COLLOQUIUM MATHEMATICUM

VOL. 71

1996

NO. 2

THE MINIMAL EXTENSION OF SEQUENCES III. ON PROBLEM 16 OF GRÄTZER AND KISIELEWICZ

BY

J. DUDEK (WROCŁAW)

The main result of this paper is a description of totally commutative idempotent groupoids. In particular, we show that if an idempotent groupoid (G, \cdot) has precisely $m \ge 2$ distinct essentially binary polynomials and they are all commutative, then G contains a subgroupoid isomorphic to the groupoid N_m described below. In [2], this fact was proved for m = 2.

1. Given an algebra A, we denote by $p_n = p_n(A)$ the number of essentially *n*-ary polynomials over A. For definitions we refer the reader to [5] and [6]. We say that an infinite (or finite) sequence (a_0, \ldots) of cardinals is representable if there exists an algebra A_0 such that $p_n(A_0) = a_n$ for all n. If additionally A_0 is taken from a given class of algebras, then we say that the sequence is representable in that class. A sequence $a^* = (a_0, \ldots, a_m, \ldots)$ of nonnegative integers (cardinals) is a minimal extension of the sequence $a = (a_0, \ldots, a_m)$ (in a given class K of algebras) if a^* is representable (in the class K) and for every algebra $A (\in K)$ which represents $a = (a_0, \ldots, a_m)$ we have $p_n(A) \ge a_n$ for all n.

Problems concerning minimal extensions of sequences were raised by G. Grätzer in [4]. He also initiated (together with R. Padmanabhan and J. Płonka) the problems of characterization of algebras (varieties) by means of the number p_n (see Problem 42, p. 195 of [5]).

In this paper we deal with Problem 16 of G. Grätzer and A. Kisielewicz [6]: Does the sequence (0, 1, n) have a minimal extension, for any $n \ge 0$?

The main result was presented during the Conference on Logic and Algebra dedicated to Roberto Magari on his 60th birthday, Pontignano (Siena), 26–30 April 1994 (see Theorem 2 of [3]).

2. A groupoid (G, \cdot) is said to be *totally commutative* if all of its essentially binary polynomials are commutative operations. As usual, we use the notation xy^n defined by induction as follows: $xy^1 = xy$ and $xy^{n+1} = (xy^n)y$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 08B05.

By \mathbf{N}_n (n = 1, 2, ...) we denote the variety of all commutative idempotent groupoids (G, \cdot) satisfying $xy^2 = yx^2$ and $xy^n = xy^{n+1}$. This family of varieties was introduced in [2] together with the family of groupoids $N_n = (\{-1, 0, 1, ..., n\}, \cdot)$, where the fundamental operation \cdot is defined as follows:

$$xy = \begin{cases} x & \text{if } x = y, \\ 1 + \max(x, y) & \text{if } x \neq y \text{ and } x, y \leq n - 1, \\ n & \text{otherwise.} \end{cases}$$

By Theorem 4 of [1], if a commutative idempotent groupoid (G, \cdot) satisfies $xy^2 = yx^2$, then it is totally commutative (and moreover, each essentially binary polynomial is of the form $xy^k = yx^k$). Hence, every variety \mathbf{N}_n consists entirely of totally commutative groupoids.

Moreover, it is not difficult to see that $N_n \in \mathbf{N}_n$ for every $n \ge 1$. In fact, it follows from the proof of the theorem below that N_n is isomorphic to the free groupoid with two free generators in the variety \mathbf{N}_n .

From the proof we will also see that $p_2(N_n) = n$. (Incidentally, it seems that this very family should have been mentioned in [6], p. 77, as one showing that all sequences (0, 1, n) are representable. Otherwise, the example given in [6] is not quite correct; for instance, the case n = 3 does not have the property claimed.)

In [2] we have proved that if a commutative idempotent groupoid (G, \cdot) satisfies $p_2(G, \cdot) = 2$ (and hence is totally commutative!), then (G, \cdot) contains a subgroupoid isomorphic to N_2 . As a corollary, the sequence $(0, 1, 2, 10, \ldots, p_n(N_2), \ldots)$ is the minimal extension of the sequence (0, 1, 2) in the class of all commutative groupoids.

Here we generalize this result as follows:

THEOREM. Let (G, \cdot) be a totally commutative idempotent groupoid. Then the following conditions are equivalent for every positive integer $m \ge 2$:

(i) $p_2(G, \cdot) = m;$

(ii) $(G, \cdot) \in \mathbf{N}_m$ and $(G, \cdot) \notin \mathbf{N}_k$ for any k < m;

(iii) $(G, \cdot) \in \mathbf{N}_m$ and (G, \cdot) contains a subgroupoid isomorphic to N_m ;

(iv) there exists a positive integer n > m such that $xy^n = xy^m$ and m is minimal with this property.

As an immediate consequence we have

COROLLARY. The sequence $(0, 1, m, \ldots, p_n(N_m), p_{n+1}(N_m), \ldots)$ is the minimal extension of the sequence (0, 1, m) in the class of all totally commutative groupoids.

Proof of the Theorem. Suppose that $p_2(G) = m > 1$. Then, since G is totally commutative, xy^2 is essentially binary and $xy^2 = yx^2$. By Theorem 4 of [1], every essentially binary polynomial of G is of the form $f(x,y) = xy^k$; from the proof of this theorem it also follows that

(*)
$$xy^k = yx^k$$
 for all $k \ge 1$.

If all the polynomials xy^k , k > 1, are different, then $p_2(G)$ is infinite. Otherwise, $xy^n = xy^k$ for some 1 < n < k. Suppose that n > 1 is minimal with this property. Then using (*) we have

$$(**) \quad xy^n = (xy^n)(xy^n) = (xy^k)(xy^n) = ((xy^n)y^{k-n})(xy^n) \\ = (y(xy^n)^{k-n})(xy^n) = y(xy^n)^{k-n+1} = (xy^n)y^{k-n+1} = xy^{k+1}.$$

It follows that $xy^n = xy^{n+1}$.

Consequently, every essentially binary polynomial of G is of the form $f(x,y) = xy^k$ with $k \leq n$. Therefore n = m, $G \in \mathbf{N}_m$, and there are $a, b \in G$ such that $ab^{m-1} \neq ab^m$ (note that, since G is idempotent, $a \neq b$).

Let G(a, b) be the subgroupoid of G generated by a, b. From what we have proved so far it follows that $G(a, b) = \{a, b, ab, \dots, ab^m\}$. We show that all these elements are different.

Indeed, first suppose that $ab^k = ab^n$ for some $0 \le k < n \le m$. Multiplying this identity by $b, m-1-k \ge 0$ times, we get $ab^{m-1} = ab^{m+(n-1-k)} = ab^m$, a contradiction. Suppose now that $b = ab^k$ for some $k \ge 1$. Then, by (*), $b = ba^k$, and in consequence, $ab = ba = ba^{k+1} = ab^{k+1}$, which has already been shown to be impossible.

It remains to show that G(a, b) is isomorphic to \mathbf{N}_m . The one-to-one correspondence is defined by $b \to -1$ and $ab^k \to k$. For $k > n \ge 0$, using (**), we get $(ab^k)(ab^n) = ab^{k+1}$. Also, $(ab^k)b = ab^{k+1}$. In view of the identity $xy^m = xy^{m+1}$ the isomorphism is clear, which completes the proof.

3. The theorem above characterizes totally commutative idempotent groupoids (G, \cdot) with $p_2(G, \cdot) \ge 2$ finite. We close the paper with some remarks concerning the remaining totally commutative idempotent groupoids.

If $p_2(G, \cdot) = 1$ then, according to Lemma 1 of [2], (G, \cdot) is either a nontrivial near-semilattice (a member of the variety \mathbf{N}_1) or a nontrivial Steiner quasigroup (an idempotent commutative groupoid satisfying $xy^2 = x$).

If $p_2(G, \cdot) = 0$ then (G, \cdot) is a left or right zero-semigroup (i.e., one satisfying xy = y or xy = x).

If $p_2(G, \cdot)$ is infinite, then (as in the proof of the theorem) (G, \cdot) is a commutative groupoid satisfying $xy^2 = yx^2$, but not belonging to any variety \mathbf{N}_n , $n = 1, 2, \ldots$

An infinite analogue of N_n is $N_\omega = (\{-1, 0, 1, \ldots\}, \cdot)$, where xy is defined to be idempotent and $xy = 1 + \max(x, y)$ for $x \neq y$. Here, $p_2(N_\omega)$ is infinite (the polynomials xy^k are pairwise distinct), the set $\{-1, 0\}$ is the set of generators, and moreover N_ω is isomorphic to the free groupoid with two J. DUDEK

free generators in the variety \mathbf{N}_{ω} of all commutative idempotent groupoids (G, \cdot) satisfying $xy^2 = yx^2$.

Another member of \mathbf{N}_{ω} is $\widetilde{N}_n = (\{-1, 0, \dots, n\} \cup \{n+1, \dots\}, \cdot)$, where the operation \cdot is defined by

$$xy = \begin{cases} x & \text{if } x = y, \\ 1 + \max(x, y) & \text{if } x \neq y \text{ and } n \notin \{x, y\} \\ n & \text{otherwise,} \end{cases}$$

and $n \ge 1$ is a fixed integer.

It is not difficult to see that $p_2(\tilde{N}_n)$ is infinite and \tilde{N}_n contains no isomorphic copy of N_{ω} . (Note that for every n, N_n is embeddable in \tilde{N}_n .) Thus, the condition (iii) of the theorem does not extend to the case of $p_2(G, \cdot)$ infinite.

REFERENCES

- J. Dudek, Variety of idempotent commutative groupoids, Fund. Math. 120 (1984), 193–204.
- [2] —, On the minimal extension of sequences, Algebra Universalis 23 (1986), 308–312.
- [3] —, pn-sequences. The minimal extension of sequences (Abstract), presented at the Conference on Logic and Algebra dedicated to Roberto Magari on his 60th birthday, Pontignano (Siena), 26–30 April 1994, 1–6.
- [4] G. Grätzer, Composition of functions, in: Proc. Conference on Universal Algebra, Kingston, 1969, Queen's Univ., Kingston, Ont., 1970, 1–106.
- [5] —, Universal Algebra, 2nd ed., Springer, New York, 1979.
- [6] G. G r ä t z e r and A. Kisielewicz, A survey of some open problems on p_n -sequences and free spectra of algebras and varieties, in: Universal Algebra and Quasigroup Theory, A. Romanowska and J. D. H. Smith (eds.), Heldermann, Berlin, 1992, 57–88.

Mathematical Institute University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland E-mail: dudek@math.uni.wroc.pl

> Received 2 June 1195; revised 11 October 1995