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STEINITZ CLASSES
OF A NONABELIAN EXTENSION OF DEGREE p3

BY

JAMES E. CARTER (CHARLESTON, SOUTH CAROLINA)

0. Introduction. Let L/k be a finite extension of algebraic number
fields. Let OL and o denote the rings of integers in L and k, respectively. As
an o-module, OL is completely determined by [L : k] and its Steinitz class
C(L, k) (see [FT]). Now let G be a finite group. As L varies over all normal
extensions of k with Galois group Gal(L/k) isomorphic to G, C(L, k) varies
over a subset R(k, G) of realizable classes of the class group C(k) of k. If
we consider only tamely ramified extensions of k, then we denote this set
by Rt(k, G). From now on, let p be an odd prime. In [L1], Rt(k, G) is
determined when G is a cyclic group of order p. In this case it is shown that
Rt(k, G) is actually a subgroup of C(k). This result is extended in [L2] to
include cyclic groups of order pr, where r ≥ 1.

In the present paper we consider the following situation. With the nota-
tion as above, assume k contains the multiplicative group µp of pth roots of
unity. Let G be the nonabelian group of order p3 given in terms of generators
and relations by

(1) G = 〈η, τ, ξ | ηp = τp = ξp = 1, [η, τ ] = 1 = [η, ξ], [τ, ξ] = η〉.
A = 〈η, τ〉 is a normal subgroup of G and we have an exact sequence of
groups

Σ : 1 → A → G → B → 1,

where B is cyclic of order p. Fix, once and for all, a tamely ramified normal
extension E/k with Gal(E/k) ' B. Let ζ be a primitive pth root of unity.
If F is a field, denote by F× the set of nonzero elements of F , and by F p the
multiplicative group of pth powers of elements of F×. By Kummer theory
there exists an a ∈ k× such that 〈akp〉 is a cyclic subgroup of k×/kp of
order p, and E = k(α), where αp = a. Furthermore, Gal(E/k) = 〈%〉, where
%(α) = ζα.

Define the elements N and θ of the group ring Z[〈%〉] by N =
∑p−1

i=0 %i

and θ =
∑p−1

i=0 i%i. Let G be given by (1). If L is a field on which a group H

1991 Mathematics Subject Classification: Primary 11R04.

[297]



298 J. E. CARTER

acts, and S is a subgroup of H, denote by LS the subfield of L fixed by S.
Using exponential notation to denote the action of N and θ on elements of
E, suppose there exists an e ∈ E× such that the element b = e−N of k× has
order p (mod kp), c = eθ has order p (mod Ep), and 〈bEp〉 and 〈cEp〉 are
distinct cyclic subgroups of E×/Ep of order p. Let F = k(β) and M = E(γ),
where βp = b and γp = c. By Kummer theory it follows that K = EF
and L = MK are elementary abelian extensions of degree p2 of k and E,
respectively. Moreover, since %(c) = %(eθ) = e%θ = eθ−N+p = e−Neθep =
bcep, we have %i(c) ≡ c (mod 〈b〉Ep) for every positive integer i. Hence,
B = 〈b, c〉Ep = 〈b, %i(c)〉Ep = %i(B) for every positive integer i. Since L =
E(B1/p), where B1/p is the set of pth roots of elements of B, it follows that
every k-embedding of L into an algebraic closure of k is a k-automorphism
of L. Therefore L/k is a normal extension and, consequently, a Galois
extension. A routine argument shows that there exists an isomorphism
φL : Gal(L/k) → G such that E = Lφ−1

L
(A). Conversely, if L is any Galois

extension of k containing E such that φL : Gal(L/k) → G is an isomorphism
with E = Lφ−1

L
(A), it is not difficult to show that there exists subfields

F , M , and K of L as described above. When an extension L/k as just
characterized is tamely ramified, we will call it a G-extension with respect
to E/k and Σ. As L varies over all such extensions of k, C(L, k) varies over
a subset Rt(E/k,Σ) of C(k).

We will determine Rt(E/k,Σ) (Theorem 6) in two stages. In Section 1
we obtain a description of the discriminant ideal dL/E for a G-extension
with respect to E/k and Σ (Proposition 3). We can then use a result of [A],
and the characterization of L/k indicated above, to prove our main result in
Section 2. As an immediate consequence we find that if the ring of integers
OE in E is free as an o-module, then Rt(E/k,Σ) is a subgroup of C(k)
(Corollary 7).

1. Arithmetic considerations. Standard facts from algebraic number
theory used in this and the following sections can be found in [FT], [J] or [L].
If X and Z are ideals in an algebraic number field then X‖Z means XY = Z,
where Y is an ideal relatively prime to X.

Lemma 1. The elements e, b, and c satisfying the conditions stated above
may be chosen so that e ∈ OE with b = eN and c = eθ.

P r o o f. If e1 is a nonzero element of OE then (eep
1)
−N = e−N (e−N

1 )p and
(eep

1)
θ = eθ(eθ

1)
p. We also have (ep−1)N = e−N (eN )p and (ep−1)θ = (eθ)p−1.

The lemma follows from these facts and Kummer theory.

Let ε : Z[〈%〉] → Z be the augmentation homomorphism. Let (e) be the
principal ideal in OE generated by e. Reordering the prime factors of (e) if
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necessary, we have

(e) =
( t∏

i=1

PAi
i

)
A,

where the Pi are distinct prime ideals in E which split completely in E/k,
and such that Pi ∩ o 6= Pj ∩ o whenever i 6= j; A is an ideal in E divisible
only by prime ideals in E which either remain prime or totally ramify in
E/k; and the Ai are elements of Z[〈%〉] with nonnegative coefficients.

Let L be a prime factor of A. Then LN =Lε(N) and Lθ =Lε(θ). There-
fore, since ε(N) = p, ε(θ) = p(p − 1)/2, and AiN = ε(Ai)N for each i, we
have

(eN ) =
( t∏

i=1

P
ε(Ai)N
i

)
Bp(2)

and

(eθ) =
( t∏

i=1

PAiθ
i

)
Cp,(3)

where B and C are ideals in E.

Lemma 2. Let A =
∑

aj%
i ∈ Z[〈%〉]. Then Aθ ≡ ε(A)θ + dN (mod p),

where d = −
∑

jaj. In particular , if ε(A) ≡ 0 (mod p) then Aθ ≡ dN
(mod p).

P r o o f. We have (1−%)θ = N−p. Hence, %θ ≡ θ−N (mod p). Applying
% repeatedly to this congruence we find that %rθ ≡ θ − rN (mod p), where
r is any nonnegative integer. Hence Aθ ≡ ε(A)θ + dN (mod p), where
d = −

∑
jaj .

Proposition 3. Let L/k be a G-extension with respect to E/k and Σ.
Then

(e) =
( t∏

i=1

PAi
i

)
A

as described in the paragraph following Lemma 1, and we have

dL/E =
( t∏

i=1

PniN
i

)p(p−1)

,

where ni ∈ {0, 1}. Moreover ,

(i) if ε(Ai) 6≡ 0 (mod p) then ni = 1;
(ii) if ε(Ai) ≡ 0 (mod p) then Aiθ ≡ diN (mod p), where di ∈ Z. We

then have ni = 1 if and only if di 6≡ 0 (mod p).

P r o o f. Suppose P is a prime ideal in E and P ramifies in L/E. Since
L/E is tamely ramified, P is not a factor of (p), and the inertia group TP
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of P in Gal(L/E) is cyclic. Since Gal(L/E) is elementary abelian of type
(p, p) it follows that TP has order p. Hence, the ramification index of P in
L/E is p. Furthermore, either P ramifies in M/E or P ramifies in K/E.
Assume the latter. Since K/E is tamely ramified, P occurs as a factor of
dK/E exactly p− 1 times, i.e.,

vP(dK/E) = p− 1.

Let NK/E denote the ideal norm from K to E. From

dL/E = d
[L:K]
K/E NK/E(dL/K)

we have

(4) vP(dL/E) = p(p− 1).

Since K = E(β), where βp = eN , it follows from (2), the proof of Theo-
rem 118 of [H], and (4) that

(5)
( ∏

ε(Ai) 6≡0 (p)

PN
i

)p(p−1)∥∥∥dL/E .

The remaining prime factors of dL/E are the prime ideals in E which ramify
in M/E. We have M = E(γ), where γp = eθ. Consider (3). If ε(Ai) 6≡ 0
(mod p) then the contribution made to dL/E from the ideal PAiθ

i is already
apparent in (5) since the prime factors of PAiθ

i are among those of P
ε(Ai)N
i .

Suppose ε(Ai) ≡ 0 (mod p). By Lemma 2 this implies Aiθ ≡ diN (mod p),
where di ∈ Z. By an argument similar to that which produced (5) we obtain( ∏

ε(Ai)≡0 (p)
di 6≡0 (p)

PN
i

)p(p−1)∥∥∥dL/E .

2. Realizable classes. Let δ = (p − 1)/2. By Section 2 of [L1] we
have C(E, k) = cδ for some c ∈ C(k). Let WE/k be the subgroup of C(k)
generated by the classes in C(k) which contain at least one prime ideal in k
which splits completely in E/k. In this section we will show that

Rt(E/k,Σ) = (cWE/k)p2δ,

where (cWE/k)p2δ is the set of (p2δ)th powers of elements of the coset cWE/k.
In particular, if C(E, k) = 1 then we have

Rt(E/k,Σ) = (WE/k)p2δ
.

By replacing the extension F/k in the proof of Lemma 2.5 of [L1] with
our extension E/k, we obtain a proof of the following lemma.
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Lemma 4. Every class in WE/k contains infinitely many prime ideals in
k which split completely in E/k.

If F is an arbitrary algebraic number field and I is an ideal in F , then
cl(I) denotes the class of I in C(F ). Suppose L/k is a G-extension with
respect to E/k and Σ. By Proposition 3,

dL/E =
( s∏

i=1

PN
i

)p(p−1)

,

where s ≤ t, with t and the Pi as indicated in the statement of Proposition 3
(the latter after a possible relabelling of subscripts). From the theorem of
[A], and the fact that [L : E] is odd, it follows that C(L,E) = cl(d1/2

L/E). Let
pi be the prime ideal in k such that piOE = PN

i (hence NE/k(PN
i ) = pp

i ,
where NE/k is the ideal norm from E to k). Let NE/k denote the norm
from C(E) to C(k). Since

C(L, k) = C(E, k)[L:E]NE/k(C(L,E))

we have

C(L, k) = cp2δNE/k

(
cl

( s∏
i=1

PN
i

))pδ

= cp2δ cl
(
NE/k

( s∏
i=1

PN
i

))pδ

= cp2δ
( s∏

i=1

cl(pi)
)p2δ

∈ (cWE/k)p2δ.

Hence,

(6) Rt(E/k,Σ) ⊆ (WE/k)p2δ.

We now show that the reverse inclusion holds. For a modulus m of an
algebraic number field F , let CF (m) denote the ray class group modulo m
(see [J]).

Proposition 5. Let X ∈ WE/k and let b be a fractional ideal in k. Then
there exists a G-extension with respect to E/k and Σ such that C(L, k) =
(cX)p2δ and (dL/E ,B) = 1, where B = bOE.

P r o o f (cf. the proof of Theorem 2.6 in [L1]). Recall that E = k(α),
where αp = a for some a ∈ k× and a is not a pth power of an element of k.
Choose an odd integer t > 3 such that Xt = X, and choose positive integers
bi, 1 ≤ i ≤ t, such that (bi, p) = 1 for each i and

∑t
i=1 bi = pt (e.g. bi = p−1

for 1 ≤ i ≤ (t + 1)/2, bi = p + 1 for (t + 3)/2 ≤ i ≤ t − 1, and bt = p + 2).
Let m be the modulus (1− ζ)p2

of k. By Lemma 4, X contains infinitely
many prime ideals which split completely in E. Since CE(m) is finite, there
exists a class cm ∈ CE(m) containing infinitely many prime ideals P which
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split completely in E/k, and such that P∩k is a prime in X. Choose prime
ideals P1, . . . ,Pt ∈ cm such that

(i) each Pi splits completely in E/k;
(ii) for each i, pi = Pi ∩ k ∈ X;
(iii) i 6= j implies that Pi is not conjugate to Pj ;
(iv) for each i, (PN

i ,B) = 1;
(v) for each i, (PN

i , (a)) = 1.

Choose a prime ideal Q ∈ c−1
m such that Q and all of its conjugates are

relatively prime to (a). We have

(e) =
( t∏

i=1

Pbi
i

)
Qpt,

where e ∈ E and e ≡ 1 (mod m). Since m is a modulus of k, it follows
that eθ ≡ 1 (mod m) and e−N ≡ 1 (mod m) as well. Let b = e−N and
c = eθ. It is straightforward to verify that the elements b and c satisfy the
conditions described in the introduction. Furthermore, by Theorem 119 of
[H], it follows that the corresponding extensions M/E and K/E are tamely
ramified. Hence, L/k is a G-extension with respect to E/k and Σ.

We now show that C(L, k) = (cX)p2δ and (dL/E ,B) = 1. By the proof
of Lemma 1 we may replace the element e with e′ = ep−1. We have

(e′) =
( t∏

i=1

Pci
i

)
Qp(p−1)t,

where ci = bi(p− 1). Therefore, by Proposition 3(i),

dL/E =
( t∏

i=1

PN
i

)p(p−1)

.

Hence, as in the proof of (6), we obtain

C(L, k) = cp2δ
( t∏

i=1

cl(pi)
)p2δ

= cp2δXtp2δ = cp2δXp2δ = (cX)p2δ.

Finally, by (iv), it follows that (dL/E ,B) = 1.

Theorem 6. Let L/k be a G-extension with respect to E/k and Σ. Fur-
thermore, assume C(E, k) = cδ for some c ∈ C(k). Then

Rt(E/k,Σ) = (cWE/k)p2δ.

P r o o f. (6) and Proposition 5.
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Corollary 7. If L/k is a G-extension with respect to E/k and Σ and
C(E, k) = 1, then

Rt(E/k,Σ) = (WE/k)p2δ.
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