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TOPOLOGICAL ALGEBRAS WITH AN ORTHOGONAL
TOTAL SEQUENCE

BY

HERMANN RENDER (DUISBURG)

The aim of this paper is an investigation of topological algebras with an
orthogonal sequence which is total. Closed prime ideals or closed maximal
ideals are kernels of multiplicative functionals and the continuous multi-
plicative functionals are given by the “coefficient functionals”. Our main
result states that an orthogonal total sequence in a unital Fréchet algebra is
already a Schauder basis. Further we consider algebras with a total sequence
(xn)n∈N satisfying x2

n = xn and xnxn+1 = xn+1 for all n ∈ N.

Introduction. Let A be a topological algebra. A family (zi)i∈I is called
orthogonal if zizj = 0 for all i 6= j and z2

i = zi 6= 0 for all i ∈ I, and it
is called total if the linear span of the family is dense. A sequence (xn)n∈N
is called a basis if for each x ∈ A there exists a unique sequence of scalars
(αn)n∈N such that x =

∑∞
n=1 αnxn. The concept of a topological algebra

with an orthogonal basis was introduced in [10] and since then there has
been an extensive literature; cf. [1], [6], [11], [12]. The aim of this paper is
to show that many results can be carried over to topological algebras with
an orthogonal sequence which is only total in the algebra. For example,
closed prime ideals or closed maximal ideals are the kernels of multiplica-
tive functionals. The continuous multiplicative functionals are given by the
“coefficient functionals” δi, i ∈ I. Unital algebras are semisimple and in the
general case a description of the radical is given. The investigation of alge-
bras with an orthogonal total sequence was motivated by algebras of holo-
morphic functions endowed with the Hadamard product: Let G be a domain
containing 0 and let H(G) be the set of all holomorphic functions with the
compact-open topology. The Hadamard product f ∗ g of f(z) =

∑∞
n=0 anz

n

and g(z) =
∑∞

n=0 bnz
n is defined locally as f ∗ g(z) =

∑∞
n=0 anbnz

n. If Gc

is a semigroup then f ∗ g has a holomorphic continuation to G and H(G) is
a commutative B0-algebra. If G is in addition simply connected then H(G)
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is a B0-algebra with the orthogonal total sequence zn, n ∈ N0. Examples
are C− := C \ [1,∞) or Dr := {z ∈ C : |z| < r} (r > 1); cf. [2], [4], [13].

The first section of this paper is devoted to the study of algebras with
an orthogonal sequence. Our main result states that an orthogonal total
sequence in a unital Fréchet algebra is already a Schauder basis. Examples
show that the assumption of having a unit element or being a Fréchet algebra
cannot be omitted. Hence, by a result of T. Husain, the space CN is the only
unital Fréchet algebra with an orthogonal total (infinite) sequence. In the
second section we consider algebras with a total sequence (xn)n∈N satisfying
x2

n = xn and xnxn+1 = xn+1 for all n ∈ N and we give some improvements
of results in [1].

1. Total orthogonal families. Let A be a topological Hausdorff
algebra over the field K of real or complex numbers. A family of distinct
points zi ∈ A, i ∈ I, is called strongly orthogonal if zizi = zi 6= 0 for all
i ∈ I and azi ∈ Kzi for all a ∈ A, i ∈ I. Note that a linear functional
δi : A → K is induced via the formula azi = δi(a)zi. Further, the kernel of
a linear functional δ is denoted by ker(δ). Lemmas 3.1 and 3.2 in [13] yield
the following result:

1.1. Proposition. Let (zi)i∈I be a strongly orthogonal family. Then
the following statements hold :

(a) δi is a continuous multiplicative functional.
(b) zizj = 0 for all i 6= j, hence (zi)i∈I is orthogonal.
(c) Let M be a right ideal. Then either M ⊂ ker(δi) or zi ∈M.

1.2. Proposition. A total family (zi)i∈I is orthogonal if and only if it
is strongly orthogonal.

P r o o f. Let P be the linear span of {zi : i ∈ I}. If p ∈ P then pzi ∈ Kzi

by orthogonality. Now let x ∈ A and (pj)j be a net in P converging to x.
Since pjzi = λjzi for some λj and pjzi converges (to xzi) we infer that (λj)j

is a Cauchy net. Hence there exists λ ∈ C such that pjzi → λzi. On the
other hand, pjzi → xzi.

Let A be a topological algebra with an orthogonal total family. With
the same methods as in 1.2 it is easy to see that zia = azi = δi(a)zi. By a
continuity argument one obtains ab = ba for all a, b ∈ A, i.e., A is necessarily
commutative.

1.3. Proposition. Let A be a topological algebra with an orthogonal
total family. Then the Jacobson radical rad(A) is given by

rad(A) =
⋂
i∈I

ker(δi) = {a ∈ A : ab = 0 for all b ∈ A} = {a ∈ A : a2 = 0}.

If A contains a unit element then A is semisimple.
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P r o o f. The first inclusion is trivial. Suppose now that δi(a) = 0 for all
i ∈ I. Let b ∈ A be arbitrary and (pj)j be a net in P converging to b. Then
apj = 0 since pj ∈ P and azi = δi(a)zi = 0. By continuity we infer ab = 0.
Now let a ∈ A with ab = 0 for all b ∈ A. Let M be a maximal modular ideal
and choose b ∈ A \M. Then ab = 0 and (a +M)(b +M) = 0. Since A/M
is a field we obtain a + M = 0. Hence a ∈ rad(A). Finally, it is clear that
{a ∈ A : a2 = 0} is contained in rad(A). If x ∈ rad(A) then ab = 0 for all b
by the above and therefore a2 = 0.

The next two results have been established in [13]:

1.4. Theorem. Let (zi)i∈I be an orthogonal total family in the topolog-
ical algebra A. Let M be an ideal of A. Then the following statements are
equivalent :

(a) M is a prime ideal which is contained in a closed ideal.
(b) M is a closed prime ideal.
(c) M is a closed maximal ideal.
(d) There exists i ∈ I with M = ker(δi).

If A has a unit element e, then the closed maximal ideals are generated by
the elements e− zi, i ∈ I.

1.5. Theorem. Let A be a unital topological algebra with an orthogonal
total family. Let M be a closed ideal and B := {i ∈ I : δi(a) = 0 for all
a ∈M}. Then M =

⋂
i∈B ker(δi).

The following is now an easy consequence; cf. Theorem 1.1 in [6] and
Corollary 1.5 in [11].

1.6. Corollary. An orthogonal basis in a topological algebra is a Schau-
der basis. A topological algebra with an orthogonal basis A is semisimple.

P r o o f. Let z =
∑∞

n=1 αnzn. Then δm(z)zm = zzm = αmzm, i.e.,
δm(z) = αm is continuous for each m. Let us show that a topological
algebra with an orthogonal basis is semisimple: if z is in the radical then
αn = δn(z) = 0 for all n and hence z =

∑∞
n=1 αnzn = 0.

In [10] it is shown that the only unital Fréchet algebra with an orthogonal
basis is the space CN. This result can be generalized to the case of a unital
Fréchet algebra with an orthogonal total sequence. On the other hand, the
unital B0-algebra H(C−) (endowed with the Hadamard product) does not
have an orthogonal basis (cf. [13]) although zn, n ∈ N0, is an orthogonal
total sequence. Hence the assumption of being a Fréchet algebra is essential.
Moreover, one cannot omit the assumption of having a unit element, as
Remark 1.8 shows.
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1.7. Theorem. Let A be a unital complex Fréchet algebra. Then an
orthogonal total sequence (zn)n∈N is a Schauder basis.

P r o o f. By Theorem 1.4 we know that the set ∆A of all continuous
multiplicative functionals is equal to {δn : n ∈ N}. Note that {h ∈ ∆A :
h(zn) = 0 for all n ∈ N} = ∅. By a theorem in [8, p. 136] there exists
a sequence (bn)n in A such that e =

∑∞
n=1 znbn. But znbn = δn(bn)zn

and zne = z2
nbn = znbn = δn(bn)zn. It follows that δn(bn) = 1 for all

n ∈ N. Hence we have proved that e =
∑∞

n=1 zn. This implies x = xe =∑∞
n=1 xzn =

∑∞
n=1 δn(x)zn for x ∈ A.

1.8. R e m a r k. We give an example showing that the assumption of
having a unit in Theorem 1.7 is essential. Let G := {z ∈ C : |z| < 3} \ [2, 3).
Then H(G) is a non-unital Fréchet algebra (cf. Theorem 2.8 in [13]) with
respect to Hadamard multiplication. Clearly the monomials zn (n ∈ N0)
are an orthogonal and total family (since G is simply connected). Suppose
that it is a basis. Then 1/(2 − z) =

∑∞
n=0 anz

n (compact convergence in
G). Hence this power series converges compactly on {z ∈ C : |z| < 3}. But
an are the Taylor coefficients of 1/(2 − z), and therefore an = 1/2n+1 and
the convergence radius is only 2, a contradiction.

Let A be a topological algebra with an orthogonal total sequence. By
Theorem 1.4 the continuous multiplicative functionals are given by δn,
n ∈ N. In [17] Żelazko proved that, if a Fréchet algebra has at most count-
ably many continuous multiplicative functionals, then each multiplicative
functional is continuous. An important ingredient of the proof is a result of
R. Arens concerning the joint spectrum in a Fréchet algebra. We give here
a modification of the proof which uses only the description of the spectrum
of a single element via multiplicative functionals.

1.9. Theorem. Let A be a unital topological algebra with an orthogo-
nal total sequence. If A is Baire and σ(a) = {h(a) : h ∈ ∆A} then each
multiplicative functional is continuous.

P r o o f. Let An,m := ker(δn − δm) for n 6= m. Then An,m is closed and
nowhere dense (since it is a hyperplane). By Baire’s category theorem there
exists a ∈ A with a 6∈ An,m, i.e., δn(a) 6= δm(a) for all n 6= m. Now let ψ be a
multiplicative functional. Since a−ψ(a) is not invertible there exists n ∈ N
with δn(a−ψ(a)) = 0, i.e., ψ(a) = δn(a). It follows that δm(a−ψ(a)+zn) 6= 0
for all m∈N0. Hence there exists b∈A with (a− ψ(a) + zn)b=1. It follows
that 1− δn(b)zn = 1− bzn = (a− ψ(a))b ∈ ker(ψ). Therefore ψ = δn.

2. Total sequences with x2
n = xn and xnxn+1 = xn+1. Let A

be a commutative topological Hausdorff algebra over the field K of real
or complex numbers. We assume that there exists a sequence of distinct
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points xn with x2
n = xn and xnxn+1 = xn+1 for all n ∈ N. Such algebras

have been discussed in [1] and we give here some improvements of the results
therein. Note that zn := xn − xn+1 6= 0 is a strongly orthogonal sequence;
see Theorem 2.1(a) below. Hence we can define multiplicative functionals δn
via the formula zzn = δn(z)zn for n ∈ N. It is easy to see that 1 = δn(x1) =
. . . = δn(xn) and δn(xk) = 0 for all k > n. Statement (c) of Theorem
2.1 was proved in [1] only for complete LMC algebras. The following is a
consequence of the theorem of Żelazko and Theorem 2.1(c):

If A is a Fréchet algebra with a total sequence (xn)n∈N of distinct points
satisfying x2

n = xn and xnxn+1 = xn+1 for all n ∈ N then each multiplicative
functional is continuous.

2.1. Theorem. Let A be a topological algebra with a total sequence
(xn)n∈N of distinct points satisfying x2

n = xn and xnxn+1 = xn+1 for all
n ∈ N. Then the following statements hold :

(a) zn := xn−xn+1 induces a strongly orthogonal sequence and x1 is the
unit element.

(b) If f is a non-trivial multiplicative functional then either f(xn) = 1
for all n ∈ N or there exists n ∈ N with f = δn.

(c) There are at most countably many continuous multiplicative func-
tionals.

(d) If (xn)n is a basis then A is semisimple.

P r o o f. (a) It is easy to see that z2
n = zn. Let Q be the linear span of

{xn : n ∈ N}. For x ∈ A there exists a net qj converging to x ∈ A. It is
easy to see that qzn ∈ Kzn for all n ∈ N and q ∈ Q. Hence qjzn = λjzn

and λj is a Cauchy sequence since qjzn converges to xzn. It follows that
xzn = λzn, where λ is the limit of λj . In order to show that x1 is the unit
element note that x1q = q for all q ∈ Q. Since each x ∈ A is a limit of some
qj a continuity argument shows that x1x = x.

For (b) note that f(xn+1) = f(xnxn+1) = f(xn)f(xn+1) and f(x1) = 1
since x1 is the unit element. Suppose that f(xn0+1) = 0 for some n0 ∈ N
and that n0 is minimal with this property. Then f(yn0) 6= 0 for yn0 =
xn0 − xn0+1. Since ayn0 = δn0(a)yn0 we infer

f(a)f(yn0) = f(ayn0) = f(δn0(a)yn0) = δn0(a)f(yn0).

Hence f(a) = δn0(a). Finally, suppose that f(xn) 6= 0 for all n ∈ N. Then
f(xn) = 1 by the above recursion formula.

For (c) let f, g be continuous multiplicative functionals different from δn
(n ∈ N). Then f(xn) = 1 = g(xn) for all n ∈ N. Since the linear span of
{xn : n ∈ N} is dense one obtains f = g by continuity.

For (d) we refer to the proof of Proposition 4.3 in [1].
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2.2. Proposition. Let A be a topological algebra with a total sequence
(xn)n∈N satisfying x2

n = xn and xnxn+1 = xn+1 for all n ∈ N. Then
zn := xn − xn+1, n ∈ N is total provided that xn converges to zero.

P r o o f. Note that z1+. . .+zn = (x1−x2)+. . .+(xn−xn+1) = x1−xn+1.
Hence

∑∞
n=1 zn = x1 is contained in the closure of the linear span of {zn :

n ∈ N}, which will be denoted by M. As x1 ∈ M and z1 + . . . + zn−1 =
x1 − xn ∈M we obtain xn ∈M . Hence M = A.

The following result was proved in [1] for complete LMC algebras (hence
(i) is automatically satisfied) and for cn = 1. Our theorem can be applied
to the B0-algebra H(D) which is not a Fréchet algebra but satisfies the
assumptions; cf. [3].

2.3. Theorem. Let A be a topological algebra with a total sequence
(xn)n∈N satisfying x2

n = xn and xnxn+1 = xn+1 for all n ∈ N. Suppose that
A satisfies the following two conditions:

(i) σ(x) is contained in the closure of {h(x) : h ∈ ∆A} for all x ∈ A,
and

(ii) there exist cn ≥ 0 such that
∑∞

n=1 cnxn ∈ A and
∑∞

n=1 cn = ∞.

Then each multiplicative functional is continuous.

P r o o f. If f is a non-trivial multiplicative functional different from all
δn then f(xn) = 1 for all n ∈ N by Theorem 2.1(b). Put yn :=

∑∞
k=n ckxk.

Then σ(yn) ⊂ [0,∞): for each multiplicative continuous functional we have
h(yn) =

∑∞
k=n ckh(xk) and h(xk) ∈ {0, 1} (since x2

k = xk) and ck ≥ 0.
By (i) the result follows. Since f(yn) ∈ σ(yn) by multiplicativity we infer
f(yn) ≥ 0. Hence f(

∑∞
n=0 cnxn) = c1 + . . .+ cn + f(yn+1) ≥ c1 + . . .+ cn.

Since
∑∞

n=0 cn = ∞ we obtain a contradiction.
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