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THE MINIMAL EXTENSION OF SEQUENCES III.
ON PROBLEM 16 OF GRÄTZER AND KISIELEWICZ

BY

J. D U D E K (WROC LAW)

The main result of this paper is a description of totally commutative
idempotent groupoids. In particular, we show that if an idempotent groupoid
(G, ·) has precisely m ≥ 2 distinct essentially binary polynomials and they
are all commutative, then G contains a subgroupoid isomorphic to the
groupoid Nm described below. In [2], this fact was proved for m = 2.

1. Given an algebra A, we denote by pn = pn(A) the number of essen-
tially n-ary polynomials over A. For definitions we refer the reader to [5]
and [6]. We say that an infinite (or finite) sequence (a0, . . .) of cardinals is
representable if there exists an algebra A0 such that pn(A0) = an for all n.
If additionally A0 is taken from a given class of algebras, then we say that
the sequence is representable in that class. A sequence a∗ = (a0, . . . , am, . . .)
of nonnegative integers (cardinals) is a minimal extension of the sequence
a = (a0, . . . , am) (in a given class K of algebras) if a∗ is representable (in the
class K) and for every algebra A (∈ K) which represents a = (a0, . . . , am)
we have pn(A) ≥ an for all n.

Problems concerning minimal extensions of sequences were raised by
G. Grätzer in [4]. He also initiated (together with R. Padmanabhan and
J. P lonka) the problems of characterization of algebras (varieties) by means
of the number pn (see Problem 42, p. 195 of [5]).

In this paper we deal with Problem 16 of G. Grätzer and A. Kisiele-
wicz [6]: Does the sequence (0, 1, n) have a minimal extension, for any n ≥ 0?

The main result was presented during the Conference on Logic and Alge-
bra dedicated to Roberto Magari on his 60th birthday, Pontignano (Siena),
26–30 April 1994 (see Theorem 2 of [3]).

2. A groupoid (G, ·) is said to be totally commutative if all of its essen-
tially binary polynomials are commutative operations. As usual, we use the
notation xyn defined by induction as follows: xy1 = xy and xyn+1 = (xyn)y.
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By Nn (n = 1, 2, . . .) we denote the variety of all commutative idem-
potent groupoids (G, ·) satisfying xy2 = yx2 and xyn = xyn+1. This fam-
ily of varieties was introduced in [2] together with the family of groupoids
Nn = ({−1, 0, 1, . . . , n}, ·), where the fundamental operation · is defined as
follows:

xy =

{
x if x = y,
1 + max(x, y) if x 6= y and x, y ≤ n− 1,
n otherwise.

By Theorem 4 of [1], if a commutative idempotent groupoid (G, ·) sat-
isfies xy2 = yx2, then it is totally commutative (and moreover, each essen-
tially binary polynomial is of the form xyk = yxk). Hence, every variety
Nn consists entirely of totally commutative groupoids.

Moreover, it is not difficult to see that Nn ∈ Nn for every n ≥ 1. In fact,
it follows from the proof of the theorem below that Nn is isomorphic to the
free groupoid with two free generators in the variety Nn.

From the proof we will also see that p2(Nn) = n. (Incidentally, it seems
that this very family should have been mentioned in [6], p. 77, as one show-
ing that all sequences (0, 1, n) are representable. Otherwise, the example
given in [6] is not quite correct; for instance, the case n = 3 does not have
the property claimed.)

In [2] we have proved that if a commutative idempotent groupoid (G, ·)
satisfies p2(G, ·) = 2 (and hence is totally commutative!), then (G, ·) contains
a subgroupoid isomorphic to N2. As a corollary, the sequence (0, 1, 2, 10, . . .
. . . , pn(N2), . . .) is the minimal extension of the sequence (0, 1, 2) in the class
of all commutative groupoids.

Here we generalize this result as follows:

Theorem. Let (G, ·) be a totally commutative idempotent groupoid.
Then the following conditions are equivalent for every positive integer m ≥ 2:

(i) p2(G, ·) = m;
(ii) (G, ·) ∈ Nm and (G, ·) 6∈ Nk for any k < m;
(iii) (G, ·) ∈ Nm and (G, ·) contains a subgroupoid isomorphic to Nm;
(iv) there exists a positive integer n > m such that xyn = xym and m is

minimal with this property.

As an immediate consequence we have

Corollary. The sequence (0, 1,m, . . . , pn(Nm), pn+1(Nm), . . .) is the
minimal extension of the sequence (0, 1,m) in the class of all totally com-
mutative groupoids.

P r o o f o f t h e T h e o r e m. Suppose that p2(G) = m > 1. Then,
since G is totally commutative, xy2 is essentially binary and xy2 = yx2. By
Theorem 4 of [1], every essentially binary polynomial of G is of the form
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f(x, y) = xyk; from the proof of this theorem it also follows that

(∗) xyk = yxk for all k ≥ 1.

If all the polynomials xyk, k > 1, are different, then p2(G) is infinite.
Otherwise, xyn = xyk for some 1 < n < k. Suppose that n > 1 is minimal
with this property. Then using (∗) we have

xyn = (xyn)(xyn) = (xyk)(xyn) = ((xyn)yk−n)(xyn)(∗∗)
= (y(xyn)k−n)(xyn) = y(xyn)k−n+1 = (xyn)yk−n+1 = xyk+1.

It follows that xyn = xyn+1.
Consequently, every essentially binary polynomial of G is of the form

f(x, y) = xyk with k ≤ n. Therefore n = m, G ∈ Nm, and there are
a, b ∈ G such that abm−1 6= abm (note that, since G is idempotent, a 6= b).

Let G(a, b) be the subgroupoid of G generated by a, b. From what we
have proved so far it follows that G(a, b) = {a, b, ab, . . . , abm}. We show
that all these elements are different.

Indeed, first suppose that abk = abn for some 0 ≤ k < n ≤ m. Multiply-
ing this identity by b, m− 1− k ≥ 0 times, we get abm−1 = abm+(n−1−k) =
abm, a contradiction. Suppose now that b = abk for some k ≥ 1. Then,
by (∗), b = bak, and in consequence, ab = ba = bak+1 = abk+1, which has
already been shown to be impossible.

It remains to show that G(a, b) is isomorphic to Nm. The one-to-one
correspondence is defined by b → −1 and abk → k. For k > n ≥ 0, using
(∗∗), we get (abk)(abn) = abk+1. Also, (abk)b = abk+1. In view of the
identity xym = xym+1 the isomorphism is clear, which completes the proof.

3. The theorem above characterizes totally commutative idempotent
groupoids (G, ·) with p2(G, ·) ≥ 2 finite. We close the paper with some re-
marks concerning the remaining totally commutative idempotent groupoids.

If p2(G, ·) = 1 then, according to Lemma 1 of [2], (G, ·) is either a non-
trivial near-semilattice (a member of the variety N1) or a nontrivial Steiner
quasigroup (an idempotent commutative groupoid satisfying xy2 = x).

If p2(G, ·) = 0 then (G, ·) is a left or right zero-semigroup (i.e., one
satisfying xy = y or xy = x).

If p2(G, ·) is infinite, then (as in the proof of the theorem) (G, ·) is a com-
mutative groupoid satisfying xy2 = yx2, but not belonging to any variety
Nn, n = 1, 2, . . .

An infinite analogue of Nn is Nω = ({−1, 0, 1, . . .}, ·), where xy is defined
to be idempotent and xy = 1+max (x, y) for x 6= y. Here, p2(Nω) is infinite
(the polynomials xyk are pairwise distinct), the set {−1, 0} is the set of
generators, and moreover Nω is isomorphic to the free groupoid with two
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free generators in the variety Nω of all commutative idempotent groupoids
(G, ·) satisfying xy2 = yx2.

Another member of Nω is Ñn = ({−1, 0, . . . , n} ∪ {n + 1, . . .}, ·), where
the operation · is defined by

xy =

{
x if x = y,
1 + max(x, y) if x 6= y and n 6∈ {x, y},
n otherwise,

and n ≥ 1 is a fixed integer.
It is not difficult to see that p2(Ñn) is infinite and Ñn contains no isomor-

phic copy of Nω. (Note that for every n, Nn is embeddable in Ñn.) Thus,
the condition (iii) of the theorem does not extend to the case of p2(G, ·)
infinite.
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