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1. Introduction. It is known that every pseudosymmetric manifold
is Weyl pseudosymmetric but the converse of the statement is not true
(see [8]). However, under some additional assumptions, a Weyl pseudosym-
metric manifold is pseudosymmetric. For instance, in [4] (see Corollary)
it was shown that every Weyl pseudosymmetric hypersurface of dimen-
sion ≥ 4, isometrically immersed in a Euclidean space, is pseudosym-
metric.

In the present paper we consider a more general case. Namely, we ex-
amine the Weyl pseudosymmetric hypersurfaces in semi-Riemannian spaces
of constant curvature. Our main result (see Theorem 3.1) states that ev-
ery Weyl pseudosymmetric hypersurface of dimension ≥ 4, isometrically
immersed in a semi-Riemannian space of constant curvature, is pseudosym-
metric. Recently, pseudosymmetric as well as Ricci-pseudosymmetric hy-
persurfaces, isometrically immersed in spaces of constant curvature, were
investigated in [2], [3] and [22]–[24] (see also [14]).

A semi-Riemannian manifold (M, g), n = dimM ≥ 3, is said to be pseu-
dosymmetric [16] if at every point of M its Riemann–Christoffel curvature
tensor R satisfies the following condition:

(∗)1 the tensors R ·R and Q(g,R) are linearly dependent.

More precisely, the manifold (M, g) is pseudosymmetric if and only if

(1) R ·R = LRQ(g,R)

holds on the set UR = {x ∈ M : Z(R) 6= 0 at x}, for some function LR

on UR. For precise definitions of the symbols used, we refer to Section 2.
One of the important subclasses of pseudosymmetric manifolds is the class
of semisymmetric manifolds. A semi-Riemannian manifold (M, g), n ≥ 3, is
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called semisymmetric if

(2) R ·R = 0,

holds on M . The notion of pseudosymmetry is the proper generalization of
semisymmetry. E.g. certain warped product manifolds (see [5], [12], [16])
provide the examples of non-semisymmetric pseudosymmetric manifolds. It
is easy to verify that if (∗)1 holds at a point of a semi-Riemannian manifold
(M, g) then its Weyl conformal curvature tensor C satisfies at this point the
following condition:

(∗)2 the tensors R · C and Q(g, C) are linearly dependent.

The manifold (M, g), n ≥ 4, is called Weyl pseudosymmetric ([9]) if (∗)2
holds on M . The manifold (M, g) is Weyl pseudosymmetric if and only if

(3) R · C = LCQ(g, C)

is fulfilled on the set UC = {x ∈ M : C 6= 0 at x}, for some function LC

on UC . The class of Weyl pseudosymmetric manifolds forms an extension of
the class of Weyl-semisymmetric manifolds. A semi-Riemannian manifold
(M, g), n ≥ 4, is called Weyl-semisymmetric if

(4) R · C = 0,

holds on M . It is clear that any Weyl-semisymmetric manifold is Weyl pseu-
dosymmetric. The converse of this statement is not true (see [8]). In [26,
Proposition] it was shown that (2) and (4) are equivalent on the subset UC

of any semi-Riemannian manifold of dimension ≥ 5. In [15, Lemma 2] it
was shown that any totally umbilical submanifold isometrically immersed
in a semi-Riemannian Weyl pseudosymmetric manifold is also Weyl pseu-
dosymmetric. In [17, Theorem 1] it was shown that (3) and

(5) R ·R = LCQ(g,R),

are equivalent on the subset UC of every semi-Riemannian manifold of di-
mension n ≥ 5. Further, (3) and (5) are equivalent on the subset UC of
every 4-dimensional warped product manifold [9, Theorem 3]. Of course,
every conformally flat Riemannian manifold of dimension n ≥ 4 is Weyl
pseudosymmetric. However, there exist conformally flat manifolds, which
are not pseudosymmetric (see, e.g. [5, Example 4.1]). An example of a 4-
dimensional, non-semisymmetric and non-conformally flat Riemannian man-
ifold satisfying (4) was presented in [6, Lemme 1.1]. A certain conformal de-
formation of that manifold gives a non-pseudosymmetric Weyl pseudosym-
metric manifold with non-zero tensor R · C (see [8]).
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2. Preliminary results. Let (M, g), n = dimM ≥ 3, be a connected
semi-Riemannian manifold of class C∞. We denote by ∇, S and κ the
Levi-Civita connection, the Ricci tensor and the scalar curvature of (M, g),

respectively. We define on M the endomorphisms R̃(X,Y ), X ∧ Y and

C̃(X,Y ) by

R̃(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y,

C̃(X,Y ) = R̃(X,Y ) +
1

n− 2

(
κ

n− 1
X ∧ Y − (X ∧ S̃Y + S̃X ∧ Y )

)
,

where X,Y, Z ∈ Ξ(M), the Lie algebra of vector fields on M . The Ricci

operator S̃ is defined by g(S̃X,Y ) = S(X,Y ). The Riemann–Christoffel
curvature tensor R, the Weyl conformal curvature tensor C, the (0, 4)-tensor
G and the tensor Z(R) are defined by

R(X1, . . . , X4) = g(R̃(X1, X2)X3, X4),

C(X1, . . . , X4) = g(C̃(X1, X2)X3, X4),

G(X1, . . . , X4) = g((X1 ∧X2)X3, X4),

Z(R) = R− κ

n(n− 1)
G,

where X1, . . . , X4 ∈ Ξ(M). Further, for a symmetric (0, 2)-tensor field A
on M we define the endomorphism X ∧A Y of Ξ(M) by

(X ∧A Y )Z = A(Z, Y )X −A(Z,X)Y,

where X,Y, Z ∈ Ξ(M). Evidently, we have X ∧g Y = X ∧ Y . For a
(0, k)-tensor field T on M , k ≥ 1, and a symmetric (0, 2)-tensor field A on
M , we define the (0, k + 2)-tensor fields R · T and Q(A, T ) by

(R · T )(X1, . . . , Xk;X,Y ) = − T (R̃(X,Y )X1, X2, . . . , Xk)

− . . .− T (X1, . . . , Xk−1, R̃(X,Y )Xk),

Q(A, T )(X1, . . . , Xk;X,Y ) = − T ((X ∧A Y )X1, X2, . . . , Xk)

− . . .− T (X1, . . . , Xk−1, (X ∧A Y )Xk).

Lemma 2.1. Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying
at a point x ∈ UC ⊂M the equation (3).

(i) The following equality is fulfilled at x:

(6) (n− 2)(R · S)hklm + gklVhm − gkmVlh + glhVkm − ghmVkl
+ (R · S)lkhm + (R · S)hmlk − (R · S)mkhl − (R · S)hlmk = 0,

where V is the (0, 2)-tensor field on M with the local components Vij defined
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by

Vij = ghk(R · S)hijk.

(ii) If for a symmetric (0, 2)-tensor W the equality R · S = Q(g,W ) is
satisfied at x then (5) is fulfilled at x.

P r o o f. (i) The equality (6) was obtained in [17].

(ii) By our assumption, from [20, Lemma 2] it follows that

(7) R · S = LCQ(g, S)

holds at x. But (7) reduces (3) to (5), which completes the proof.

Let M be a hypersurface isometrically immersed in a semi-Riemannian
manifold (N, g̃), n = dimM ≥ 4. We denote by g the induced metric tensor
from g̃. Let the equations xr = xr(yh) be the local parametric expression
of M in (N, g̃), where yh and xr are the local coordinates of M in N ,
respectively, and h, i, j, k, l,m ∈ {1, . . . , n} and r, s, t, u ∈ {1, . . . , n + 1}.
The Gauss equation of M in (N, g̃) can be written in the form

(8) Rhijk = R̃rstuB
r
hB

s
iB

t
jB

u
k + ε(HhkHij −HhjHik),

where R̃rstu, Rhijk and Hhk denote the local components of the Riemann–

Christoffel curvature tensor R̃ of (N, g̃), the Riemann–Christoffel curvature
tensor R of M and the second fundamental tensor H of M in (N, g̃), re-
spectively. Furthermore, Br

k = ∂xr/∂yk, ε = g̃(ξ, ξ) = ±1 and ξ is the
local unit normal vector field. If M is a hypersurface isometrically im-
mersed in a semi-Riemannian space of constant curvature Nn+1(c) then (8)
becomes

(9) Rhijk = ε(HhkHij −HhjHik) +
κ̃

n(n+ 1)
Ghijk,

where Ghijk = ghkgij − ghjgik are the local components of the tensor G.

We denote by Hp
ij = ghkHp−1

hi Hkj , p = 2, 3, . . . , the local components of

the tensor Hp. We have also tr(H) = ghkHhk. Using (9) we can obtain the
following result.

Lemma 2.2 ([2], Lemma 2.1). The following identity is satisfied on ev-
ery hypersurface M isometrically immersed in a semi-Riemannian space of
constant curvature Nn+1(c), n ≥ 3:

(10) R · S = Q(H, tr(H)H2 −H3) +
εκ̃

n(n+ 1)
Q(g, tr(H)H −H2).

Lemma 2.3. Let M be a hypersurface isometrically immersed in a semi-
Riemannian space of constant curvature Nn+1(c), n ≥ 4, and let (3) be
satisfied at a point x ∈ UC ⊂M . Then (5) holds at x.
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P r o o f. From Lemma 2.1(i) it follows that (6) is fulfilled at x. Sub-
stituting the identity (10) in (6), after straightforward calculations, we ob-
tain

n tr(H)Q(H,H2)− nQ(H,H3) +Q(g, V )

+
εκ̃

n+ 1
(tr(H)Q(g,H)−Q(g,H2)) = 0.

We can write the above equality in the form

Q(H, tr(H)H2 −H3) = Q(g,W ),

W being a symmetric (0, 2)-tensor. By (10) we get R · S = Q(g,W ),
where W is a symmetric (0, 2)-tensor. Now Lemma 2.1(ii) completes the
proof.

Lemma 2.4. Let M be a hypersurface isometrically immersed in a semi-
Riemannian space of constant curvature Nn+1(c), n ≥ 4. Then at every
point of the set M − UC the condition (∗)1 is fulfilled.

P r o o f. Our assertion is trivial at all points of M − UC at which the
tensor Z(R) of M vanishes. Let x be a point of M −UC at which Z(R) 6= 0.
From [21, Theorem 4.1] it follows that M is quasi-umbilical at x, i.e. the

relation H = α̃g+ β̃u⊗u holds at x, where u ∈ T ∗x (M) and α̃, β̃ ∈ R. From
the last relation we get easily

(11) H2 = αH + βg, α, β ∈ R.
Now, [22, Lemma 1] implies R · R = (κ̃/(n(n + 1)) − εβ)Q(g,R), which
completes the proof.

R e m a r k 2.1. As we have stated in the proof of Lemma 2.4, every
quasi-umbilical hypersurface M in a semi-Riemannian space of constant
curvature Nn+1(c), n ≥ 4, fulfils (11). In particular, when the ambient
space is a Riemannian space of constant curvature Nn+1(c), n ≥ 4, quasi-
umbilicity of M means that M has a principal curvature of multiplicity
≥ n − 1. It is clear that hypersurfaces in Nn+1(c) having at every point
two distinct principal curvatures, with multiplicity p and n−p, realize (11),
where 1 ≤ p ≤ n − 1. For instance, certain cyclides of Dupin isometrically
immersed in a Euclidean space En+1, n ≥ 4, have exactly two distinct
principal curvatures (cf. [27], Theorem 5).

3. Main results

Theorem 3.1. Every Weyl pseudosymmetric hypersurface M isometri-
cally immersed in a semi-Riemannian space of constant curvature Nn+1(c),
n ≥ 4, is pseudosymmetric and conversely. Moreover , on the set UC ⊂ M ,
(3) and (5) are equivalent.
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P r o o f. Our assertion is an immediate consequence of Lemmas 2.3
and 2.4.

R e m a r k 3.1. From Theorem 3.1 it follows that the 4-dimensional Weyl-
semisymmetric manifold defined in [6, Lemme 1.1] cannot be isometrically
immersed in a 5-dimensional space of constant curvature. Using some other
arguments we have already noted this fact in [25] (see Section 4).

We recall that the Cartan hypersurface in the sphere Sn+1(c) is a com-
pact, minimal hypersurface with constant principal curvatures −(3c)1/2, 0,
(3c)1/2 having the same multiplicity. The Cartan hypersurfaces exist only for
n = 3, 6, 12, 24. More precisely, the Cartan hypersurfaces are tubes of con-
stant radius over the standard Veronese embeddings i : FP 2 → S3d+1(c)→
E3d+2, d = 1, 2, 4, 8, of the projective plane FP 2 in the sphere S3d+1(c) in a
Euclidean space E3d+2, where F = R (real numbers), C (complex numbers),
Q (quaternions) or O (Cayley numbers), respectively ([1]). As shown in
[22, Example 2], the Cartan hypersurface in S4(c) is a non-semisymmetric,
pseudosymmetric manifold satisfying the equation

R ·R =
κ̃

12
Q(g,R).

The Cartan hypersurfaces of dimensions: 6, 12, 24 are non-pseudosymmetric.
They realize a weaker curvature condition of pseudosymmetry type. Namely,
every Cartan hypersurface in Sn+1(c), n = 6, 12, 24, is a non-pseudo-
symmetric, Ricci-pseudosymmetric manifold satisfying the equation [24,
Theorem 1]

R · S =
κ̃

n(n+ 1)
Q(g, S).

A semi-Riemannian manifold (M, g), dimM ≥ 3, is said to be Ricci-pseudo-
symmetric ([7], [19]) if at every point of M the following condition is satis-
fied:

(∗)3 the tensors R · S and Q(g, S) are linearly dependent.

The manifold (M, g) is Ricci-pseudosymmetric if and only if

(12) R · S = LSQ(g, S)

holds on the set US = {x ∈ M : S − (κ/n)g 6= 0 at x}, for some function
LS on US . We note that US ⊂ UR. However, on 3-dimensional semi-
Riemannian manifolds we have US = UR. Evidently, if (1) is satisfied on
the subset UR of a manifold (M, g) then

(13) R · S = LRQ(g, S)

holds on US ⊂M . On manifolds of dimensions ≥ 4 the converse statement
is not true. On 3-dimensional semi-Riemannian manifolds, (1) and (13) are
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equivalent [18, Lemma 2]. Recently, in [3, Theorem 3.8] it was proved that
every Ricci-pseudosymmetric hypersurface M isometrically immersed in a
5-dimensional semi-Riemannian space of constant curvature is pseudosym-
metric. This means that (12) implies on US ⊂M

R ·R = LSQ(g,R).

Combining this result with Theorem 3.1 we get the following corollary.

Corollary 3.1. Every Weyl pseudosymmetric hypersurface M isomet-
rically immersed in a semi-Riemannian space of constant curvature N5(c)
is Ricci-pseudosymmetric and conversely.

R e m a r k 3.2. Very recently, in [14] it was stated that the tensor R ·R
vanishes at a point x of a hypersurface isometrically immersed in a semi-
Euclidean space En+1

s , n ≥ 3, if and only if either H2 = λH, λ ∈ R, or

(14) H = αv ⊗ v + βw ⊗ w, v, w ∈ T ∗x (M), α, β ∈ R.
In particular, the 3-dimensional Cartan hypersurface realizes (14).

A consequence of Theorem 3.1, Theorem 1 of [10] and the above remark
give rise to the following corollary, which generalizes Theorem 3 of [4].

Corollary 3.2. Let M be a hypersurface isometrically immersed in a
semi-Euclidean space En+1

s , n ≥ 4. Then M is a Weyl pseudosymmetric
manifold if and only if for every point x ∈M , (11) or (14) holds at x.

R e m a r k 3.3. Semi-Riemannian manifolds realizing curvature condi-
tions (∗)1, (∗)2 or (∗)3 are called manifolds of pseudosymmetry type. We
refer to [11], [13] and [28] for survey articles on such manifolds.

REFERENCES

[1] T. E. Cec i l and P. J. Ryan, Tight and Taut Immersions of Manifolds, Pitman,
Boston, 1988.

[2] F. Defever, R. Deszcz, P. Dhooghe, L. Verstrae len and S. . Yaprak, On
Ricci-pseudosymmetric hypersurfaces in spaces of constant curvature, Results in
Math. 27 (1995), 227–236.
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