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SPECTRAL PROPERTIES OF SKEW-PRODUCT

DIFFEOMORPHISMS OF TORI

BY

A. I W A N I K (WROC LAW)

Introduction. Let α = (α1, . . . , αd) be a d-tuple of real numbers and
M be a d′×d matrix with integer entries. For every Z

d-periodic measurable
mapping F : Rd → R

d′

we define a skew-product trasformation of Td × T
d′

into itself given by the formula

T (x, y) = (x+ α, y +Mx+ F (x)),

where the addition is modulo Z
d and the variables are treated as column

vectors. It is clear that T is an invertible measure preserving transformation
of Td × T

d′

endowed with Lebesgue measure. Moreover, if F is continuous
then T is a homeomorphism which is homotopic to the identity transforma-
tion (or equivalently φ(x) =Mx+F (x) is homotopic to zero) if and only if
M = 0. It is also obvious that T becomes a Cr diffeomorphism if F is Cr.
The mapping φ(x) =Mx+ F (x) will be referred to as a cocycle.

If d = d′ = 1 and α is irrational, T reduces to the well-known Anzai
skew-product extension of the irrational rotation [A]. Ergodic properties of
such transformations have been studied by many authors and are fairly well
understood. The aim of the present note is to extend some of these results
to the multidimensional case.

In the case of M = 0 it was shown in [I2, I3] that if an irrational number
α admits a sufficiently good approximation by rationals then for every r =
1, 2, . . . ,∞ and “most” cocycles F in Cr(T) (and in more general spaces
of functions) the Anzai skew product defined on the 2-torus T × T admits
a good cyclic approximation by periodic transformations and has partly
continuous spectrum. In fact, the cocycle is weakly mixing, which means
that the only eigenfunctions are of the form h(x, y) = C exp(2πinx).

We are going to show that analogous results hold true for any d, d′ ∈ N

(Thm. 1 where the cyclic approximation is replaced by a weaker kind of
periodic approximation, Thm. 1′, and Thm. 2).
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In the case of M 6= 0 and d = d′ = 1, f ∈ C2(T), it is known that
φ(x) = mx + f(x) is always a weakly mixing cocycle and moreover T has
infinite Lebesgue spectrum on the orthocomplement L2(dx)⊥ of the space
of L2 functions h(x, y) = h(x) depending only on x ∈ T

d (see [K, C, ILR,
I4]). We will prove a similar result for any d, d′, where the smoothness of F
is expressed in terms of its Fourier coefficients as in [I4]. This extends some
recent results of Fra̧czek [F], where a different technique is used. As a by-
product we obtain examples of ergodic skew-product diffeomorphisms with
maximal spectral measure of mixed type: partly discrete, partly continuous
singular, and partly Lebesgue.

1. Weakly mixing cocycles. If S is an invertible measure preserving
ergodic transformation of a probability space (X,µ) and G is a compact
metrizable abelian group then a measurable mapping φ : X → G is called
a weakly mixing cocycle if given any nontrivial continuous character γ of G
and any λ ∈ T there is no measurable function ψ : X → T with

γ(φ(x)) = λψ(Sx)/ψ(x) a.e.

It is not difficult to see that φ is weakly mixing iff the corresponding skew-
product transformation ofX×G given by the formula (x, y) → (Sx, y+φ(x))
has no eigenfunctions in the orthocomplement L2(dx)⊥ of the functions
depending only on x ∈ X.

Let (X,µ) be a standard Lebesgue space. We denote by Φ(X,G) the
space of all measurable cocycles φ : X → G endowed with the topology
of convergence in measure, where cocycles that are equal a.e. are iden-
tified. Extending some earlier results of Jones and Parry [JP], Thm. 8,
it was shown in [IS] that the set of weakly mixing cocycles is residual in
Φ(X,G). (It should be noted that the definition of weakly mixing cocycle
given in [IS] is correct only for connected groups G; a correct reasoning in
the general case is given in the proof below.) Actually, we have the following
sharper result, whose proof is based on an idea of Baggett [B] (cf. [IS], Thm.
4).

Proposition. Let S be an ergodic invertible measure preserving tranfor-

mation of a standard Lebesgue space (X,µ) and G be a compact metrizable

abelian group. Then the weakly mixing cocycles form a dense Gδ subset of

Φ(X,G).

P r o o f. We first prove the Gδ-ness. In the proof it will be covenient to
identify T with the circle group in the complex plane. Let D be a countable
linearly dense subset of the complex space L2(X,µ). It suffices to show

that for every γ ∈ Ĝ \ {1}, h ∈ D, and k ∈ N the set Φγ
h,k of all cocycles
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φ ∈ Φ(X,G) such that

∃λ ∈ T ∃ψ ∈ Φ(X,T) γ ◦ φ = λψ ◦ S/ψ,
∣∣∣
\
ψhdµ

∣∣∣ ≥ 1/k

is closed in Φ(X,G) (indeed, the union of all such sets is exactly the family
of cocycles that are not weakly mixing). Suppose φn ∈ Φγ

h,k and φn → φ
in measure. Choose appropriate λn and ψn for each φn. By the weak
compactness of the unit ball in L2(X,µ) there exists a subsequence ψn′ → ψ̃
weakly in L2. By passing to a further subsequence we may assume λn′ → λ
in T. Observe that

(γ ◦ φn′)ψn′ − (γ ◦ φ)ψ̃ = (γ ◦ φn′ − γ ◦ φ)ψn′ + (ψn′ − ψ̃)γ ◦ φ→ 0

weakly in L2. We also have λn′ψn′ ◦ S → λψ̃ ◦ S hence

(γ ◦ φ)ψ̃ = λψ̃ ◦ S.

Clearly |
T
ψ̃h dµ| ≥ 1/k so ψ̃ 6= 0. Moreover, |ψ̃| = |ψ̃ ◦S|, so |ψ̃| is constant

by ergodicity. Letting ψ = ψ̃/|ψ̃| we get |
T
ψhdµ| ≥ 1/k and γ◦φ = λψ◦S/ψ

so φ ∈ Φγ
h,k as required.

In order to show that the set of weakly mixing cocycles is dense, we will
use the fact that for every nontrivial character γ of G the set

Φγ = {φ ∈ Φ(X,G) : ∃λ ∈ γ(G) ∃ψ ∈ Φ(X, γ(G)) γ ◦ φ = λψ ◦ S/ψ}

is of the first category ([IS], p. 72). What we need to prove is that

Φ̃γ = {φ ∈ Φ(X,G) : ∃λ̃ ∈ T ∃ψ̃ ∈ Φ(X,T) γ ◦ φ = λ̃ψ̃ ◦ S/ψ̃}

is of the first category. If G is connected then γ(G) = T, the two sets
coincide and there is nothing to prove. Without loss of generality we may
now assume that γ(G) is a cyclic subgroup of order N in T. Denote by

h1, h2, . . . a maximal orthonormal system of eigenfunctions for S. If φ, ψ̃,
and λ̃ are as in the definition of Φ̃γ then

1 = (γ ◦ φ)N = λ̃N (ψ̃ ◦ S)N/ψ̃N ,

which implies that ψ̃N is an eigenfunction for S. For some k ∈ N and c ∈ R

we have

ψ̃N (x) = e2πichk(x) = e2πi(gk(x)+c),

where gk(x) is a real-valued function with

gk(Sx) = gk(x) + βk +mk(x)

for some βk ∈ R and mk(x) a measurable integer-valued function on X.
One gets

ψ̃(x) = e2πi(gk(x)+n(x)+c)/N
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for another integer-valued function n(x). Consequently,

γ(φ(x)) = λ̃ψ̃(Sx)/ψ̃(x)

= λ̃e2πiβk/N
e2πin(Sx)/N

e2πin(x)/N
e2πimk(x)/N

= e2πimk(x)/Nλψ(Sx)/ψ(x),

where ψ and λ are as in Φγ . For every eigenfunction hk and every γ as
above we may choose a measurable function ηγ,k : X → G such that

γ(ηγ,k(x)) = e2πimk(x)/N .

It is now clear that φη−1
γ,k ∈ Φγ or φ ∈ ηγ,kΦγ . Since φ was arbitrary in

Φ̃γ , we conclude that Φ̃γ is covered by a countable union of translates of
first category sets, so it is first category itself, which ends the proof of the
proposition.

In order to prove that the weakly mixing cocycles form a Gδ set also
in certain subspaces E ⊂ Φ(X,G), where E is endowed with a topology
stonger than that of convergence in measure, it will now suffice to remark
that the intersection of any Gδ set with E is a Gδ in E.

In proofs of the existence (and denseness) of weakly mixing cocycles in
various subspaces the following simple principle may be useful.

Let 1, α1, . . . , αd be rationally independent and suppose β =
∑
lkαk,

where (l1, . . . , ld) ∈ Z
d \ {0}. If φ ∈ Φ(T,T) is weakly mixing over the β

rotation then φ̃(x1, . . . , xd) = φ(
∑
lkxk) is weakly mixing over α.

This statement can be checked directly. It is also a special case of the
following lemma suggested to the author by M. Lemańczyk.

Lemma 1. Let X be a compact metrizable monothetic group with ergodic

rotation α and h be a continuous homomorphism of X onto another compact

metrizable group Y . If φ ∈ Φ(Y,T) is weakly mixing over β = h(α) then

φ̃ = φ ◦ h ∈ Φ(X,T) is weakly mixing over α.

P r o o f. Denote by µy, y ∈ Y, the canonical system of conditional mea-
sures concentrated on the fibers h−1(y). For every bounded Borel complex-
valued function f on X one has\

X

f(x) dx =
\
Y

\
f(x) dµy(x) dy

and, for almost every y,\
f(x+ α) dµy(x) =

\
f(x) dµy+β(x).

The latter formula is a consequence of the invariance of the Haar measure on
Y and can be checked directly by integrating against an arbitrary bounded
Borel function g(y).
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In order to prove that φ̃ is weakly mixing suppose, to the contrary, that
for some m 6= 0 and |λ| = 1,

φ̃(x)m = λψ(x+ α)/ψ(x),

where ψ : X → T is a measurable mapping. We then have

φ(h(x))mψ(x) = λψ(x+ α).

On the other hand, there exists a character χ ∈ X̂ such that\
ψ(x)χ(x) dx 6= 0.

By multiplying the last equality by χ(x) and integrating with respect to µy

we get

φ(y)m
\
χ(x)ψ(x) dµy(x) = λχ(α)

\
χ(x+ α)ψ(x + α) dµy(x)

= λ′
\
χ(x)ψ(x) dµy+β(x),

where |λ′| = 1 and η(y) =
T
χ(x)ψ(x)dµy(x) does not vanish a.e. on Y . By

ergodicity, |η(y)| is constant a.e. on Y so without loss of generality we may
assume η ∈ Φ(Y,T). Consequently,

φ(y)m = λ′η(x+ β)/η(x),

which contradicts the weak mixing of φ.

Let α be an ergodic rotation of Td. Then it follows directly from the
definition of weak mixing that for every d′ ∈ N a cocycle φ : Td → T

d′

is weakly mixing over α iff χ ◦ φ is weakly mixing over α in Φ(Td,T) for
every nontrivial character χ of Td′

. The mapping φ→ χ ◦ φ is a continuous
open homomorphism of Φ(Td,Td′

) onto Φ(Td,T) so the inverse image of a
dense Gδ (residual) set is a dense Gδ (residual) set in Φ(Td,Td′

). We may
use this remark along with Lemma 1, the Proposition, and results from [I2,
I3] to prove that weakly mixing cocycles are generic in some subspaces of
Φ(Td,Td′

). As a sample result of this type we prove that “most” cocycles
among those defining skew-product C∞ diffeomorphisms which are homo-
topic to the identity are weakly mixing cocycles. To this end denote by
Φ∞
0 (Td,Td′

) the set of cocycles of the form F (x) = (f1(x), . . . , fd′(x)) mod-
ulo Z

d′

, where each of the functions fk(x1, . . . , xd) is C
∞ and 1-periodic in

all its variables. The space Φ∞
0 (Td,Td′

) will be endowed with its usual C∞

topology.

Corollary 1. Let d, d′ ∈ N. There exists a residual subset A of Rd such

that for every α ∈ A the set of weakly mixing cocycles in Φ∞
0 (Td,Td′

) is a

dense Gδ in Φ∞
0 (Td,Td′

).

P r o o f. Let A be the set of vectors α = (α1, . . . , αd) such that the num-
bers 1, α1, . . . , αd are rationally independent and α1 is a Liouville number.
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By [I2], Thm. 2, the weakly mixing cocycles over α1 form a dense Gδ set in
Φ∞
0 (T,T). It therefore follows from Lemma 1 that there exist weakly mixing

cocycles over α in Φ∞
0 (Td,T). On the other hand, by the Proposition, the

set of weakly mixing cocycles is a Gδ, so to prove that it is a dense Gδ in
Φ∞
0 (Td,T), it remains to show the denseness. This follows directly from the

following observations:

(a) the trigonometric polynomials in d variables with zero constant term
are coboundaries over any ergodic rotation of Td, in fact if

p(x) =
∑

aj exp(2πijx),

where jx =
∑
jkxk, then p(x) = g(x+ α)− g(x), where

g(x) =
∑

aj(exp(2πijα) − 1)−1 exp(2πijx),

(b) the constant cocycles with values β =
∑
lkαk, where l is any vector

in Z
d, are coboundaries since if g(x) =

∑
lkxk then g(x+ α)− g(x) = β,

(c) if 1, α1, . . . , αd are rationally independent then modulo 1 the set of all
β as above is dense in T; consequently, the set of coboundary polynomials
is dense in Φ∞

0 (Td,T),
(d) if φ is weakly mixing and ψ is a coboundary then φ + ψ is weakly

mixing.

The final step in the proof consists in passing from 1 to d′. Here we simply
use the open homomorphism φ 7→ χ ◦ φ from Φ∞

0 (Td,Td′

) onto Φ∞
0 (Td,T)

as indicated in the preceding discussion.

In the same manner, using Corollary 3 of [I2], we obtain the following
result for C1 cocycles. Here Φ1

0(T
d,Td′

) denotes the corresponding space of
C1 cocycles endowed with its C1 topology.

Corollary 2. Let d, d′ ∈ N. There exists a residual set A of full mea-

sure in R
d such that for every α ∈ A the set of weakly mixing cocycles in

Φ1
0(T

d,Td′

) is a dense Gδ in Φ1
0(T

d,Td′

).

It is clear that results of this type can also be obtained for other spaces
such as Cr, analytic, and entire cocycles (homotopic to constant functions),
thus extending the 1-dimensional case discussed in [I2, I3, KLR, Z].

2. Periodic approximation. We know from [R, IS, I2, I3] that if α ad-
mits a sufficiently good diophantine approximation then for “most” cocycles
in spaces such as Φ(T,T), Φr

0(T,T), etc., the skew product T admits a good
approximation by cyclic transformations in the sense of Katok and Stepin.
This implies that T is rigid and rank-one, so in particular it has simple si-
ngular spectrum. Moreover, the spectral measure must be concentrated on
a small set if the rate of approximation is high (see [I1] for more details).
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In the present section we indicate how to obtain analogous results for
skew products on multidimensional tori. The essential difference between
d = 1 and d > 1 is that now we will use an approximation of the second type
by periodic transformations (briefly, a.p.t.II; the definition, due to Katok
and Stepin [KS], is recalled below). This kind of approximation, however, is
sufficient to imply singular spectral type (see [I1], Thm. 4). The proofs are
only sketched to indicate differences with the one-dimensional arguments.
In the whole section we assume M = 0.

One important ingredient is the following lemma, which for d = 1 can be
found in [CSF], 16.3. In the present generality the proof is essentially the
same with the gradient ∇F replacing the derivative F ′ and the curvilinear
integral

x2\
x1

r−1∑

j=0

∇F (ξ + jα) dl

in place of the corresponding definite integral.

Lemma 2. Let 1, α1, . . . , αd be rationally independent real numbers and

F : Rd → R be C1 and 1-periodic in each variable. Then

max
1≤r≤q, ‖x1−x2‖≤1/q

∣∣∣
r−1∑

j=0

F (x1 + jα) − F (x2 + jα)
∣∣∣ → 0

as q → ∞.

It is clear that the lemma carries over to functions F : Rd → R
d′

by
considering each coordinate separately. Thanks to Lemma 2 we will be able
to prove that approximating partitions converge to the point partition of
the space T

d × T
d′

.

If α is as in Lemma 2 then lα 6∈ Z for every nonzero integer vector
l = (l1, . . . , ld). By the continuity of the inner product, for every r ∈ N

there exists a neighborhood U of α such that lβ 6∈ Z whenever β ∈ U , l 6= 0,
and |lj | ≤ r, j = 1, . . . , d. Now let P (x) be a real-valued trigonometric
polynomial in d variables,

P (x) =
r∑

l1=−r

. . .
r∑

ld=−r

al1...lde
2πilx.

If αn = (p
(n)
1 /qn, . . . , p

(n)
d /qn) → α, where αn is written in its reduced form,

then for all sufficiently large n we have αn ∈ U whence lαn 6∈ Z for all
nonzero l occurring in the representation of P (x). Consequently, for all such

l, qn does not divide
∑
ljp

(n)
j . It follows that
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qn−1∑

j=0

P (x+ jαn) = qna0...0

as in the 1-dimensional case (cf. [I3]).

According to [KS], T is said to admit a.p.t.II with speed u(n) if there
exist a sequence of partitions

{C0, . . . , CQn−1} → ε

and a sequence of pn-periodic transformations Tn permuting the sets Cj and
such that Tn → T and

Qn−1∑

j=0

|TCj △ TnCj | < u(pn).

If u(n) = o(v(n)), we will say that T admits a.p.t.II with speed o(v(n)). If
Qn = pn, the approximation is called cyclic.

As in [I3] we will consider rather general spaces of smooth cocycles con-
tained in Φ1

0(T
d,Td′

). Let E be an additive subgroup of Φ1
0(T

d,Td′

) endowed
with its own topology, stronger than the C1-convergence, and such that

(1) E is a complete metric group,

(2) E contains the constant mappings with natural topology,

(3) E has a dense subset of trigonometric polynomial mappings.

The next theorem is proved in a similar way to Theorem 1 of [I3].

Theorem 1. Let α,αn, E be as above and v(n) be a sequence of positive

numbers converging to zero. Suppose there exist integers sn → ∞ such that

‖α− αn‖ = o(v(snqn)/qn).

Then the set of cocycles F ∈ E such that the corresponding skew-product

diffeomorphism admits a.p.t.II with speed o(v(n)) is residual in E.

P r o o f. We first show how to approximate a skew product whose cocycle
is a special polynomial function. We begin by choosing a sequence of integers
sn → ∞ as in the statement of the theorem. Without loss of generality we

may assume that sn = s
(n)
1 . . . s

(n)
d′ , where the greatest common divisor of

s
(n)
1 , . . . , s

(n)
d′ is equal to 1 and min(s

(n)
1 , . . . , s

(n)
d′ ) → ∞. We define

C0 = [0, 1/qn)
d × [0, 1/sn)

d′

to be the first cell of an approximating partition. If P̃ is a trigonometric
polynomial mapping then according to the preceding discussion there exists
a vector cn of size not exceeding 1/qn such that Q̃n = P̃ + cn satisfies the



SKEW-PRODUCT DIFFEOMORPHISMS OF TORI 231

equation

qn−1∑

j=0

Q̃n(x+ jαn) = (1/s
(n)
1 , . . . , 1/s

(n)
d′ ) modulo Z

d′

.

It is clear that the skew product

TQ̃n
(x, y) = (x+ α, y + Q̃n(x))

is approximated by the qnsn-periodic transformation

Tn(x, y) = (x+ αn, y + Q̃n(x)).

The first qnsn cells of the partition Cj are defined to be the images of C0 by
T j
n. This gives the first tower—a cycle of length qnsn. To define Cqnsn we

pick any unoccupied 1/qn-cube C in [0, 1)d and let Cqnsn = C × [0, 1/sn)
d′

.
Now put

Cqnsn+j = T j
nCqnsn

for j = 0, . . . , qnsn − 1. By continuing in this manner we will produce qd−1
n

disjoint towers of height qnsn, each being a Tn-invariant set on which Tn acts
periodically with period qnsn. We obtain a partition consisting ofQn = qdnsn
elements Cj . The approximation error for a single 1/qn-cube is majorized
by

2d‖α − αn‖/qd−1
n

so the total error, which is at most qdn times larger, is bounded by

qno(v(qnsn)/qn) = o(v(qnsn)).

To pass from polynomial mappings to generic cocycles in E we use small
neighborhoods of the Q̃n’s from a dense set so that the approximation error
remains of the same magnitude; to obtain the convergence of the partitions
to the point partition ε we use Lemma 2 (see [I2] or [I3] for the details).

If we only care about a residual set of α’s, then the approximation can
be made cyclic.

Theorem 1′. Let E and v(n) be as above. There exists a residual subset

A of Rd such that for every α ∈ A the set of cocycles F ∈ E such that the

corresponding skew-product diffeomorphism admits a cyclic approximation

with speed o(v(n)) is residual in E.

P r o o f. To construct A we fix a sequence of integer vectors (q
(n)
1 , . . . , q

(n)
d )

such that the numbers q
(n)
j are distinct primes for any fixed n and

min
j
q
(n)
j → ∞.

It is clear that for every N the set of vectors of the form

β = (p
(n)
1 /q

(n)
1 , . . . , p

(n)
d /q

(n)
d ),
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where n ≥ N and 1 ≤ p
(n)
j < q

(n)
j , is dense in the d-torus. Now let sn be as

in the previous proof, qn = q
(n)
1 . . . q

(n)
d , and ηn = o(v(snqn)/snqn). Denote

by U(n) the union of the ηn-neighborhoods of all the vectors β for fixed n.
We define

A =
⋂

N

⋃

n≥N

U(n).

It is clear that A is a dense Gδ set, hence residual. For every α ∈ A we
choose a sequence of approximations βnk

and repeat the procedure from the
proof of Theorem 1, but with different partitions Cj . For simplicity we write
nk = n and βnk

= αn. Now let

C0 = [0, 1/q
(n)
1 )× . . .× [0, 1/q

(n)
d )× [0, 1/sn)

d′

and Cj = T j
nC0 for j = 1, . . . , snqn, where Tn is defined as before. We obtain

a single cycle of length snqn for Tn and the proof is completed without
difficulty.

By combining the above theorem with the results of the previous section
we may obtain cocycles which are both weakly mixing and well approx-
imable. In particular, by intersecting two residual sets we may produce
“large” sets of exponentially approximable weakly mixing analytic or even
entire cocycles in Φ1

0(T
d,Td′

) (cf. [I3] and the spaces Eλ therein). The
resulting skew products are analytic diffeomorphisms which are rigid and
have partly continuous spectrum with spectral measure concentrated on a
set of Hausdorff dimension zero (for the latter statement see [I1], Cor. 6).

It is also clear that in the special case of d = 1 we may replace a.p.t.II
by cyclic approximation in Theorem 1, with a proof as in [I3].

3. Lebesgue spectrum. In the present section we study cocycles of
the form

φ(x) = mx+ f(x) modulo Z
d′

,

where m is a nonzero vector in Z
d and f(x) is Z

d-periodic. The following
theorem generalizes a 1-dimensional result from [I4].

Theorem 2. Let f : Rd → R be a C1 function 1-periodic in each variable

and suppose ∑

j∈Zd

‖j‖3|f̂(j)|2 <∞.

Then for every α ∈ R
d such that 1, α1, . . . , αd are rationally independent

and for every m 6= 0 in Z
d the skew product

T (x, y) = (x+ α, y +mx+ f(x))

acting on T
d+1 has countable Lebesgue spectrum on the space L2(dx)⊥.
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P r o o f (sketch). The proof differs from the 1-dimensional case [I4] in
some details; we outline the necessary changes.

For every N 6= 0 the operator

(VNg)(x) = e2πiN(f(x)+mx)g(x+ α)

acts on L2(dx1 . . . dxd) = L2(dx). The partial sums Sn are defined as

Sn =
∑

‖j‖≤n

aj1...jde
2πi(j1x1+...+jdxd),

where aj1...jd = f̂(j1, . . . , jd) and ‖ ‖ is the sup norm. We have

|(VN
n1, 1)| ≤ 2π|N |

\
|f (n)(x)− S(n)

n (x)| dx

+
∣∣∣
\
e2πiN(S(n)

n
(x)+nmx) dx

∣∣∣
= In + II n,

where g(n)(x) =
∑n

k=0 g(x+kα) for n ≥ 0. It suffices to show as in [I4] that
the sequences In and II n are square summable. The proof for In does not
require any change. For II 2n we may assume m1 > 0 and write f ′ for the
partial derivative with respect to x1. The sets

An = {x1 ∈ [0, 1] : S(n)′
n (x)/n < 1/2−m1}

depend on x2, . . . , xd, but still f
′(n)/n→ 0 uniformly and

‖S′
n − f ′‖22 = 4π2

∑

‖j‖>n

j21 |f̂(j)|
2 ≤ 4π2

∑

‖j‖>n

‖j‖2|f̂(j)|2,

which allows us to prove
∑

|An| <∞ uniformly in x2, . . . , xd. The sets Bn

are defined without any change by

Bn = [0, 1] \ An = [a1, b1] ∪ [a2, b2] ∪ . . . ∪ [ar, br],

We obtain

II n ≤
\

Td−1

∣∣∣
\

An

e2πiN(S(n)
n

(x)+nmx) dx1

∣∣∣ dx2 . . . dxd

+
\

Td−1

∣∣∣
\

Bn

e2πiN(S(n)
n

(x)+nmx) dx1

∣∣∣ dx2 . . . dxd

≤ sup
x2,...,xd

|An|+
\

Td−1

∣∣∣
r∑

k=1

bk\
ak

e2πin(S
(n)
n

(x)+nmx) dx1

∣∣∣ dx2 . . . dxd.

We estimate the inner integral of the second term of II n by integration by
parts and the van der Corput lemma as in [I4] (cf. also [ILR]). The total
variation in x1 of the integrand on the set An is evaluated as the L1-norm
of its partial derivative and the same calculation as in [I4] carries over due
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to the uniformity of the estimates in the remaining variables (m will have
to be replaced by m1). The second derivative of Sn, which occurs in the
integration by parts, is also majorized as in dimension one:

‖S′′
n‖

2
2 ≤

∑

‖j‖≤n

(4π2‖j‖2|f̂(j)|)2.

As a result we will get
∑

II 2n <∞, completing the proof of the theorem.

It should be noted that if f ∈ C2(Td) then
∑

j ‖j‖
4|f̂(j)|2 < ∞, so f

satisfies the assumption of Theorem 2.
We may also consider the more general case of d′ ≥ 1,M 6= 0, and

F : R
d → R

d′

. Assume for simplicity that F ∈ Φ2
0(T

d,Td′

). For every
N ∈ Z

d′

\ {0} the character χN (y) = exp(2πiNy) of T
d′

defines the T -
invariant subpace HN ⊂ L2(Td×T

d′

) consisting of the functions g(x)χN (y).
The action of T on HN is unitarily conjugate to the operator

VNg(x) = e2πiN(F (x)+Mx)g(x+ α)

acting on L2(Td), so formally VN is the same as for d′ = 1. The argument
reduces to d′ = 1 with f(x) = NF (x) and m = NM . If m 6= 0 we are
in the position of Theorem 2 and obtain Lebesgue spectrum. If, on the
other hand, m = 0, then, at least for certain F ’s as in Sections 1 and 2,
we obtain singular continuous spectrum on HN . Moreover, the singular
part of T will have multiplicity one. To see the latter property we assume
0 < rank M = d′1 < d′, write T1 =MT

d,T2 = T
d′

/T1, and let π : Td′

→ T2

be the quotient homomorphism. Note that T2 can be identified as a d′−d′1-
dimensional torus and its dual group is just the annihilator T

⊥
1 of T1 in

the dual of Td′

(use the formula χπ = χ̃ for χ ∈ T
⊥
1 ). The homomorphism

π is now represented by an integer matrix. By the preceding discussion,
the spectrum is Lebesgue on the direct sum

⊕
χN∈T̂d′\T⊥

1
HN . On the other

hand, the spectral behavior of T on
⊕

χN∈T
⊥
1
HN is the same as that of the

skew product T2(x, y) = (x + α, y + πF (x)) on the space L2(Td × T2). By
Theorem 1′, for most α and most cocycles πF (hence for most F ’s) this
skew product admits a good cyclic approximation so it has simple singular
continuous spectrum on the orthocomplement of L2(dx) in L2(Td × T2).

Consequently, we have the following corollary.

Corollary 3. Let α and M be as above. If rankM = d′ then for every

F ∈ Φ2
0(T

d,Td′

) the skew product diffeomorphism T has countable Lebesgue

spectrum on L2(dx)⊥. If 0 < rankM < d′ then for a residual set of vectors

α and a residual set of functions F ∈ Φr
0(T

d,Td′

)(r = 2, 3, . . . ,∞) the skew

product T is ergodic and its spectrum on L2(dx)⊥ splits into a Lebesgue part

with infinite multiplicity and a singular continuous part with multiplicity

one.
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It is clear that the functions F in the second part of the corollary can
also be chosen analytic or entire at the expense of diminishing the set of α’s.
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