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Let K be a closed Lie subgroup of the unitary group U(n) acting by au-
tomorphisms on the (2n+1)-dimensional Heisenberg group Hn. We say that
(K,Hn) is a Gelfand pair when the set L1

K(Hn) of integrable K-invariant
functions on Hn is an abelian convolution algebra. In this case, the Gelfand
space (or spectrum) for L1

K(Hn) can be identified with the set ∆(K,Hn) of
bounded K-spherical functions on Hn. In this paper, we study the natural
topology on ∆(K,Hn) given by uniform convergence on compact subsets
in Hn. We show that ∆(K,Hn) is a complete metric space and that the
“type 1” K-spherical functions are dense in ∆(K,Hn). Our main result
shows that one can embed ∆(K,Hn) quite explicitly in a Euclidean space
by mapping a spherical function to its eigenvalues with respect to a certain
finite set of (K⋉Hn)-invariant differential operators on Hn. This viewpoint
on the spectrum for ∆(K,Hn) was previously known for K = U(n) and is
referred to as “the Heisenberg fan”.

1. Introduction. Given a locally compact group G and compact sub-
group K ⊂ G, the pair (G,K) is called a Gelfand pair if L1(G//K), the
space of integrable, K-bi-invariant functions on G, is commutative. Per-
haps the best known examples are those defining symmetric spaces, that is,
when G is a connected semisimple Lie group with finite center, and K is a
maximal compact subgroup. The analysis associated with such pairs plays
an important role in the representation theory of semisimple Lie groups and
has been extensively developed in the last four decades (cf. e.g. [9], [11]). In
sharp contrast to this case, one might begin by assuming that G is a solvable
Lie group. But then, if G is simply connected for example, there may be
no non-trivial compact subgroups. One can, however, consider pairs of the
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form (K ⋉ G,K) where K is a compact subgroup of Aut(G), the group of
automorphisms of G.

The Heisenberg groupHn of dimension 2n+1 is defined in Section 2. The
unitary group U(n) is a maximal compact connected subgroup of Aut(Hn).
Throughout this paper, K will denote a compact Lie subgroup of U(n) for
which (K ⋉ Hn,K) is a Gelfand pair. We say, by abuse of terminology,
that “(K,Hn) is a Gelfand pair”. In this setting, L1(K ⋉ Hn//K) can be
identified with the algebra L1

K(Hn) of integrable functions on Hn that are
invariant under the action of K. In [1], it is shown that the Gelfand pairs
of this sort play a central role in the study of Gelfand pairs associated with
more general solvable Lie groups.

Under the conditions described above, the set DK(Hn) of differential
operators on Hn which are simultaneously left-Hn-invariant andK-invariant
forms an abelian algebra. In Section 2 we construct a canonical set of
generators {Lγ1 , . . . , Lγd

, T} for this algebra. Here T is the derivative in the
central direction of Hn, and each Lγj

is a polynomial coefficient differential
operator of degree at least 2 involving derivatives in non-central directions.
The operators Lγj

arise from the invariant theory for the action of K on the
ring C[z1, . . . , zn].

The Gelfand space (or spectrum) of the commutative Banach ∗-algebra
L1
K(Hn) is the set of continuous non-zero algebra homomorphisms from

L1
K(Hn) to C. This can be identified, via integration, with the set ∆(K,Hn)

of bounded K-spherical functions on Hn. These are the smooth bounded
K-invariant functions ψ : Hn → C which are joint eigenfunctions for the
operators D ∈ DK(Hn) and are normalized to take the value 1 at the iden-
tity. A description of the bounded K-spherical functions can be found in
[2] and is summarized below in Section 2. These functions are of two types.
The K-spherical functions of type 1 yield non-trivial characters when re-
stricted to the center of Hn, whereas the K-spherical functions of type 2
are constant on the center. The latter can be regarded as functions defined
on the quotient of Hn by its center and reflect the abelian component of
analysis on Hn. For K = U(n), these can be expressed in terms of Bessel
functions (see equation (3.4)). The K-spherical functions of type 1 reflect
the non-abelian component of analysis on Hn. For the case K = U(n), these
can be expressed in terms of Laguerre polynomials (see equation (3.3)).

Our focus here is on the topology of the Gelfand space, where the usual
weak∗-topology coincides with the compact-open topology on ∆(K,Hn).
Our main result is stated as Theorem 4.1. It asserts that a sequence (ψN )∞N=1

in ∆(K,Hn) converges to ψ ∈ ∆(K,Hn) if and only if the sequences of
eigenvalues for ψN with respect to each generator for DK(Hn) converge to
the corresponding eigenvalue for ψ. We require a careful analysis of the
behavior of such eigenvalues, and these results are described in Section 3.
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As a corollary to Theorem 4.1, we find that the map which sends ψ ∈
∆(K,Hn) to its eigenvalues with respect to (Lγ1 , . . . , Lγd

, T ) is a homeo-
morphism of the space ∆(K,Hn) onto its image in C

d+1. In Section 3 we
show that the eigenvalues for the Lγj

’s are real numbers with constant sign
and that the T -eigenvalues are pure imaginary numbers. Thus we obtain a
map to (R+)d × R with image F(K,Hn) homeomorphic to ∆(K,Hn). We
call F(K,Hn) the Heisenberg fan for the Gelfand pair (K,Hn) and describe
this explicitly as the union of a d-dimensional algebraic set in (R+)d × {0}
and a countable family of 1-dimensional polynomial curves. This picture is
derived from the invariant theory for the action of K on the ring of polyno-
mials C[z1, . . . , zn].

We refine our description of the topology on the Gelfand space by proving
two final results. Proposition 4.5 asserts that ∆(K,Hn) is complete. That
is, if a sequence of bounded K-spherical functions converges to some func-
tion in the compact-open topology, then the limit is necessarily a bounded
K-spherical function. Proposition 4.4 asserts that the K-spherical functions
of type 1 are dense in ∆(K,Hn). Thus, every bounded K-spherical function
is a limit in the compact-open topology of some sequence of K-spherical
functions of type 1. Our proof of Proposition 4.4 uses the fact that the K-
spherical functions of type 2 form a set of measure zero with respect to the
Godement–Plancherel measure on ∆(K,Hn). Section 5 contains a descrip-
tion of the Godement–Plancherel measure and the K-spherical transform.

Propositions 4.4 and 4.5 are clear for the case K = U(n). Theorem 4.1
is not obvious, but was also known in this case (cf. [4]). We have adopted
the term “Heisenberg fan” from [7] and [17], which discuss the case when
K = U(n). Our proof of Theorem 4.1 in Section 4 is, however, self-contained.
The main interest in the current paper is that our results encompass Gelfand
pairs (K,Hn) for proper subgroups K of U(n).

2. Notation and preliminaries. We need to establish notation and
recall some results concerning Gelfand pairs and spherical functions associ-
ated with Heisenberg groups. For details concerning this preliminary mate-
rial, we refer the reader to two earlier papers, [1] and [2], by the first three
authors.

2.1. Heisenberg group. Given a complex vector space V of dimension n
with Hermitian inner product 〈·, ·〉, one forms the Heisenberg group Hn =
V × R with group law

(z, t)(z′, t′) =
(
z + z′, t+ t′ − 1

2 Im〈z, z′〉
)
.

At times, it will be convenient to work in coordinates on V . One can use an
orthonormal basis to identify V with C

n so that 〈z, z′〉 = z ·z′ for z, z′ ∈ C
n.

The left-invariant vector fields generated by the one-parameter subgroups
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through ((0, . . . , 0, 1 ± i, 0, . . . , 0) , 0) are written explicitly as

Zj = 2
∂

∂zj
+ i

zj
2

∂

∂t
, Zj = 2

∂

∂zj
− i

zj
2

∂

∂t
.

In addition let

T :=
∂

∂t
,

so that {Z1, . . . , Zn, Z1, . . . , Zn, T} is a basis for the Lie algebra hn of Hn.
With these conventions one has [Zj , Zj ] = −2iT .

2.2. Gelfand pairs.The group U(n) of unitary transformation of (V, 〈·, ·〉)
acts by automorphisms on Hn via

k · (z, t) := (kz, t) for k ∈ U(n) and (z, t) ∈ Hn.

This yields a maximal compact connected subgroup of Aut(Hn). If K is a
compact Lie subgroup of U(n) then we say that (K,Hn) is a Gelfand pair

when the algebra L1
K(Hn) := {f ∈ L1(Hn) | f(kz, t) = f(z, t)} of integrable

K-invariant functions on Hn is commutative under convolution. The group
U(n), and many proper subgroups K of U(n), yield Gelfand pairs. One can
find a complete classification of all such subgroups in [14] and [3]. Under
our identification of V with C

n, U(n) can be regarded as the group of n×n
unitary matrices.

2.3. Multiplicity free decomposition. An important ingredient in the
theory of Gelfand pairs (K,Hn) is the representation of K on the space of
polynomials C[V ] given by

k · p(z) := p(k−1z).

One has the following result:

Theorem 2.1 (cf. [5], [1]). (K,Hn) is a Gelfand pair if and only if the

representation of K on C[V ] is multiplicity free.

Throughout this paper, K will denote a closed Lie subgroup of U(n) for
which (K,Hn) is a Gelfand pair. We decompose C[V ] into K-irreducible
subspaces Pα,

(2.1) C[V ] =
∑

α∈Λ

Pα,

where Λ is some countably infinite index set. In view of Theorem 2.1,
this is a canonical decomposition. Since the representation of K on C[V ]
preserves the space Pm(V ) of homogeneous polynomials of degree m, each
Pα is a subspace of some Pm(V ). For α ∈ Λ, we write |α| for the degree of
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homogeneity of the polynomials in Pα. Thus we have Pα ⊂ P|α|(V ) and

Pm(V ) =
∑

|α|=m

Pα.

2.4. Fock space. Fock space F consists of entire functions f : V → C

which are square integrable with respect to e−|z|2/2dz with Hilbert space
structure

〈f, g〉F =

(
1

2π

)n \
V

f(z)g(z)e−|z|2/2 dz.

Here “dz” denotes Lebesgue measure on the underlying real space VR
∼= R

2n

for V ∼= C
n. The holomorphic polynomials C[V ] form a dense subspace in

F and one has the formula

〈p, q〉F = p

(
2
∂

∂z

)
q(z)

∣∣∣∣
z=0

for p, q ∈ C[V ],

where q(z) denotes the holomorphic polynomial obtained in coordinates by
conjugating the coefficients of q. The monomials za = za1

1 . . . zan
n with |a| =

a1 + . . . + an = m form an orthogonal basis for Pm(V ) in F . One has

‖za‖F =
√

2|a|a!, where as usual a! := a1! . . . an!.

2.5. Invariant polynomials. Since the trivial representation of K occurs
in C[V ] as P0(V ), and C[V ] is K-multiplicity free, there can be no non-
constant K-invariant holomorphic polynomials. One does, however, have
invariant polynomials on the underlying real vector space VR for V . We
denote the set of these by C[VR]K . More explicitly, given α ∈ Λ, let {v1, . . .
. . . , vdim(Pα)} be any orthonormal basis for Pα and define

(2.2) pα(z) :=

dim(Pα)∑

j=1

vj(z)vj(z).

This definition of pα is independent of the basis chosen for Pα. Further,
pα is a K-invariant polynomial on VR homogeneous of degree 2|α|, and
{pα | α ∈ Λ} is a vector space basis for C[VR]K . Note that pα takes values
in the set R

+ of non-negative reals.
A result due to Howe and Umeda (cf. [12]) shows that C[VR]K is freely

generated as an algebra. So there are polynomials γ1, . . . , γd ∈ C[VR]K so
that

C[VR]K = C[γ1, . . . , γd].

We call γ1, . . . , γd the fundamental invariants. In fact, one can take, for
each γj , a pα for which Pα contains a primitive highest weight vector. We
let δ1, . . . , δd ∈ Λ be the indices for which

γj = pδj
.



310 C. BENSON ET AL.

One computes that

pm(z) :=
∑

|α|=m

pα(z) =
1

2mm!
|z|2m.

Letting γ0(z) be defined as

γ0(z) = |z|2,
this becomes pm = γm0 /(2

mm!). When K acts irreducibly on V , γ0 will be
one of the fundamental invariants. In general, one will have γ0 =

∑
|αj |=1 γj .

2.6. The value space. The invariants for a smooth linear action of a
compact Lie group K on a real vector space separate K-orbits (cf. for
example page 133 in [16]). Thus, the map

γ := γ1 × . . .× γd : V → (R+)d

yields a bijection between the set V/K of K-orbits in V and the subset

Γ+
K := γ(V )

in (R+)d. We call Γ+
K the value space for K.

2.7. Invariant differential operators. The algebra D(Hn) of left-invariant
differential operators onHn is generated by {Z1, . . . , Zn, Z1, . . . , Zn, T}. We
denote the subalgebra of K-invariant differential operators by

DK(Hn) := {D ∈ D(Hn) | D(f ◦ k) = D(f) ◦ k for k ∈ K, f ∈ C∞(Hn)}.
Since (K,Hn) is a Gelfand pair, DK(Hn) is an abelian algebra. A result of
Thomas (cf. [18]) shows that the converse is also true, at least when K is
connected.

Each K-invariant polynomial p ∈ C[VR]K gives rise to a differential op-
erator

Lp := S̃(p) ∈ DK(Hn).

Here S̃ = S ◦ j ◦ Ω, where Ω : C[VR] → C[V ∗
R

] is the algebra isomorphism
induced by the symplectic pairing − Im〈·, ·〉 on VR, and j : C[V ∗

R
] →֒ C[h∗n]

is inclusion and S : C[h∗n] → D(Hn) is the symmetrization map. We have

(2.3) (Lpf)(z, t) = p

(
2
∂

∂ζ
, 2

∂

∂ζ

)
f

(
z + ζ, t− 1

2
Im〈z, ζ〉

)∣∣∣∣
ζ=0

for f ∈ C∞(Hn).

The operators Lp can be written explicitly using coordinates as follows:
Let p(z) =

∑
ca,bz

azb, where a, b are multi-indices and za = za1
1 . . . zan

n ,

zb = zb11 . . . zbn
n . Since p is K-invariant, it is easy to see that the operator
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p(Z,Z) defined by

p(Z,Z) :=
∑

ca,bZ
aZb =

∑
ca,bZ

a1
1 . . . Zan

n Zb11 . . . Zbn
n

belongs to DK(Hn). Note that the operator Lp is intrinsically defined,
whereas p(Z,Z) depends on the basis used to identify V with C

n. One has

Lp = Sym(p(Z,Z)),

where Sym is the linear map characterized by

Sym(ZaZb) =
1

(|a| + |b|)!
∑

σ∈S|a|+|b|

σ(ZaZb).

Here, as usual, |a| = a1+. . .+an and σ(ZaZb) denotes the result of applying
the permutation σ to the |a| + |b| terms in ZaZb.

For a d-multi-index a, let γa := γa1
1 . . . γad

d , ‖a‖ := a1|δ1| + . . . + ad|δd|
(the homogeneous degree of γa), and La

γ := La1
γ1
. . . Lad

γd
. Using the definition

of the map S̃, together with the fact that [Zj , Zj ] = −2iT , one sees that

(2.4) Lγa = La

γ +
∑

‖b‖<‖a‖

ca,bL
b

γT
‖a‖−‖b‖

for some coefficients ca,b ∈ C. Since γ1, . . . , γd generate C[VR], it follows
easily that {Lγ1 , . . . , Lγd

, T} generates the algebra DK(Hn).

2.8. Spherical functions. A smooth function ψ : Hn → C is called
K-spherical if

(1) ψ is K-invariant,

(2) ψ is an eigenfunction for every D ∈ DK(Hn), and

(3) ψ(0, 0) = 1.

Since Lγ1 , . . . , Lγd
, T generate DK(Hn), (2) holds if and only if ψ is an

eigenfunction for each of Lγ1 , . . . , Lγd
, T . We write D̂(ψ) for the eigenvalue

of D ∈ DK(Hn) on a K-spherical function ψ, that is, D(ψ) = D̂(ψ)ψ. Note
that since ψ(0, 0) = 1, one has

(2.5) D̂(ψ) = D(ψ)(0, 0).

We denote the set of positive definite K-spherical functions on Hn by
∆(K,Hn). In [1], it is shown that every bounded K-spherical function
is positive definite, so ∆(K,Hn) is also the set of bounded K-spherical
functions. We remark that this result is not true for more general Gelfand
pairs (G,K) and contrasts with the situation for symmetric spaces. The
positive definite K-spherical functions ψ are the matrix coefficients obtained
using unit K-fixed vectors in the representation spaces for the K-spherical
representations of the semidirect product group K ⋉Hn. In [2], it is shown
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that these functions can be described directly in terms of the representation
theory for Hn and the action of K on V .

One has an irreducible unitary representation π of Hn on F defined as

(π(z, t)f)(w) = eit−〈w,z〉/2−|z|2/4f(w + z).

For α ∈ Λ let

(2.6) φα(z, t) :=
1

dim(Pα)

dim(Pα)∑

j=1

〈π(z, t)vj , vj〉F ,

where {v1, . . . , vdim(Pα)} is an orthonormal basis for Pα. This description of
φα does not depend on our choice of basis {vj}. Define φλ,α for λ ∈ R

× and
α ∈ Λ by

(2.7) φλ,α(z, t) := φα
(√

|λ|z, λt
)
,

so that φα = φ1,α. The φλ,α’s are distinct bounded K-spherical functions.
We refer to these elements of ∆(K,Hn) as the spherical functions of type 1.
From equation (2.6) one can show that φα has the general form

φα(z, t) = eitqα(z)e−|z|2/4,

where qα is a K-invariant polynomial on VR with homogeneous component
of highest degree given by (−1)|α|pα/dim(Pα).

In addition to the K-spherical functions of type 1, there are K-spherical
functions which arise from the one-dimensional representations of Hn. For
w ∈ V , let

(2.8) ηw(z, t) :=
\
K

eiRe〈w,kz〉 dk =
\
K

eiRe〈z,kw〉 dk,

where “dk” denotes normalized Haar measure on K. The ηw are the bounded
K-spherical functions of type 2. Note that η0 is the constant function 1 and
ηw = ηw′ if and only if Kw = Kw′. We have one K-spherical function for
each K-orbit in V and sometimes write “ηKw” in place of “ηw”.

It is shown in [2] that every bounded K-spherical function is of type 1
or type 2. Thus we have:

Theorem 2.2. The bounded K-spherical functions on Hn are parame-

terized by the set (R× × Λ) ∪ (V/K) via

∆(K,Hn) = {φλ,α | λ ∈ R
×, α ∈ Λ} ∪ {ηKw | w ∈ V }.

Note that, for ψ ∈ ∆(K,Hn), one has

(2.9) ψ(z, t) = eiλtψ(z, 0),

where λ = −iT̂ (ψ) ∈ R. We observe that ψ is of type 2 if and only if λ = 0.
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3. Eigenvalues D̂(ψ). The eigenvalue T̂ (ψ) of T on ψ ∈ ∆(K,Hn)

is easily understood via equation (2.9). Eigenvalues of the form L̂p(ψ) are
much more subtle. In this section, we present a number of results concerning
these eigenvalues. The first of these shows that L̂p(ψ) can be computed by
replacing Lp with its “highest order terms”.

Lemma 3.1. For p ∈ C[VR]K and ψ ∈ ∆(K,Hn), one has

L̂p(ψ) = ∂p(ψ)(0, 0),

where ∂p := p
(
2 ∂
∂z , 2

∂
∂z

)
. That is, ∂p is the operator obtained by replacing

each occurrence of zj in p by 2 ∂
∂zj

and each zj by 2 ∂
∂zj

.

P r o o f. Using equations (2.5) and (2.3) we see that

L̂p(ψ) = Lp(ψ)(0, 0) = p

(
2
∂

∂ζ
, 2

∂

∂ζ

)
ψ

(
0 + ζ, 0 − 1

2
Im〈0, ζ〉

)∣∣∣∣
ζ=0

=

(
p

(
2
∂

∂z
, 2

∂

∂z

)
ψ

)
(0, 0).

The eigenvalue for an operator of the form Lpα
on a K-spherical function

of type 2 can be computed as follows. Recall that Pα ⊂ P|α|, so that pα is
homogeneous of degree 2|α|.

Lemma 3.2. L̂pα
(ηw) = (−1)|α|pα(w).

P r o o f. Using equation (2.8) together with Lemma 3.1 yields

L̂pα
(ηw) = ∂pα

(ηw)(0, 0) = ∂pα

[ \
K

eiRe〈z,kw〉 dk
]∣∣∣
z=0

.

One computes

∂pα
(eiRe〈z,kw〉)(z) = i2|α|pα(kw)eiRe〈z,kw〉 = (−1)|α|pα(w)eiRe〈z,kw〉.

Thus, L̂pα
(ηw) = (−1)|α|pα(w)ηw(0) = (−1)|α|pα(w).

Lemmas 3.3, 3.4 and 3.5 concern eigenvalues on K-spherical functions of
type 1.

Lemma 3.3. For D ∈ DK(Hn), α ∈ Λ and all v ∈ Pα one has

π(D)v = D̂(φα)v.

P r o o f. This is Proposition 3.20 in [2]. For the reader’s convenience, we
outline the proof here. One observes that the operator π(D) on F preserves
C[V ] and commutes with the action of K. Since the decomposition given
by equation (2.1) is multiplicity free, π(D) must preserve each Pα, and by
Schur’s Lemma, π(D)|Pα

is a scalar operator, cαIPα
say. Equations (2.5)



314 C. BENSON ET AL.

and (2.6) now show that

D̂(φα) = D(φα)(0, 0) =
1

dim(Pα)

dim(Pα)∑

j=1

〈π(0, 0)π(D)vj , vj〉F = cα.

Lemma 3.4. L̂pα
(φλ,β) = |λ||α|L̂pα

(φβ) for α, β ∈ Λ, λ ∈ R
×.

P r o o f. Using Lemma 3.1 together with equation (2.7), we compute

L̂pα
(φλ,β) = ∂pα

(φλ,β)(0, 0) = pα

(
2
∂

∂z
, 2

∂

∂z

)[
φβ

(√
|λ|z, 0

)]∣∣∣∣
z=0

=
(√

|λ|
)2|α|

pα

(
2
∂

∂z
, 2

∂

∂z

)
[φβ(z, 0)]

∣∣∣∣
z=0

,

since pα is homogeneous of degree 2|α|. Thus, L̂pα
(φλ,β)= |λ||α|∂pα

(φβ)(0, 0)

= |λ||α|L̂pα
(φβ) as desired.

Lemma 3.5. L̂pα
(ψ) is a real number with sign (−1)|α| for all α ∈ Λ and

ψ ∈ ∆(K,Hn).

P r o o f. In view of Lemmas 3.2 and 3.4, it suffices to show that L̂pα
(φβ)

is a real number with sign (−1)|α| for α, β ∈ Λ. We have

Lpα
= Sym(pα(Z,Z)) =

1

(2|α|)!
[
pα(Z,Z) +

∑

|δ|<|α|

cα,δpδ(Z,Z)(2iT )|α|−|δ|
]
,

for some coefficients cα,δ. The value of cα,δ is obtained by collecting terms
after reordering the monomials arising from symmetrization, so that the
Zj ’s precede the Zj ’s. Since ZjZj = ZjZj + 2iT , we see that cα,δ ≥ 0.
Thus we have

(3.1) L̂pα
(φβ)

=
1

(2|α|)!
[
pα(Z,Z)∧(φβ) +

∑

|δ|<|α|

cα,δpδ(Z,Z)∧(φβ)(−2)|α|−|δ|
]
.

Let {v1, . . . , vdim(Pδ)} be an orthonormal basis for Pδ and let uβ be a
unit vector in Pβ . Using Lemma 3.3 and equation (2.2) we see that

pδ(Z,Z)∧(φβ) = 〈π(pδ(Z,Z))uβ , uβ〉F =
∑

j

〈π(vj(Z))π(vj(Z))uβ , uβ〉F

=
∑

j

〈π(vj(Z))uβ , π(vj(−Z))uβ〉F

= (−1)|δ|
∑

j

‖π(vj(Z))uβ)‖2
F .
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Here we have used the fact that π(−Zj) is the adjoint operator for π(Zj)
on F . This is equation (4.13) in [2] and follows easily from the formulas

(3.2) π(Zj)f(z) = −zjf(z), π(Zj)f(z) = 2
∂f

∂zj
(z) for f ∈ F .

Thus, in equation (3.1), pα(Z,Z)∧(φβ) is a real number with sign (−1)|α|

and each of the pδ(Z,Z)∧(φβ)’s are real numbers with sign (−1)|δ|. As the

cα,δ’s are non-negative real numbers, we conclude that L̂pα
(φβ) is a real

number with sign (−1)|α|.

The Gelfand pair (U(n),Hn) plays a special role in our proof of Theo-
rem 4.1. The U(n)-spherical functions on Hn are well known and have been
computed independently by many authors. We refer the reader to [2] for
one treatment and additional references. The U(n)-spherical functions of
type 1 associated with Pr(V ) (r = 0, 1, . . .) can be written as

(3.3) φλ,r(z, t) = eiλtL(n−1)
r

( |λ|
2
|z|2

)
e−|λ‖z|2/4,

where L
(n−1)
r is the Laguerre polynomial of order n − 1 and degree r nor-

malized to have value 1 at z = 0. The U(n)-spherical functions of type 2
are η0(z, t) ≡ 1 and

(3.4) ηw(z, t) =
2n−1(n− 1)!

(|w‖z|)n−1
Jn−1(|w‖z|),

for w 6= 0. Here Jn−1 is the Bessel function of order n − 1 of the first
kind.

We have Lγ0 = 1
2

∑
j(ZjZj +ZjZj), and using equations (3.2) one com-

putes that π(Lγ0) = −2E − n, where E =
∑
j zj

∂
∂zj

is the degree operator.

Thus, π(Lγ0)|Pr(V ) is the scalar operator −(2r+n). From Lemmas 3.3 and
3.4 we obtain the following result, which is, in any case, very well known.

Lemma 3.6. The eigenvalues for Lγ0 on the U(n)-spherical functions of

type 1 are L̂γ0(φλ,r) = −|λ|(2r + n).

The eigenvalues L̂p(φλ,r) for operators Lp arising from polynomials p ∈
C[VR]U(n) (= C[γ0]) of degree greater than 2 are more difficult to compute.

We provide the following estimate for L̂pm
(φr). As explained in Section 2.5,

pm = γm0 /(2
mm!) is the U(n)-invariant polynomial obtained from Pm(V )

via equation (2.2).

Lemma 3.7. |L̂pm
(φr)| ≤

(
n+r+m−1

m

)
.
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P r o o f. Using Lemma 3.3, we have L̂γm
0

(φr) = 〈π(Lγm
0

)ur, ur〉F , where
ur is any unit vector in Pr(V ). We take ur(z) := zr1/(2

rr!). One has

Lγm
0

=
∑

|a|=m

m!

a!
Sym(ZaZ

a

).

Applying π and using equations (3.2) we obtain

L̂γm
0

(φr) =
∑

|a|=m

m!

a!

〈
Sym

(
(−z)a

(
2
∂

∂z

)a)
ur, ur

〉

F

=
∑

|a|=m

(−2)mm!

a!

〈
Sym

(
za

(
∂

∂z

)a)
ur, ur

〉

F

.

One sees that〈
Sym

(
za

(
∂

∂z

)a)
ur, ur

〉

F

≤
〈(

∂

∂z

)a

zaur, ur

〉

F

=
(a1 + r)!

r!
a2! . . . an!,

where the quantity on the left is a positive real number. We obtain

|L̂γm
0

(φr)| ≤
∑

|a|=m

2mm!

a!

(a1 + r)!

r!
a2! . . . an!

= m!2m
∑

|a|=m

(
a1 + r

r

)

= m!2m
m∑

a1=0

(
a1 + r

r

)(
m− a1 + n− 2

n− 2

)
,

where the second binomial coefficient in the last expression counts the num-
ber of terms (a2, . . . , an) with a2 + . . .+ an = m− a1.

We have a sum of the general form
∑m
a1=0Aa1

Bm−a1
, which is the coef-

ficient of the mth term in the product of the following two series:
∞∑

j=0

Ajx
j =

∞∑

j=0

(
r + j

j

)
xj =

(
1

1 − x

)r+1

,

∞∑

j=0

Bjx
j =

∞∑

j=0

(
j + n− 2

j

)
xj =

(
1

1 − x

)n−1

.

This product is
(

1

1 − x

)n+r

=
∞∑

j=0

(
n+ r + j − 1

j

)
xj
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and the mth term has coefficient
(
n+r+m−1

m

)
. Thus we have shown that

|L̂γm
0

(φr)| ≤ m!2m
(
n+ r +m− 1

m

)
.

This completes the proof, since pm = γm0 /(m!2m).

The following lemma shows that the eigenvalues L̂pα
(φλ,β) for a Gelfand

pair (K,Hn) are controlled by eigenvalues for the pair (U(n),Hn).

Lemma 3.8. For α, β ∈ Λ one has

|L̂pα
(φβ)| ≤ |L̂p|α|

(φ|β|)|.
Here the eigenvalue on the right hand side of this inequality is for the pair

(U(n),Hn).

P r o o f. Letting m := |α|, we have pm =
∑

|δ|=m pδ and thus

L̂pm
(φβ) =

∑

|δ|=m

L̂pδ
(φβ).

Lemma 3.5 shows that the L̂pδ
(φβ)’s are real numbers with common sign.

We conclude that

|L̂pα
(φβ)| ≤ |L̂pm

(φβ)|.
Since Pβ ⊂ P|β|(V ), Lemma 3.3 shows that both L̂pm

(φβ) and L̂pm
(φ|β|)

are equal to 〈π(Lpm
)uβ , uβ〉F , where uβ is any unit vector in Pβ . Thus,

|L̂pα
(φβ)| ≤ |L̂pm

(φβ)| = |L̂pm
(φ|β|)|.

The eigenvalues L̂pα
(ψ) for a K-spherical function ψ are related to the

coefficients in a Taylor series expansion for ψ. One can find results closely
related to Proposition 3.9 in [19].

Proposition 3.9. For ψ ∈ ∆(K,Hn), one has

ψ(z, 0) =
∑

δ∈Λ

L̂pδ
(ψ)

dim(Pδ)
pδ(z),

where the series converges absolutely and uniformly on compact subsets in V .

Thus we have the following series expansions for the K-spherical functions

of types 1 and 2 respectively :

φλ,α(z, t) = eiλt
∑

δ∈Λ

|λ||δ|L̂pδ
(φδ)

dim(Pδ)
pδ(z),

ηw(z, t) =
∑

δ∈Λ

(−1)|δ|pδ(w)

dim(Pδ)
pδ(z).

Here, convergence is absolute and uniform on compact subsets in Hn.
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P r o o f. The expansions for φλ,α(z, t) and ηw(z, t) follow immediately
from that for ψ(z, 0) together with Lemmas 3.4 and 3.2. It is a general
fact that the spherical functions for a Gelfand pair (G,K) are real analytic
(cf. Proposition 1.5.15 in [9]). For pairs of the form (K,Hn), one can
see this directly from the functional forms of the two types of K-spherical
functions. Write the Taylor series expansion of ψ(z, 0) centered at z = 0 as
ψ(z, 0) =

∑∞
m=0 hm(z), where hm(z) is a homogeneous polynomial of degree

m on VR (i.e. in the variables (z, z)). Since ψ is K-invariant, one sees by
K-averaging this expression that each hm is K-invariant. As {pδ | δ ∈ Λ} is
a basis for C[VR]K , we can rewrite the Taylor series as

ψ(z, 0) =
∑

δ∈Λ

cδpδ(z)

for some coefficients cδ. Note that since Taylor series converge absolutely, it
is not necessary to specify an ordering on the set Λ of indices for this sum.
We use Lemma 3.1 and perform term-wise differentiation of this Taylor series
to obtain

L̂pα
(ψ) = ∂pα

(ψ)(0, 0) =
∑

δ∈Λ

cδ∂pα
(pδ)(0).

Let {v1, . . . , vdim(Pα)} be an orthonormal basis for Pα and {u1, . . . , udim(Pδ)}
be an orthonormal basis for Pδ. Thus pα =

∑
vj(z)vj(z), pδ =

∑
ui(z)ui(z)

and

∂pα
(pδ)(0) =

∑

i,j

vj

(
2
∂

∂z

)
ui(z)vj

(
2
∂

∂z

)
ui(z)

∣∣∣∣
z=0

=
∑

i,j

|〈vj , ui〉F |2 =

{
0 if δ 6= α,
dim(Pα) if δ = α.

Hence L̂pα
(ψ) = cα dim(Pα) and cδ = L̂pδ

(ψ)/dim(Pδ). Since this is a
Taylor series, the convergence is absolute and uniform on compact sets.

It is well known that a spherical function is completely determined by its
spectrum of eigenvalues. Proposition 3.9 shows explicitly how ψ ∈ ∆(K,Hn)

is determined by {D̂(ψ) | D ∈ DK(Hn)}. Since Lγ1 , . . . , Lγd
, T generate

DK(Hn), it follows that ψ is in fact determined by (L̂γ1(ψ), . . . , L̂γd
(ψ),

T̂ (ψ)). Indeed, equation (2.4) shows that eigenvalues of the form L̂γa(ψ) are

determined by the eigenvalues of the sort (Lb

γ )∧(ψ) = L̂γ1(ψ)b1 . . . L̂γd
(ψ)bd

together with T̂ (ψ). Since each pδ is a linear combination of γa’s, we obtain
the following corollary from Proposition 3.9.

Corollary 3.10. A K-spherical function ψ ∈ ∆(K,Hn) is completely

determined by the d+ 1 eigenvalues

(L̂γ1(ψ), . . . , L̂γd
(ψ), T̂ (ψ)).
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4. The topology on ∆(K,Hn). Given a Gelfand pair (K,Hn), one
can consider three topological spaces:

• The set ∆(K,Hn) of bounded K-spherical functions on Hn endowed
with the compact-open topology. That is, we give ∆(K,Hn) the topol-
ogy of uniform convergence on compact sets.

• The Gelfand space (or spectrum) ∆(L1
K(Hn)) of the commutative Ba-

nach algebra L1
K(Hn). This is the set of continuous non-zero alge-

bra homomorphisms from L1
K(Hn) to C regarded as a subspace of

L1
K(Hn)∗ with the weak∗-topology.

• The set ĜK of K-spherical representations of G := K ⋉ Hn. This
is the set of irreducible unitary representions of G that possess cyclic
K-fixed vectors. We give ĜK the Fell topology.

Since bounded K-spherical functions are necessarily positive definite,
we have a natural bijection between ĜK and ∆(K,Hn). Moreover, inte-
gration produces a bijection between ∆(K,Hn) and ∆(L1

K(Hn)). That is,
ψ ∈ ∆(K,Hn) yields a continuous algebra homomorphism L1

K(Hn) → C

via

f 7→
\
Hn

f(z, t)ψ(z, t) dz dt.

It is standard that these set bijections are homeomorphisms when
∆(K,Hn), ∆(L1

K(Hn)) and ĜK are endowed with the natural topologies de-
scribed above. Moreover, it is known that these spaces are locally compact,
second countable and metrizable. The study of these topologies amounts to
the following analytic question:

Under what conditions does a given sequence (ψN )∞N=1 of K-spherical

functions converge uniformly on compact sets to a given K-spherical func-

tion ψ?

The following theorem answers this question and is our main result.

Theorem 4.1. Let (ψN )∞N=1 be a sequence of K-spherical functions and

ψ ∈ ∆(K,Hn). Then ψN converges to ψ in the topology of ∆(K,Hn)

(i.e. uniformly on compact sets) if and only if L̂γj
(ψN ) → L̂γj

(ψ) for

j = 1, . . . , d, and T̂ (ψN ) → T̂ (ψ).

P r o o f. Suppose that (ψN )∞N=1 converges uniformly to ψ on compact

subsets of Hn. Since ψN (0, t) = eT̂ (ψN )t and ψ(0, t) = eT̂ (ψ)t, we must

have T̂ (ψN ) → T̂ (ψ). The series expansions for ψN (z, 0) and ψ(z, 0) given

in Proposition 3.9 ensure that L̂pδ
(ψN ) → L̂pδ

(ψ) for each δ ∈ Λ. Since

{γ1, . . . , γd} ⊂ {pδ | δ ∈ Λ}, this shows in particular that L̂γj
(ψN ) → L̂γj

(ψ)
for j = 1, . . . , d.
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Conversely, suppose that L̂γj
(ψN ) → L̂γj

(ψ) for j = 1, . . . , d and T̂ (ψN )

→ T̂ (ψ). It follows that L̂p(ψN ) → L̂p(ψ) for every p ∈ C[VR]K . Indeed,
each p ∈ C[VR]K is a linear combination of monomials γa in the fundamental
invariants, and from equation (2.4) one obtains

lim
N→∞

(Lγa)∧(ψN ) = lim
N→∞

[
L̂a

γ(ψN ) +
∑

‖b‖<‖a‖

ca,bL̂
b

γ (ψN )T̂ (ψN )‖a‖−‖b‖
]

= L̂a

γ(ψ) +
∑

‖b‖<‖a‖

ca,bL̂
b

γ (ψ)T̂ (ψ)‖a‖−‖b‖ = (Lγa)∧(ψ).

It suffices to consider two cases:

(1) Each ψN is a K-spherical function of type 1.

(2) Each ψN is a K-spherical function of type 2.

Indeed, if (ψN )∞N=1 contains infinitely many terms of both types, then one
reduces the situation to these cases by forming the subsequences consisting
of the terms of each type.

We begin with the easier case (2) and write ψN = ηwN
. Since T̂ (ψ) =

lim T̂ (ψN ) = 0, ψ must be a K-spherical function of type 2, ψ = ηw
say. Lemma 3.2 shows that L̂γj

(ηwN
) = (−1)|δj |γj(wN ) and L̂γj

(ηw) =

(−1)|δj |γj(w). We conclude that γ(wN ) → γ(w) in the value space Γ+
K and

hence KwN → Kw in V/K. Equation (2.8) shows that ηwN
and ηw can be

obtained via integration over the K-orbits KwN and Kw. It follows easily
that ηwN

converges to ηw uniformly on compact sets.

Next consider case (1). Let ψN = φλN ,αN
and let S be a given compact

subset of Hn. In case (1), ψ can be a K-spherical function of either type.
Suppose first that ψ is of type 2 and write ψ = ηw. (Later we will also treat
the situation where ψ is a K-spherical function of type 1.)

Choose a constant c1 large enough so that γ0(z) = |z|2 ≤ c1 for all
(z, t) ∈ S. We write rN for |αN | and consider the tail of the series expansion
for φλN ,αN

consisting of the terms with indices δ satisfying |δ| ≥ M . For
M ≥ 2 and all (z, t) ∈ S, we obtain the following bound:

∑

δ∈Λ
|δ|≥M

|L̂pδ
(φαN

)|
dim(Pδ)

pδ(z)|λN ||δ| ≤
∞∑

m=M

|L̂pm
(φrN

)|
∑

|δ|=m

pδ(z)|λN |m

≤
∞∑

m=M

(
m+ n+ rN − 1

m

)
1

2mm!
γm0 (z)|λN |m

≤ 1

2MM !

∞∑

m=M

(
m+ n+ rN − 1

m

)
|c1λN |m
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≤ 1

2MM !

∞∑

m=2

(
m+ n+ rN − 1

m

)
|c1λN |m

=
R2(|c1λN |)

2MM !
say.

We have used Lemmas 3.7 and 3.8 here, together with the identity
∑

|δ|=m pδ
= γm0 /(2

mm!).
We now regard R2(x) as a remainder term for the Taylor series for

(1−x)−(n+rN ). Computing the integral form for this remainder term yields

R2(x) =

x\
0

(n+ rN )(n+ rN + 1)(x− t)

(1 + t)n+rN+1
dt ≤ (n+ rN )(n+ rN + 1)x2,

provided 0 < x < 1. Since T̂ (φλN ,αN
) = iλN converges to T̂ (ηw) = 0,

we have λN → 0. Thus for N sufficiently large, N ≥ N0 say, we have
0 < |c1λN | < 1 and hence

R2(|c1λN |) ≤ (n+ rN )(n+ rN + 1)|c1λN |2.
Moreover, we have L̂γ0(φλN ,αN

) = L̂γ0(φλN ,rN
) = −|λN |(2rN + n) by Lem-

ma 3.6 and since L̂γ0(φλN ,αN
) converges to L̂γ0(ηw), we conclude that

(|λN |rN ) is convergent. We now see, in particular, that both (λN ) and
(|λN |rN ) are bounded sequences and hence

(n + rN )(n + rN + 1)|c1λN |2 ≤ c2

for some constant c2 and all N . Thus, for all N ≥ N0 and all (z, t) ∈ S we
have

∑

δ∈Λ
|δ|≥M

|L̂pδ
(φλN ,αN

)|
dim(Pδ)

pδ(z) ≤
c2

2MM !
.

This bound ensures that the series converges uniformly to ηw on compact
subsets of Hn.

Finally, suppose that ψN = φλN ,αN
and ψN → ψ, where ψ = φλ,α is

a K-spherical function of type 1. Since T̂ (φλN ,αN
) = iλN converges to

T̂ (φλ,α) = iλ, we have λN → λ. Since L̂γ0(φλN ,αN
) = |λN |L̂γ0(φ|αN |) =

|λN |(2|αN | + n) converges to L̂γ0(φλ,α) = |λ|(2|α| + n), also rN := |αN |
must converge to |α|. Thus, both (λN ) and (rN ) are bounded sequences
and we choose constants c1, c2 with

|λ| ≤ c1, 0 ≤ rN ≤ c2

for all N . Choose constants c3 and c4 with γ0(z) = |z|2 ≤ c3 for all (z, t) ∈ S
and

γ0(z)
m|λN |m
m!

≤ (c3c1)
m

m!
≤ c4

2m
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for all m,N and all (z, t) ∈ S. As before, we obtain, for (z, t) ∈ S,
∣∣∣∣e
iλN t

∑

δ∈Λ
|δ|≥M

L̂pδ
(φλN ,αN

)

dim(Pδ)
pδ(z)

∣∣∣∣

≤
∞∑

m=M

(
m+ n+ rN − 1

m

)
1

2mm!
γm0 (z)|λN |m

≤ c4
2M

∞∑

m=M

(
m+ n+ rN − 1

m

)(
1

2

)m

≤ c4
2M

∞∑

m=0

(
m+ n+ rN − 1

m

)(
1

2

)m

=
c4
2M

2n+rN ≤ c5
2M

,

where c5 := c42
n+c2 . From this, we conclude that φλN ,αN

→ φλ,α uniformly
on S by reasoning as in the case where φN = φλN ,αN

and ψ = ηw.

For the Gelfand pair (U(n),Hn), one has the single fundamental invari-
ant γ0(z) = |z|2. Theorem 4.1, together with Lemma 3.6, shows that a
sequence (φλN ,rN

)∞N=1 of U(n)-spherical functions of type 1 converges in
∆(U(n),Hn) to a U(n)-spherical function ηw of type 2 if and only if

λN → 0 and |λN |(2rN + n) → |w|2.
These spherical functions are given explicitly by equations (3.3) and (3.4).
From this we obtain, for example, the following corollary to Theorem 4.1.

Corollary 4.2. The sequence

xn−1

2n−1(n− 1)!
L(n−1)
m

(
x2

2(2m + n)

)
e−

x2

4(2m+n)

converges to Jn−1(x) uniformly on compact subsets of R
+ = {x ∈ R |

x ≥ 0}.

The reader will find classical viewpoints on Corollary 4.2 discussed on
page 92 in [7].

One can obtain a clearer understanding of the topology on ∆(K,Hn) by
recasting Theorem 4.1 as follows. Consider the map E : ∆(K,Hn) → C

d+1

defined by

E(ψ) := ((−1)|δ1|L̂γ1(ψ), . . . , (−1)|δd|L̂γd
(ψ),−iT̂ (ψ)).

Since L̂γj
(ψ) is a real number with sign (−1)|δj | and T̂ (ψ) is pure imaginary,
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E takes values in (R+)d × R. We denote the image of E by

F(K,Hn) := E(∆(K,Hn)) ⊂ (R+)d × R

and give this the subspace topology from (R+)d × R. We call F(K,Hn)
the Heisenberg fan for (K,Hn). In view of Corollary 3.10, the map E is a
bijection between the sets ∆(K,Hn) and F(K,Hn). Since both ∆(K,Hn)
and F(K,Hn) are metrizable spaces, Theorem 4.1 shows that both E and
E−1 are continuous maps. Thus we have proved the following theorem.

Theorem 4.3. The map E is a homeomorphism between ∆(K,Hn) and

the Heisenberg fan F(K,Hn).

Lemma 3.2 shows that the image under E of the K-spherical functions
of type 2 is precisely the value space Γ+

K in (R+)d:

E({ηw | w ∈ V }) = Γ+
K × {0}.

Lemma 3.4 shows that for fixed α ∈ Λ we have

E({φλ,α | λ ∈ R
×}) = {(κα,1|λ||δ1|, . . . , κα,d|λ||δd|, λ) | λ ∈ R

×},

where κα,j := |L̂γj
(φα)|. This is the disjoint union of two algebraic curves,

E({φλ,α | λ ∈ R
×}) = L+

α ∐ L−
α ,

where

L±
α = {(κα,1λ|δ1|, . . . , κα,dλ|δd|,±λ) | λ > 0}.

Thus we see that F(K,Hn) is the algebraic set in (R+)d × R consisting of
the value space Γ+

K together with a countable family of curves:

F(K,Hn) = (Γ+
K × {0}) ∐

( ∐

α∈Λ

L+
α

)
∐

( ∐

α∈Λ

L−
α

)
.

F(U(n),Hn) is depicted in Figure 1.

Fig. 1. The Heisenberg fan for (U(n),Hn)
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One has

F(U(n),Hn) = (R+ × {0}) ∐
( ∞∐

m=0

L+
m

)
∐

( ∞∐

m=0

L−
m

)
,

where L±
m are the lines

L±
m = {((2m + n)λ,±λ) | λ > 0}

of slope ±1/(2m + n) in R
+ × R. The Heisenberg fan for (U(n),Hn) is

described in [7] and in [17], although the latter paper does not explicitly
discuss the topology on ∆(U(n),Hn). A proof that E : ∆(U(n),Hn) →
F(U(n),Hn) is a homeomorphism is implicit in Bougerol’s paper [4], which
includes a description of a system of open neighborhoods for η0 ≡ 1 in
∆(U(n),Hn). Thus Theorems 4.1 and 4.3 are known results for the case
K = U(n).

The following result ensures that each K-spherical function ηw of type
2 is the limit in ∆(K,Hn) of some sequence (φλN ,αN

)∞N=1 of K-spherical
functions of type 1. Proposition 4.4 is clear for the case K = U(n) but is
rather surprising when K 6= U(n). In these cases, Γ+

K has dimension d > 1
but the L±

α ’s are one-dimensional. The result reflects the manner in which
the countable family of L±

α ’s sit over the value space in F(K,Hn).

Proposition 4.4. The K-spherical functions of type 1 are dense in the

space ∆(K,Hn).

Our proof for Proposition 4.4 requires the spherical transform and will
be given in Section 5. Proposition 4.5 complements Proposition 4.4. If a
sequence in ∆(K,Hn) converges uniformly on compact subsets of Hn then
the limit is necessarily a bounded K-spherical function.

Proposition 4.5. ∆(K,Hn) is a complete metric space. That is, if

(ψN )∞N=1 is a sequence of bounded K-spherical functions that converges uni-

formly to ψ on compact subsets in Hn then ψ is a bounded K-spherical

function.

P r o o f. It is clear that ψ is continuous, K-invariant and bounded and
that ψ(0, 0) = 1. Moreover, if f, g ∈ L1

K(Hn) have compact support then\
Hn

ψ(z, t)(f ∗ g)(z, t) dz dt = lim
N→∞

\
Hn

ψN (z, t)(f ∗ g)(z, t) dz dt

= lim
N→∞

\
Hn

ψN (z, t)f(z, t) dz dt
\
Hn

ψN (z, t)g(z, t) dz dt

=
\
Hn

ψ(z, t)f(z, t) dz dt
\
Hn

ψ(z, t)g(z, t) dz dt.
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Thus f 7→
T
Hn

ψ(z, t)f(z, t) dz dt defines a continuous non-zero algebra ho-

momorphism L1
K(Hn) → C. It follows that ψ ∈ ∆(K,Hn).

5. The K-spherical transform. The K-spherical transform for f ∈
L1
K(Hn) is the function

f̂ : ∆(K,Hn) → C, f̂(ψ) :=
\
Hn

f(z, t)ψ(z, t) dz dt.

Here “dzdt” denotes Haar measure for the group Hn, which is simply Eu-
clidean measure on VR × R. One has

(5.1) (f ∗ g)∧(ψ) = f̂(ψ)ĝ(ψ) and (f∗)∧(ψ) = f̂(ψ)

for f, g ∈ L1
K(Hn), ψ ∈ ∆(K,Hn), where f∗(z, t) := f(−z,−t).

The compact-open topology on ∆(K,Hn) is the smallest topology that

makes all of the maps {f̂ | f ∈ L1
K(Hn)} continuous. Since L1

K(Hn) is a

Banach ∗-algebra with respect to the involution f 7→ f∗, it follows that f̂
belongs to the space C0(∆(K,Hn)) of continuous functions on ∆(K,Hn)
that vanish at infinity. Moreover, we have

‖f̂‖∞ ≤ ‖f‖1

for f ∈ L1
K(Hn). This follows immediately from the fact that for ψ ∈

∆(K,Hn) one has |ψ(z, t)| ≤ ψ(0, 0) = 1, since ψ is positive definite.
Godement’s Plancherel Theory for Gelfand pairs (G,K) (cf. [10], or

Section 1.6 in [9]) ensures that there exists a unique positive Borel measure
dµ on the space ∆(K,Hn) for which

(5.2)
\
Hn

|f(z, t)|2 dz dt =
\

∆(K,Hn)

|f̂(ψ)|2 dµ(ψ)

for all continuous functions f ∈ L1
K(Hn) ∩ L2

K(Hn). If f ∈ L1
K(Hn) ∩

L2
K(Hn) is continuous and f̂ is integrable with respect to dµ then one has

the Inversion Formula

(5.3) f(z, t) =
\

∆(K,Hn)

f̂(ψ)ψ(z, t) dµ(ψ).

In particular, this formula holds when f is continuous, positive definite and
K-invariant. Moreover, the spherical transform f 7→ f̂ extends uniquely to
an isomorphism between L2

K(Hn) and L2(∆(K,Hn), dµ).
The following result makes the Godement–Plancherel measure on

∆(K,Hn) explicit. Given F : ∆(K,Hn) → C, we write F (w) and F (λ, α) in
place of F (ηw) and F (φλ,α) respectively. The reader can find another proof
of Theorem 5.1 in [19]. The result for K = U(n) is also discussed in [7]
and [17].
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Theorem 5.1. The Godement–Plancherel measure dµ on ∆(K,Hn) is

given by \
∆(K,Hn)

F (ψ) dµ(ψ) =
\

R×

∑

α∈Λ

dim(Pα)F (λ, α)|λ|n dλ.

P r o o f. For λ ∈ R
× let πλ be the irreducible unitary representation of

Hn on F defined by πλ(z, t) := π(
√

|λ|, λt). One has the formula (cf. [2])

φλ,α(z, t) =
\
K

〈πλ(kz, t)uα, uα〉F dk,

where uα is any unit vector in Pα.

Since existence and uniqueness of the Godement–Plancherel measure is
guaranteed, we need only verify that equation (5.2) holds for dµ as in the
statement of the theorem and all f in a dense self-adjoint subalgebra of
C(Hn)∩L1

K(Hn)∩L2
K(Hn). For f continuous, K-invariant and of compact

suppport, we compute

〈πλ(f ∗ f∗)uα, uα〉F =
\
Hn

(f ∗ f∗)(z, t)〈πλ(z, t)uα, uα〉F dz dt

=
\
Hn

\
K

(f ∗ f∗)(k−1z, t)〈πλ(z, t)uα, uα〉F dk dz dt

=
\
Hn

\
K

(f ∗ f∗)(z, t)〈πλ(kz, t)uα, uα〉F dk dz dt

=
\
Hn

(f ∗ f∗)(z, t)φλ,α(z, t) dz dt

= (f ∗ f∗)∧(λ, α) = |f̂(λ, α)|2.

Thus we see that tr(πλ(f ∗ f∗)) =
∑
α∈Λ dim(Pα)|f̂(λ, α)|2. The Plancherel

formula for Hn (cf. pages 37–39 in [8]) now gives\
Hn

|f(z, t)|2 dz dt =
\

R×

tr(πλ(f ∗ f∗))|λ|n dλ

=
\

R×

∑

α∈Λ

dim(Pα)|f̂(λ, α)|2|λ|n dλ.

Theorem 5.1 shows that the K-spherical functions of type 2 form a set
of Godement–Plancherel measure zero in ∆(K,Hn). Our proof of Propo-
sition 4.4, stated earlier, uses this fact together with the Inversion For-
mula (5.3).

P r o o f o f P r o p o s i t i o n 4.4. Take a point w in V , and suppose that
ηw is not in the closure of {φλ,α | λ ∈ R

×, α ∈ Λ}.
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∆(K,Hn) is metrizable, hence it is completely regular, so one can find a
continuous function J : ∆(K,Hn) → R with J(w) = 1 and J(λ, α) = 0 for
all λ ∈ R

×, α ∈ Λ. We can assume that J has compact support.
The second of equations (5.1) ensures that L1

K(Hn) is a symmetric Ba-

nach ∗-algebra. It follows that {f̂ | f ∈ L1
K(Hn)} is dense in (C0(∆(K,Hn)),

‖ · ‖∞). (See, for example, §14 in Chapter III of [15].) Thus we can find a

sequence (jN ) in L1
K(Hn) with ĵN → J uniformly on ∆(K,Hn). We can

assume that each jN is continuous and compactly supported. Moreover,
since J is real-valued, we can assume that j∗N = jN .

The proof of Proposition 3 in [13] shows that one can find an approximate
identity (as)s>0 in L1

K(Hn) with âs compactly supported in∆(K,Hn) for all
s > 0. For s sufficiently small, one has âs(w) > 3/4. Moreover, for each s one

sees that (as ∗jN )∧ = âsĵN converges uniformly to âsJ as N → ∞. Thus we
can choose s0 sufficiently small and N0 sufficiently large that g := as0 ∗ jN0

satisfies

ĝ(w) > 1
2 and |ĝ(λ, α)| < 1

4 for all λ, α.

Note that g is continuous, integrable, square-integrable and g∗ = g.
Dixmier’s functional calculus (cf. [6]) ensures that “sufficiently smooth

functions operate on L1
K(Hn)”. Thus, if ζ : R → R is sufficiently smooth

with ζ and its derivatives integrable and ζ(0) = 0, then there is a function

f := ζ{g} ∈ L1
K(Hn) ∩ L2

K(Hn) ∩ C(Hn) with the property that f̂ = ζ ◦ ĝ.
We choose such a ζ with ζ(t) = 1 for t > 1/2 and ζ(t) = 0 for t < 1/4. Then

F := f̂ = (ζ{g})∧ satisfies F (w) = 1 and F (λ, α) = 0 for all λ, α.
Now Theorem 5.1 shows that F = 0 a.e. on ∆(K,Hn). In particular, F

is integrable on ∆(K,Hn) and we can apply the Inversion Formula (5.3) to

conclude that f ≡ 0 on Hn. This implies that F = f̂ is identically zero on
∆(K,Hn), which contradicts F (w) = 1.
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Études Sci. Publ. Math. 6 (1960), 305–317.



328 C. BENSON ET AL.

[7] J. Faraut, Analyse harmonique et fonctions spéciales, in: J. Faraut et K. Harzallah,
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