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TAME ALGEBRAS WITH STRONGLY
SIMPLY CONNECTED GALOIS COVERINGS

BY

ANDRZEJ SKOWROŃSK I (TORUŃ)

Throughout, by an algebra we mean a basic connected, finite-dimensional
associative K-algebra with 1 over an algebraically closed field K. By a mod-
ule over an algebra A we mean a right A-module of finite K-dimension.

From Drozd’s remarkable Tame and Wild Theorem [14] the class of al-
gebras may be divided into two disjoint classes. One class consists of tame
algebras for which the indecomposable modules occur, in each dimension d,
in a finite number of discrete and a finite number of one-parameter families.
The second class is formed by the wild algebras whose representation theory
is as complicated as the study of finite-dimensional vector spaces together
with two non-commuting endomorphisms, for which the classification is a
well-known unsolved problem. Hence, we can hope to classify the modules
only for tame algebras. Here, we are concerned with the representation
theory of tame algebras having simply connected Galois coverings.

Among tame algebras we may distinguish the class of representation-fi-
nite algebras, having only finitely many isomorphism classes of indecompos-
able modules. This class of algebras is presently rather well understood (see
[3], [8], [9], [10]). In particular, we know that every representation-finite
algebra A admits a standard form A [10], which is the best possible de-
generation of A, such that A and A have the same number of isomorphism
classes of indecomposable modules, and A admits a (strongly) simply con-
nected Galois covering. This leads to the criterion of Bongartz for finite
representation type [8], and reduces the study of modules over arbitrary
representation-finite algebras to that for the corresponding simply connected
algebras.

The representation theory of tame representation-infinite algebras is only
emerging. At present the most accessible seem to be the (tame) algebras
of polynomial growth [26], for which there exists a positive integer m such
that the number of one-parameter families of indecomposable modules is
bounded, in each dimension d, by dm. It contains the class of domestic al-
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gebras for which there is a constant bound on the number of one-parameter
families in each dimension. Important classes of polynomial growth algebras
are tilted algebras of Euclidean type and tubular algebras [24]. We know
also that all tame tilted algebras are domestic [18], and hence of polynomial
growth. A representation theory of arbitrary strongly simply connected
algebras of polynomial growth has been established by the author in [31].

Recently Geiss proved in [16] that if an algebra A admits a tame degen-
eration B (in the variety of algebras of a given dimension) then A is also
tame. Hence, a convenient way to determine whether a given algebra A
is tame consists in finding a suitable tame degeneration of A. We expect
that every algebra A of polynomial growth admits a canonical degeneration
A (a standard form of A) which is of polynomial growth, admits a simply
connected Galois covering, and such that the representation theories of A
and A are very close.

The main objective of this paper is to establish criteria for the polyno-
mial growth (respectively, domestic type) of algebras having strongly simply
connected Galois coverings. Applying the Galois covering techniques devel-
oped in [13] (see also [15]), we prove in Theorem 2.4 that, if an algebra
A admits a Galois covering F : R → R/G = A with R strongly simply
connected and without hypercritical and pg-critical convex subcategories,
then A is tame and every indecomposable A-module is either the push-
down Fλ(Z) of an indecomposable finite-dimensional R-module Z or is of
the form V ⊗K[T,T−1] Fλ(ML) where V is a finite-dimensional indecompos-
able module over the algebra K[T, T−1] of Laurent polynomials and ML

an infinite-dimensional locally finite-dimensional indecomposable R-module
given by a line L in R with the stabilizer GL = Z. Moreover, applying
the main results of [31], we prove in Theorem 2.6 that, if an algebra A ad-
mits a strongly simply connected Galois covering R → R/G = A, then A
is of polynomial growth (respectively, domestic) if and only if R does not
contain a convex subcategory which is hypercritical or pg-critical (respec-
tively, hypercritical, pg-critical or tubular) and the number of G-orbits of
G-periodic lines in R is finite.

The results presented in the paper have been announced in [29] and [30].

1. Galois coverings of algebras. Following [9] by a locally bounded
category we mean a K-category R which is isomorphic to a factor category
KQ/I where Q is a locally finite quiver and I is an admissible ideal in
the path category KQ of Q. Thus an algebra A will be considered as a locally
bounded category with finitely many objects, briefly a finite category . A
locally bounded category R = KQ/I with Q having no oriented cycles is
said to be triangular. The Auslander–Reiten quiver of a locally bounded
category R will be denoted by ΓR [9].
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Throughout this section we denote by R a fixed connected locally bound-
ed category. Recall that an R-module M is called finite-dimensional (re-
spectively, locally finite-dimensional) if dim M =

∑
x∈K M(x) < ∞ (re-

spectively, dimK M(x) < ∞ for any object x of R). We denote by MOD R
the category of all right R-modules, by ModR (respectively, mod R) the cat-
egory of locally finite-dimensional (respectively, finite-dimensional) right R-
modules, and by IndR (respectively, indR) the full subcategory of Mod R
(respectively, modR) formed by all indecomposable objects. The support
suppM of an R-module M is the full subcategory of R given by all objects
x such that M(x) 6= 0. A full subcategory C of R is said to be convex if
any path in the quiver Q of R with source and target from C has all its
vertices from C. If R is finite then, following [14], R is said to be tame if,
for any dimension d, there exist a finite number of K[x]-R-bimodules Mi,
1 ≤ i ≤ nd, which are finitely generated and free as left K[x]-modules, and
all but a finite number of isomorphism classes of indecomposable (right)
R-modules of dimension d are of the form K[x]/(x − λ) ⊗K[x] Mi for some
λ ∈ K and some i. Let µR(d) be the least number of K[x]-R-bimodules
satisfying the above conditions for d. Then R is said to be of polynomial
growth (respectively, domestic) if there is a positive integer m such that
µR(d) ≤ dm (respectively, µR(d) ≤ m) for any d ≥ 1 (see [26], [11]). Fi-
nally, an arbitrary R is said to be tame (respectively, of polynomial growth,
domestic) if so is every finite full subcategory of R.

In the sequel, G denotes a group of K-linear automorphisms of R acting
freely on the objects of R. For a full subcategory D of R we denote by gD
the full subcategory of R formed by all objects gx, x ∈ D. Then we denote
by GD the stabilizer {g ∈ G : gD = D} of D. The group G acts on MOD R
by the translations g(−) which assign to each R-module M the R-module
gM = M ◦ g−1. For each R-module M , we denote by GM the stabilizer
{g ∈ G : gM 'M} of M . A module Y ∈ IndR is called weakly G-periodic
[13, (2.3)] if suppY is infinite and (suppY )/GY is finite. Clearly, in such
a case, GY is nontrivial.

Assume now that G acts freely on the isoclasses in indR. Let F : R →
R/G be the Galois covering, which assigns to each object x of R its G-orbit
Gx, F• : MOD R/G → MOD R the pull-up functor associated with F ,
and Fλ : MOD R → MOD R/G the push-down functor, left adjoint to F•
(see [9, (3.2)]). Since G acts freely on the isoclasses in ind R, Fλ induces
an injection from the set (indR/')/G of G-orbits of isoclasses in indR
into the set (indR/G)/' of isoclasses in ind R/G [15, (3.5)]. Let ind1 R/G
be the full subcategory of indR/G consisting of all modules isomorphic
to FλM for some M ∈ ind R, and ind2 R/G the full subcategory of indR
formed by the remaining modules. It was shown in [13, (2.2) and (2.3)] that
X from ind R/G belongs to ind1 R/G (respectively, to ind2 R/G) if and
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only if F•X is a direct sum of indecomposable finite-dimensional R-modules
(respectively, weakly G-periodic R-modules).

The category R is called G-exhaustive if indR/G = ind1 R/G. From
[13, (2.5)], we know that R is G-exhaustive provided it is locally support-
finite, that is, for each object x ∈ R, the full subcategory of R consisting
of the objects of all suppM , where M ∈ ind R is such that M(x) 6= 0, is
finite. Clearly, this class of categories contains locally representation-finite
categories playing a crucial role in the study of representation-finite algebras
(see [9], [15]).

A line in R is a convex subcategory L of R which is isomorphic to
the path category of a linear quiver (of type An, A∞ or ∞A∞). A line L is
said to be G-periodic if GL is nontrivial. Clearly, in this case the quiver of
L is of type

∞A∞ : . . .− • • • − . . .

We denote by L the set of all G-periodic lines in R and by L0 a fixed set of
representatives of the G-orbits in L. With each L ∈ L we associate a canon-
ical weakly G-periodic R-module ML by setting ML(x) = K for x ∈ QL,
ML(x) = 0 for x 6∈ QL and ML(γ) = idK for each arrow γ in QL. A weakly
G-periodic R-module isomorphic to a module ML, for some L ∈ L, is called
linear. Let L ∈ L0. Then GML

= GL = Z, and hence the group alge-
bra KGL is isomorphic to the algebra K[T, T−1] of Laurent polynomials.
Then the canonical action of GL on L gives a left K[T, T−1]-module struc-
ture on Fλ(ML) such that, for each object a in R/G, the K[T, T−1]-module
Fλ(ML)(a) is free of finite rank (see [13, (3.6)]). Therefore, we obtain a func-
tor

ΦL = −⊗K[T,T−1] Fλ(ML) : modK[T, T−1] −→ modR/G

where modK[T, T−1] denotes the category of finite-dimensional modules
over K[T, T−1].

We then get the following consequence of [13, Theorem 3.6].

Theorem 1.1. Assume that G acts freely on the isoclasses in ind R and
every weakly G-periodic R-module is linear. Then the functors ΦL, L ∈ L0,
induce an equivalence of categories

Φ :
∐

L∈L0

modK[T, T−1] ∼−→ (modR/G)/[mod1 R/G]

where [mod1R/G] is the ideal in modR/G of all morphisms factorized
through a module Fλ(Z), Z ∈ modR. In particular , ind2 R/G consists of
modules of the form ΦL(V ), L ∈ L0, V ∈ ind K[T, T−1]. Moreover , R/G is
tame if and only if R is tame.
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We shall show in the next section that the conditions of Theorem 1.1
are satisfied for R strongly simply connected without hypercritical and pg-
critical convex subcategories, and G acting freely on the objects of R.

Here, we shall discuss when Λ = R/G is of polynomial growth (respec-
tively, domestic). For each dimension d, denote by µ2

Λ(d) the least number
of L ∈ L0 such that every X ∈ ind2 R/G of dimension d is isomorphic to
some ΦL(V ) for L ∈ L0 and V ∈ ind K[T, T−1].

Proposition 1.2. Assume that Λ = R/G is finite, G acts freely on
the isoclasses in ind R and every weakly G-periodic R-module is linear. Then
the following conditions are equivalent :

(i) There exists c ∈ N such that µ2
Λ(d) ≤ c for any d ≥ 1.

(ii) There exists m ∈ N such that µ2
Λ(d) ≤ dm for any d ≥ 1.

(iii) L0 is finite.

P r o o f. The implications (i)⇒(ii) and (iii)⇒(i) are obvious. We show
that (ii) implies (iii). Suppose that L0 is infinite and µ2

Λ(d)≤dm for a fixed
m≥ 1 and all d≥ 1. Let L1, L2, L3, . . . be pairwise different lines from L0.
Since Λ =R/G is finite, there exists an object x∈R such that the G-orbit
Gx intersects infinitely many lines Li, i ≥ 1. Hence, replacing, if necessary,
L0 by another set of representatives of G-orbits in L, we may assume that
x belongs to all lines Li, i≥1. Observe that, for each r ≥ 1, there are only
finitely many G-periodic lines L passing through x and such that |L/GL| ≤
r. Moreover, since R is locally bounded and Λ = R/G is finite, there is
a common bound on the length of nonzero paths in R (that is, paths in QR

which do not belong to I). This implies that there are two lines L′ = Li and
L′′ = Lj such that the intersection L′ ∩ L′′ contains a convex subcategory
of the form

• → y ← . . .← t→ . . .→ z ← •
Let g ∈ GL′ be such that gy 6∈ L′′ and L′ contains a full convex line of
the form

v : y ← . . .← t→ . . .→ z ← . . .→ gy.

Similarly, let h ∈ GL′′ be such that hy 6∈ L′ and L′′ contains a full convex
line of the form

w : y ← . . .← t→ . . .→ z ← . . .→ hy.

Denote by a the larger of the numbers of points in v and in w. Take a prime
number q such that

2q − 2 > 2q−1 > qm+3 and q > am+1.

For a positive integer n, denote by vn the composition v(gv) . . . (gn−1v) of
lines v, gv, . . . , gn−1v, that is, the convex connected subline of L′ with targets
y and gny. Similarly, for a positive integer r, denote by wr the composition
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w(hw) . . . (hr−1w) of the lines w, hw, . . . , hr−1w, which is a convex connected
subline of L′′ with targets y and hry.

For any sequence (n1, r1, n2, r2, . . . , nt, rt) of integers ni, ri ∈ N with
t ≥ 1,

∑t
i=1(ni + ri) = q,

∑t
i=1 ni > 0,

∑t
i=1 ri > 0, we denote by u the

following composition of lines:

u = vn1(gn1wr1)(hr1gn1vn2)(gn2hr1gn1wr2)
. . . (gnthrt−1 . . . hr1gn1wrt),

and by L(u) the infinite line in R consisting of the objects f ic, i ∈ Z, c ∈ u,
where f = hrtgnt . . . hr1gn1 . Observe that L(u) is a G-periodic line in R
with GL(u) generated by f . Let L(u) and L(u′) be two such G-periodic
lines in R given by the sequences (n1, r1, . . . , nt, rt) and (n′1, r

′
1, . . . , n

′
s, r

′
s),

respectively. Then L(u) and L(u′) belong to the same G-orbits in L if and
only if either

(n′1, r
′
1, . . . , n

′
s, r

′
s)

= (bi, ri, ni+1, ri+1, . . . , nt, rt, n1, r1, . . . , ni−1, ri−1, ci, 0)

for some i ≥ 1 and bi, ci ∈ N with bi + ci = ni, or

(n′1, r
′
1, . . . , n

′
s, r

′
s)

= (0, di, ni+1, ri+1, . . . , nt, rt, n1, r1, . . . , ni−1, ri−1, ni, ei)

for some i ≥ 1 and di, ei ∈ N with di + ei = ri.
Consequently, there exist (2q − 2)/q G-periodic lines L(u) lying in pair-

wise different G-orbits in L. Denote by Bu the canonical weakly G-periodic
R-module associated with L(u). Then, for any λ ∈ K∗, the Λ-module

M(λ, u) = K[T, T−1]/(T − λ)⊗K[T,T−1] Fλ(Bu)

is indecomposable, belongs to ind2 R/G and dim M(λ, u) ≤ aq. Moreover,
M(λ, u) ' M(λ′, u′) if and only if λ = λ′ and L(u) and L(u′) belong to
the same G-orbit in L. Therefore, we infer that∑

d≤aq

µ2
Λ(d) ≥ (2q − 2)/q.

Hence there exists s ≤ aq such that µ2
Λ(s) ≥ (2q−2)/aq2. On the other hand,

µ2
Λ(s) ≤ sm ≤ (aq)m and so 2q − 2 ≤ am+1qm+2. But, by our choice of q,

we have 2q−2 > 2q−1 > qm+3 > am+1qm+2, a contradiction. Consequently,
(ii) implies (iii).

The following corollary is a direct consequence of the above proposition
and [13, (3.6)].

Corollary 1.3. Under the conditions of the above proposition the fol-
lowing equivalences hold.
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(i) Λ = R/G is of polynomial growth if and only if R is of polynomial
growth and L0 is finite.

(ii) Λ = R/G is domestic if and only if R is domestic and L0 is finite.

2. Tame algebras with simply connected Galois coverings. In
this section we are concerned with algebras having strongly simply con-
nected Galois coverings. Following [1] a triangular algebra is called simply
connected if, for any presentation A ' KQ/I as a bound quiver algebra,
the fundamental group π1(Q, I) of (Q, I) is trivial. Moreover, following [28],
an algebra A is called strongly simply connected if every convex subcate-
gory of A is simply connected. It is shown in [28, (4.1)] that an algebra
A is strongly simply connected if and only if the first Hochschild cohomol-
ogy group H1(C,C) vanishes for any convex subcategory C of A, and if
and only if every convex subcategory C of A has the separation property of
Bautista, Larrión and Salmerón [4]. Finally, a triangular locally bounded
category R = KQ/I is said to be strongly simply connected if the following
two conditions are satisfied: (1) For any two vertices x and y in Q there are
only finitely many paths in Q from x to y (R is interval-finite in the sense
of [10]); (2) Every finite convex subcategory C of R is simply connected.

We shall now exhibit some important classes of strongly simply con-
nected algebras playing a crucial role in our investigations.

Observe that a hereditary algebra is simply connected if and only if it
is the path algebra of a tree. Let ∆ be a finite connected quiver whose
underlying graph ∆ is a tree, and H = K∆. Then it is well-known that H
is representation-infinite and tame if and only if ∆ is one of the Euclidean
graphs

D̃n

n ≥ 4

• •

• • . . . • •

• •

@@@

~~~

~~~

@@@
Ẽ6

•

•

• • • • •

Ẽ7

•

• • • • • • •
Ẽ8

•

• • • • • • • •

Hence, H = K∆ is wild if and only if ∆ contains one of the following graphs:

T5

• •

• •

• •

@@@ ~~~

~~~
@@@

˜̃Dn

• •

• • . . . • •

• • •

@@@

~~~

~~~

@@@
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˜̃E6

•

•

• • • • • •

Ẽ7

•

• • • • • • • •

Ẽ8

•

• • • • • • • • •

where in the case of D̃n the number of vertices is n + 2, 4 ≤ n ≤ 8.
Assume that H = K∆ is representation-infinite (∆ is not a Dynkin

graph) and T is a preprojective tilting H-module, that is, Ext1H(T, T ) = 0
and T is a direct sum of n = |∆0| pairwise nonisomorphic indecomposable H-
modules lying in the τH -orbits of projective modules. Then C = EndH(T )
is called a concealed algebra of type ∆. It is known that gl.dim C ≤ 2 and
C has the same representation type as H. A concealed algebra of type

∆ = D̃n, Ẽ6, Ẽ7, Ẽ8 (resp. ∆ = T5,
˜̃Dn, ˜̃E6,

˜̃E7,
˜̃E8) is said to be critical (resp.

hypercritical). The critical (resp. hypercritical) algebras have been classified
completely in [7], [17] (resp. [19], [32], [33]). It is known [8] that a simply
connected algebra A is representation-finite if and only if A does not contain
a critical convex subcategory. It is expected (see [22], [26]) that a simply
connected algebra A is tame if and only if A does not contain a hypercritical
convex subcategory.

Following [24], by a tubular algebra we mean a tubular extension of
a tame concealed algebra of tubular type (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), or
(2, 3, 6). It is known that every tubular algebra is nondomestic of polynomial
growth (see [24, (5.2)] and [26, (3.6)]).

In the representation theory of tame simply connected algebras an im-
portant role is played by the polynomial growth critical algebras introduced
and investigated by R. Nörenberg and A. Skowroński in [21]. By a polyno-
mial growth critical algebra (briefly pg-critical algebra) we mean an algebra
A satisfying the following conditions:

(i) A is one of the matrix algebras

B[X] =
[

K X
0 B

]
, B[Y, t] =



K K . . . K K K Y
K . . . K K K 0

. . .
...

...
...

...
K K K 0

K 0 0
0 K 0

B


where B is a representation-infinite tilted algebra of Euclidean type D̃n,
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n ≥ 4, with a complete slice in the preinjective component of ΓB , X (re-
spectively, Y ) is an indecomposable regular B-module of regular length 2
(respectively, regular length 1) lying in a tube of ΓB with n− 2 rays, t + 1
(t ≥ 2) is the number of isoclasses of simple B[Y, t]-modules which are not
B-modules.

(ii) Every proper convex subcategory of A is of polynomial growth.

The pg-critical algebras have been classified by quivers and relations in
[21]. There are 31 frames of such algebras. In particular, it is known that
if A is a pg-critical algebra then: (1) A is tame minimal of nonpolynomial
growth, (2) gl.dim A = 2, (3) A is simply connected, (4) the opposite algebra
Aop is also pg-critical. There are only 16 frames of pg-critical algebras which
are strongly simply connected.

We may now recall the following criteria for the polynomial growth (re-
spectively, domestic type) of strongly simply connected algebras given in
[31, (4.1) and (4.3)].

Theorem 2.1. Let A be a strongly simply connected algebra. Then

(i) A is of polynomial growth if and only if A does not contain a convex
subcategory which is hypercritical or pg-critical.

(ii) A is domestic if and only if A does not contain a convex subcategory
which is hypercritical , pg-critical or tubular.

We shall need the following lemma.

Lemma 2.2. Let B be a strongly simply connected (finite) locally bounded
category of one of the types: critical , tubular , pg-critical , or hypercritical.
Then any K-linear automorphism of B fixes at least one of its objects.

P r o o f. If B is critical, pg-critical, or hypercritical, then our claim
follows from a direct inspection of the frames of critical, pg-critical and
hypercritical algebras given in [7], [17], [21], [32], respectively. Assume B is
a tubular algebra and g a K-linear automorphism of B. It follows from [24,
(5.2)] that ΓB admits a unique preprojective component P whose support
algebra is a convex critical subcategory C of B. But then gC = C, and
consequently g fixes an object of C, and hence of B.

Proposition 2.3. Let R be a strongly simply connected locally bounded
category and G a group of K-linear automorphisms of R acting freely on
the objects of R. Assume that R does not contain a convex subcategory which
is hypercritical or pg-critical. Then G acts freely on the isoclasses in ind R.

P r o o f. Let M be a module in ind R and g an element of G such that
gM 'M . Denote by Λ the convex hull of supp M in R. Since R is interval-
finite, Λ is a finite convex subcategory of R. Hence, by our assumptions on R,
Λ is strongly simply connected and does not contain a convex subcategory
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which is hypercritical or pg-critical. Moreover, gΛ = Λ, and M is a Λ-
module. If Λ is representation-finite, then, by a result due to R. Mart́ınez
and J. A. de la Peña [20], gM ' M implies g = 1, and we are done.
Therefore, assume that Λ is representation-infinite. We shall show that
then there exists a convex critical subcategory C of Λ such that gC = C.
Then Lemma 2.2 will imply g = 1. We have two cases to consider.

Assume first that M is a directing Λ-module, that is, M does not lie
on an oriented cycle M = M0 → M1 → . . . → Mr = M0, r ≥ 1, of
nonzero nonisomorphisms between indecomposable Λ-modules. By the well-
known convexity argument of Bongartz [6, (3.2)] we have suppM = Λ.
Further, by [24, p. 376], Λ is a tilted algebra. Moreover, we conclude
from Theorem 2.1 that Λ is tame. Consequently, Λ is a tame tilted
algebra and M is an indecomposable sincere Λ-module lying in a con-
necting component of ΓΛ. Then it follows from [23] that ΓΛ admits ex-
actly one preprojective component and exactly one preinjective component,
and moreover one of them is of Euclidean type. By symmetry we may
assume that ΓΛ admits a preprojective component P of Euclidean type.
The support algebra B of P is then a convex subcategory of Λ which
is a tubular coextension (of Euclidean type) of a critical convex subcate-
gory C of Λ. Clearly, the automorphism g : Λ → Λ induces an automor-
phism g(−) : indΛ → ind Λ, and then gP = P. Hence, gB = B, and
consequently gC = C, because C is a unique critical convex subcategory
of B.

Assume now that M is a nondirecting Λ-module. Since Λ is strongly
simply connected of polynomial growth (by Theorem 2.1) and Λ is the con-
vex hull of suppM , it follows from [31, (4.8)] that Λ is a coil enlargement
(in the sense of [2]) of a critical convex subcategory C of Λ and M lies in
one of the standard coils Cλ of a weakly separating family C = (Cλ)λ∈Q1(K)

of standard coils of ΓΛ. Then gM 'M implies that g maps all stable tubes
of rank 1 in C onto stable tubes of rank 1 of C. Since C is the support
algebra of any stable tube of rank 1 in C we get gC = C. This finishes
the proof.

A group G of K-linear automorphisms of a locally bounded category R is
said to be admissible if its action on the objects of R is free and has finitely
many orbits. In such a case, R/G is a finite category (algebra).

Theorem 2.4. Let R be a strongly simply connected locally bounded
K-category , G an admissible group of K-linear automorphisms of R and
A = R/G. Assume that R does not contain a convex subcategory which is
hypercritical or pg-critical. Then

(i) Every indecomposable finite-dimensional A-module Z is isomorphic
either to Fλ(X), for some indecomposable finite-dimensional R-module X,
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or to V ⊗K[T,T−1] Fλ(ML) for some L ∈ L0 and some indecomposable finite-
dimensional K[T, T−1]module V .

(ii) We have

ΓA = (ΓR/G) ∨
( ∨

L∈L0

ΓK[T,T−1]

)
,

where ΓK[T,T−1] is the Auslander–Reiten quiver of the category of finite-
dimensional K[T, T−1]-modules.

(iii) A is tame.

P r o o f. We know from Proposition 2.3 that G acts freely on the iso-
classes in indR. Hence, the push-down functor Fλ : modR → modA
preserves the Auslander–Reiten sequences and induces an injection from
the set of G-orbits of isoclasses in indR into the set of isoclasses in indA
(see [15, Section 3]). Therefore, by Theorem 1.1, it is enough to show that
every weakly G-periodic R-module is linear. We shall apply the results of
[13, Section 4], showing that the weakly G-periodic R-modules are limits of
G-periodic sequences of finite-dimensional indecomposable R-modules.

For a full subcategory C of R we denote by Ĉ the full subcategory of
R formed by all object x such that R(x, y) 6= 0 or R(y, x) 6= 0 for some
object y ∈ C. Clearly, if C is finite, then Ĉ is also finite because R is locally
bounded. For an R-module Z and a full subcategory C of R, we denote by
Z|C the restriction of Z to C. Finally, for X, Y ∈ MOD C we write X ∈ Y
whenever X is isomorphic to a direct summand of Y .

Fix a family Cn, n ∈ N, of finite convex subcategories of R such that

(1) For each n ∈ N, Cn+1 is the convex hull of Ĉn in R.
(2) R =

⋃
n∈N Cn.

Since R is connected, locally bounded and interval-finite, such a family
exists. We shall identify a Cn-module M with an R-module, by setting
M(x) = 0 for all objects x of R which are not in Cn.

Let Y be a weakly G-periodic R-module. We show that Y is linear.
Let m ∈ N be the least number such that Y |Cm 6= 0. We define a family
Yn ∈ ind Cn, n ∈ N, as follows. Put Yn = 0 for n < m and let Ym be
an arbitrary indecomposable direct summand of Y |Cm. Then there exist
Ym+1 ∈ ind Cm+1 and a splittable monomorphism um : Ym → Ym+1|Cm

such that Ym+1 ∈ (Y |Cm+1). Repeating this procedure we can find, for all
n ≥ m, Yn ∈ ind Cn and splittable monomorphisms un : Yn → Yn+1|Cn

such that Yn ∈ (Y |Cn). Thus we obtain a sequence (Yn, un)n∈N, called
in [13] a fundamental R-sequence produced by Y . Since in our case Cn

are convex subcategories of R, it is in fact a sequence of finite-dimensional
indecomposable R-modules. The following facts are direct consequences
of [13, (4.3), (4.4), (4.5)]:
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(α) Y = lim−→Yn.
(β) For each n ∈ N, there exists p ≥ n such that Yp|Cn ' Y |Cn.
(γ) For each g ∈ GY and n ∈ N, there exists q ≥ n such that

gCn ⊂ Cq and gYn ∈ (Yq|gCn).

For n ≥ m, denote by Bn the support of Yn. Clearly Bn ⊂ Cn. Moreover,
since Y is indecomposable, infinite-dimensional, locally finite-dimensional,
and Cn+1 contains Ĉn, for each n ∈ N, we deduce from [12, Lemma 2] that,
for any n ≥ m, Bn is not contained in Cn−1.

Let s = m + 14. Then each of the categories Bn, n ≥ s, has at least 14
objects. Moreover, fix an element 1 6= g ∈ GY .

Assume first that all categories Bn, n ≥ s, are representation-finite. We
know from [31, (4.9)] that such Bn is a strongly simply connected convex
subcategory of R, and hence belongs to the 24 families listed by Bongartz
in [5, (2.4)]. We know that Y = lim−→Yn. Moreover, it follows from (γ) that
for any 1 6= g ∈ GY and n ≥ s there exists r ≥ n such that gCn ⊂ Cr,
gYn ∈ (Yr|gCn), and obviously Yn ∈ (Yr|Cn). Using now the structure
of indecomposable sincere modules over Bongartz’s 24 families of algebras
and the fact that G acts freely on the isoclasses in indR, we deduce that
all Bn are lines. Hence, by (β), L = suppY is a (convex) line of type
∞A∞, and clearly GL = GY is nontrivial. Consequently, Y is a linear
R-module.

Assume now that Bp, for some p ≥ m, is representation-infinite. Then,
by [31, (4.9)], Bp = suppYp contains a critical full subcategory D. Take an
arbitrary r ∈ N and consider the critical full subcategories D, gD, . . . , grD
of R. From Lemma 2.2 and our proof of Proposition 2.3 we infer that these
categories are pairwise different. From (γ) we see that, for each 0 ≤ i ≤ r,
there exists ti ≥ p such that giCp ⊂ Cti and gi

Yp ∈ (Yti
|giCp). Take q ∈ N

such that Cq contains all categories Cti , 0 ≤ i ≤ r. Then Yti ∈ (Yq|Cti
) and

hence gi

Yp ∈ (Yq|giCp) for i = 0, . . . , r. Therefore, Yq is an indecompos-
able finite-dimensional R-module whose support contains D, gD, . . . , grD
as full subcategories. On the other hand, we know from [31, (4.10)] that
for any module X ∈ ind R the convex hull of suppX in R contains at
most 3 convex critical subcategories. This implies that there is a common
bound on the number of critical full subcategories of R which belongs to
one G-orbit and are full subcategories of the support of a module from
ind R. Hence, taking r large enough, we get a contradiction. This finishes
the proof.

As a direct consequence of Theorem 2.4 and [13, (5.2)] we get the fol-
lowing fact.
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Corollary 2.5. Assume that R and G are as in the above theorem and
d = dimK R/G. Then the following conditions are equivalent :

(i) The push-down functor Fλ : modR→ modR/G is dense.
(ii) R is locally support-finite.
(iii) indR = IndR.
(iv) G acts freely on the isoclasses in IndR.
(v) R does not contain a line of type A2d+1.

The following theorem gives a criterion for the polynomial growth (re-
spectively, domestic type) of algebras with strongly simply connected Galois
coverings.

Theorem 2.6. Let R be a strongly simply connected locally bounded
K-category , G an admissible group of K-linear automorphisms of R and
A = R/G. Then

(i) A is of polynomial growth if and only if R does not contain a convex
subcategory which is hypercritical or pg-critical , and the number of G-orbits
of G-periodic lines in R is finite.

(ii) A is domestic if and only if R does not contain a convex subcategory
which is hypercritical , pg-critical or tubular , and the number of G-orbits of
G-periodic lines in R is finite.

P r o o f. Let M be an indecomposable finite-dimensional R-module whose
support is a convex subcategory of R of one of the types: hypercritical, pg-
critical, or tubular. Then it follows from Lemma 2.2 that gM 6' M for
any 1 6= g ∈ G, and hence the push-down Fλ(M) is an indecomposable
A-module. Assume now that A is of polynomial growth (respectively, do-
mestic). From the above remark and Theorem 2.1 we infer that R does not
contain a convex subcategory which is hypercritical or pg-critical (respec-
tively, hypercritical, pg-critical or tubular). Moreover, by Proposition 2.3,
Theorem 2.4 and Corollary 1.3, we then infer that the number of G-orbits of
G-periodic lines in R is finite. Conversely, assume that R does not contain a
convex subcategory which is hypercritical or pg-critical (respectively, hyper-
critical, pg-critical or tubular) and the number of G-orbits of G-periodic lines
in R is finite. Then it follows from Theorems 2.1 and 2.4, Proposition 2.3,
Corollary 1.3 that A is of polynomial growth (respectively, domestic). This
finishes the proof.

3. Examples and remarks. (3.1) In the notation of the above theorem,
Bongartz’s criterion [8] for finite representation type can be formulated as
follows: A is of finite representation type if and only if R does not contain
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a convex subcategory which is critical or a G-periodic line. The latter is
equivalent to the nonexistence of a line of Dynkin type A2d+1, where d =
dimK A.

(3.2) Let A be the algebra K[x, y]/(x3, y3, xy). Then A = KQ/I where
Q is the quiver

•
! 

α

# //

 !
β

"oo

and I is generated by α3, β3, αβ, βα. Further, A admits a strongly simply
connected Galois covering F : R→ R/G = A where R = KQ̃/Ĩ is the locally
bounded K-category given by the quiver Q̃ of the form

•

• • •

• •

• • • • •

• •

• • •

•

···
α��

···
··· β // β //

α

��

···
···

α�� α��
··· β // β //

α��

β //

α

��

β //
α��

···

···
···

··· β // β //
α��

···

···

and Ĩ is generated by all paths α3, β3, αβ, βα, and where G is the free
(nonabelian) group of K-linear automorphisms of R generated by the α-shift
and β-shift. It is well-known that the support of any module from indR
is a line, and hence every finite convex subcategory of R is representation-
finite. In particular, R has no convex subcategory which is hypercritical
or pg-critical, and so R satisfies the assumptions of Theorem 2.4. On the
other hand, it is easy to see that R admits infinitely many G-orbits of G-
periodic lines. Therefore, A is tame but not of polynomial growth. In fact,
all special biserial algebras are tame and have strongly simply connected
Galois coverings with all finite subcategories being representation-finite (see
[13, (5.2)]).
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(3.3) Let A be the bound quiver algebra KQ/I where Q is the quiver

• •

•

•

•

ξ

��

α
@@@ �� σ��~~

~

β��

γ��~~
~

and I is generated by the path σβγ. Then A admits a strongly simply
connected Galois covering F : R→ R/G = A, where R = kQ̃/Ĩ is the locally
bounded category given by the quiver Q̃ of the form

• •

•

•

•

··· α

@@@ �� σ��~~~

β

@@@ ��

γ

@@@ ��

ξ

���������

• •

•

•

•

α

@@@ �� σ��~~~

β

@@@ ��

γ

@@@ ��

ξ

���������

• •

•

•

•

α

@@@ �� σ��~~~

β

@@@ �� ···

γ

@@@ �� ��~~~

and Ĩ is generated by all paths σβγ, and where G is the infinite cyclic
group generated by the obvious shift g of R. Then again every finite convex
subcategory of R is representation-finite. Moreover, R admits exactly one
G-periodic line. Hence, A is representation-infinite domestic (even one-
parametric).

(3.4) Let A be the algebra[
K[x]/(x4) K[x]/(x4)

0 K[x]/(x4)

]
.

Then A = KQ/I where Q is the quiver

• •γ //

! 
α

# //

 !
β

"oo

and I is generated by α4, β4, αγ − γβ. Then A admits a strongly simply
connected Galois covering F : R→ R/G = A where R = KQ̃/Ĩ is the locally
bounded K-category given by the quiver Q̃

. . . • • • • . . .

. . . • • • • . . .

// β // β // β // //

//
α

//

γ

OO

α
//

γ

OO

α
//

γ

OO

//

γ

OO

and Ĩ is generated by all elements of the form α4, β4, αγ−γβ, and where G is
the infinite cyclic group generated by the obvious shift g of R. It was shown
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in [25] that R is locally support-finite of polynomial growth (hence with-
out hypercritical and pg-critical convex subcategories) and contains convex
subcategories which are tubular. Hence, in this case, the push-down functor
Fλ : modR → modA is dense and A is nondomestic of polynomial growth.
In fact, all tame triangular matrix algebras

(
Λ Λ
0 Λ

)
over Nakayama algebras

Λ are of polynomial growth and have such nice strongly simply connected
Galois coverings [25].

(3.5) We refer to [27] for a description of polynomial growth selfinjective
algebras having simply connected Galois coverings.
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