological system associated with a sequence can
be read easily from the sequence: the system associated with the sequence
u is minimal if and only if every word occurring in u occurs infinitely often,
with bounded gaps between occurrences. The sequence u is then said to be
minimal.

3.3.2. Definition and generalities. A vast literature has been, and will
be still, devoted to substitutions, whose bible is [QUE]. They appear as
symbolic systems defined on a finite alphabet A = {0, 1, . . . , k − 1}; a sub-
stitution ζ is a map from A to the set A? of all finite words of A. It extends
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naturally into a morphism of A? for the concatenation. We restrict ourselves
to the case when ζ0 begins by 0 and the length of ζn0 tends to infinity with
n. The infinite sequence u beginning with ζn0 for all n ∈ N is then called
the fixed point of u beginning with 0, and the symbolic system associated
with u is called the dynamical system associated with ζ.

When ζ is primitive, that is, there exists m such that a appears in ζmb
for any a ∈ A, b ∈ A, then the system is uniquely ergodic, and we can
consider the measure-preserving system associated with ζ, to which we refer
for short, by abuse of notation, as “the substitution ζ”.

Every primitive substitution on k letters is of rank at most k without
spacers ([QUE]). Moreover, an explicit set of recursion formulas for a (CS)
definition is given by

Bi
n+1 = B(ζi)1

n · · ·B(ζi)q(i)
n

if ζi is the word (ζi)1 . . . (ζi)q(i), 1 ≤ i ≤ k. This precise structure was used
in [FER-MAU-NOG] to compute the eigenvalues of the dynamical system.

The general structure of the substitution dynamical systems is not yet
fully known; they can, in all known cases, be described as finite extensions
of odometers or irrational rotations, but it is generally not clear whether
the substitution is or not isomorphic to the underlying translation.

More precise rank estimates may be given for famous substitutions.

3.3.3. Examples. The Morse substitution, ζ0 = 01, ζ1 = 10, whose
fxed point is the famous Prouhet–Thue–Morse sequence, first defined in
[PRO], has rank two ([deJ2]), and its covering number is 2/3 ([FER3]);
it is not rigid, and does not satisfy the Weak Closure Theorem ([LEM1]).
It has simple, nondiscrete, singular spectrum ([deJ2]).

The Rudin–Shapiro substitution, ζ0 = 01, ζ1 = 02, ζ2 = 31, ζ3 =
32, has had its spectral properties mentioned in 2.4.3; its rank is four, and
its covering number is 1/4.

The Fibonacci substitution, ζ0 = 01, ζ1 = 0, gives a system which is
isomorphic to an irrational rotation ([QUE]), and is hence of rank one.

Also Chacon’s map of 1.4.1 is associated with the nonprimitive sub-
stitution ζ0 = 0010, ζ1 = 1, or, after a topological (hence stronger than
measure-theoretic) isomorphism, to the primitive substitution ζ0 = 0012,
ζ1 = 12, ζ2 = 012 ([FER4]).

In [LEM-MEN], it is proved that, when ζa has the same length for every
a ∈ A, then the system is of rank one if and only if it has discrete spectrum.
Other computations of rank may be found in [MEN2], [GOO-LEM].

3.3.4. Generalizations of substitutions. Among systems generalizing the
substitutions are the generalized Morse sequences, introduced by [KEA1],
whose rank is computed in [LEM2]. The generalized Rudin–Shapiro se-
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quences, and more generally the Toeplitz extensions of translations of com-
pact groups, or Toeplitz systems ([LEM3]) are also of finite rank. These
categories of systems provide most of the examples in 2.4.1 and 2.4.3. Some
Toeplitz systems, built in [IWA-LAC], which are minimal and uniquely er-
godic, have rank one with a continuous part in their spectrum.

A rather new interesting category of systems consists of the S-adic
systems; they are the systems associated with sequences u of the form
u = limn→∞ ζi1ζi2 . . . ζin0 (the limit being in the sense that u begins with
ζi1ζi2 . . . ζin0 for all n) for a sequence (in) and a finite set of substitutions
ζ1, . . . , ζm on k letters, with the condition that the length of ζi1ζi2 . . . ζin0
tends to infinity, ensuring this definition makes sense.

The rank of an S-adic system on k letters is still bounded by k. It
is proved in [FER5] that if u is a minimal sequence of complexity p(n)
smaller than an + b for all n, then the system associated with u is S-adic
and, equipped with any nonatomic invariant probability, has rank at most
2[a]; there is no bound on the number of letters on which the substitutions
live, except if p(n + 1) − p(n) ≤ 2 for all n, in which case this bound is
equal to three, while if p(n) = n + 1 for all n ∈ N the system is a rotation
([HED-MOR]) and hence of rank one.
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