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STEINITZ CLASSES
OF A NONABELIAN EXTENSION OF DEGREE p3
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JAMES E. CARTER (CHARLESTON, SOUTH CAROLINA)

0. Introduction. Let L/k be a finite extension of algebraic number
fields. Let 9, and o denote the rings of integers in L and k, respectively. As
an o-module, O is completely determined by [L : k| and its Steinitz class
C(L,k) (see [FT]). Now let G be a finite group. As L varies over all normal
extensions of k& with Galois group Gal(L/k) isomorphic to G, C(L, k) varies
over a subset R(k,G) of realizable classes of the class group C(k) of k. If
we consider only tamely ramified extensions of k, then we denote this set
by Ri(k,G). From now on, let p be an odd prime. In [L1], Ri(k,G) is
determined when G is a cyclic group of order p. In this case it is shown that
Ri(k,G) is actually a subgroup of C'(k). This result is extended in [L2] to
include cyclic groups of order p”, where r > 1.

In the present paper we consider the following situation. With the nota-
tion as above, assume £ contains the multiplicative group p,, of pth roots of
unity. Let G be the nonabelian group of order p? given in terms of generators
and relations by

1) G=Mmnlln=r"=E=1 nr]=1=h¢ [r.¢=mn).
A = (n,7) is a normal subgroup of G and we have an exact sequence of
groups
Y:1-A—-G—-B—1,

where B is cyclic of order p. Fix, once and for all, a tamely ramified normal
extension F/k with Gal(E/k) ~ B. Let ¢ be a primitive pth root of unity.
If F'is a field, denote by F'* the set of nonzero elements of F', and by FP the
multiplicative group of pth powers of elements of £*. By Kummer theory
there exists an a € k* such that (akP) is a cyclic subgroup of k* /kP of
order p, and E = k(«a), where a? = a. Furthermore, Gal(E/k) = (p), where
o(a) = Cav.

Define the elements N and 6 of the group ring Z[(0)] by N = Zfz_ol ot
and 6 = f:_ol io'. Let G be given by (1). If L is a field on which a group H
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acts, and S is a subgroup of H, denote by L® the subfield of L fixed by S.
Using exponential notation to denote the action of N and # on elements of
E, suppose there exists an e € E* such that the element b = e~ of k> has
order p (mod kP), ¢ = €% has order p (mod EP), and (bEP) and (cEP) are
distinct cyclic subgroups of E* /EP of order p. Let F' = k() and M = E(v),
where gP = b and 7P = ¢. By Kummer theory it follows that K = EF
and L = MK are elementary abelian extensions of degree p? of k and E,
respectively. Moreover, since o(c) = p(e?) = €2 = /= N+P = ¢=Nefepr =
beeP, we have o'(c) = ¢ (mod (b)EP) for every positive integer i. Hence,
B = {b,c)EP = (b, 0'(c))EP = ¢'(B) for every positive integer i. Since L =
E(B'Y/P), where B'/P is the set of pth roots of elements of B, it follows that
every k-embedding of L into an algebraic closure of k is a k-automorphism
of L. Therefore L/k is a normal extension and, consequently, a Galois
extension. A routine argument shows that there exists an isomorphism
¢r : Gal(L/k) — G such that E = Lo (A), Conversely, if L is any Galois
extension of k£ containing E such that ¢, : Gal(L/k) — G is an isomorphism
with £ = L¢Zl(’4), it is not difficult to show that there exists subfields
F, M, and K of L as described above. When an extension L/k as just
characterized is tamely ramified, we will call it a G-extension with respect
to E/k and X. As L varies over all such extensions of k, C'(L, k) varies over
a subset Ry(E/k,X) of C(k).

We will determine R (E/k, ) (Theorem 6) in two stages. In Section 1
we obtain a description of the discriminant ideal dj g for a G-extension
with respect to E/k and X (Proposition 3). We can then use a result of [A],
and the characterization of L/k indicated above, to prove our main result in
Section 2. As an immediate consequence we find that if the ring of integers
Op in F is free as an o-module, then Ri(E/k,Y) is a subgroup of C(k)
(Corollary 7).

1. Arithmetic considerations. Standard facts from algebraic number
theory used in this and the following sections can be found in [FT], [J] or [L].
If X and 3 are ideals in an algebraic number field then X||3 means X9) = 3,
where Q) is an ideal relatively prime to X.

LEMMA 1. The elements e, b, and ¢ satisfying the conditions stated above
may be chosen so that e € O with b= eV and c = €°.

Proof. If e; is a nonzero element of O then (ee?) ™ = e~V (e;V)? and
(ee?)? = €% (ef)P. We also have (eP1)N = e~ N(eN)P and (eP~1)? = (ef)P~1.
The lemma follows from these facts and Kummer theory.

Let € : Z[(0)] — Z be the augmentation homomorphism. Let (e) be the
principal ideal in O generated by e. Reordering the prime factors of (e) if
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necessary, we have

()= (ﬁm?i)m,

where the 9B; are distinct prime ideals in E' which split completely in E/k,
and such that B, No # P, No whenever i # j; A is an ideal in E divisible
only by prime ideals in £ which either remain prime or totally ramify in
E/k; and the A; are elements of Z[(o)] with nonnegative coefficients.

Let £ be a prime factor of A. Then £V =£5(V) and £ =25, There-
fore, since e(N) = p, €(6) = p(p — 1)/2, and A;N = ¢(A;)N for each i, we
have

© @)= (I[%")

=1

3) (") = (f[m;‘i@)@,

where B and € are ideals in F.

LEMMA 2. Let A =" a;0' € Z[{0)]. Then A = e(A)f + dN (mod p),
where d = — )" jaj. In particular, if €(A) = 0 (mod p) then A = dN
(mod p).

Proof. We have (1—p)8 = N—p. Hence, pf = 6—N (mod p). Applying
o repeatedly to this congruence we find that ¢"0 =60 — rN (mod p), where
r is any nonnegative integer. Hence A0 = ¢(A)§ + dN (mod p), where

d=— Ejaj.
PROPOSITION 3. Let L/k be a G-extension with respect to E/k and X.

Then
()= (TT %)

as described in the paragraph following Lemma 1, and we have

dL/E _ ( ﬁ gl;?iN)]D(p—l)?
=1

where n; € {0,1}. Moreover,
(i) if e(A;) Z0 (mod p) then n; = 1;
(ii) if e(A;) =0 (mod p) then A;0 = d;N (mod p), where d; € Z. We
then have n; =1 if and only if d; Z0 (mod p).
Proof. Suppose P is a prime ideal in F and P ramifies in L/E. Since
L/E is tamely ramified, B is not a factor of (p), and the inertia group Tip
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of P in Gal(L/E) is cyclic. Since Gal(L/E) is elementary abelian of type
(p,p) it follows that Ty has order p. Hence, the ramification index of B in
L/E is p. Furthermore, either P ramifies in M/E or ‘B ramifies in K/E.
Assume the latter. Since K/FE is tamely ramified, 8 occurs as a factor of
dy /g exactly p—1 times, i.e.,

vp(dr/p) =p— 1.
Let Nk,g denote the ideal norm from K to E. From

dr/p = d[]g}g]NK/E(dL/K)

we have

(4) U&B(dL/E) =p(p—1).

Since K = E(f), where P = eV, it follows from (2), the proof of Theo-
rem 118 of [H], and (4) that

p(p—1)
(5) (IT ) [dem,
£(Ai)Z0 (p)
The remaining prime factors of dy, /g are the prime ideals in E which ramify
in M/E. We have M = E(v), where v* = ¢’. Consider (3). If ¢(4;) £ 0
(mod p) then the contribution made to dy, g from the ideal ‘BiAie is already
apparent in (5) since the prime factors of &]3;41'9 are among those of ‘,Bf(Ai)N.
Suppose €(4;) =0 (mod p). By Lemma 2 this implies A;0 = d; N (mod p),
where d; € Z. By an argument similar to that which produced (5) we obtain

H ‘B,N)p(p_l)HdL/E-

€(A;)=0(p)
d; #0 (p)

2. Realizable classes. Let 6 = (p — 1)/2. By Section 2 of [L1] we
have C(E, k) = ¢ for some ¢ € C(k). Let W/, be the subgroup of C(k)
generated by the classes in C(k) which contain at least one prime ideal in k
which splits completely in E/k. In this section we will show that

R(E/k, %) = (¢Wpg,)?,

where (cVVE/k)pQ(s is the set of (p?d)th powers of elements of the coset We/k-
In particular, if C(E, k) = 1 then we have

Ri(E/k, Z) = (W) ®

By replacing the extension F'/k in the proof of Lemma 2.5 of [L1] with
our extension F/k, we obtain a proof of the following lemma.
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LEMMA 4. Every class in Wy, contains infinitely many prime ideals in
k which split completely in E/k.

If F'is an arbitrary algebraic number field and 7 is an ideal in F', then
cl(J) denotes the class of J in C(F'). Suppose L/k is a G-extension with
respect to E/k and Y. By Proposition 3,

dr/e = (ﬁmf\,)p(pl),

i=1
where s < t, with ¢ and the 3; as indicated in the statement of Proposition 3
(the latter after a possible relabelling of subscripts). From the theorem of
[A], and the fact that [L : E] is odd, it follows that C'(L, E) = cl(di//QE). Let
p; be the prime ideal in k such that p;Or = BV (hence NE/k(‘BfV) = p?,
where N/, is the ideal norm from E to k). Let Mg/, denote the norm
from C(FE) to C(k). Since

C(L,k) = C(E,k)FFImg . (C(L, E))

we have

C(L k) = 095 (el (ﬁw»pg
i=1

— e (e ([T9Y))" = ([T at0)
i=1 =1

4 25
c (CWE/k)p .

Hence,
(6) R(E/k,X) C (Wg,)"°.

We now show that the reverse inclusion holds. For a modulus m of an
algebraic number field F, let C'r(m) denote the ray class group modulo m
(see [J]).

PROPOSITION 5. Let X € W, and let b be a fractional ideal in k. Then
there exists a G-extension with respect to E/k and X such that C(L,k) =

(cX)”*? and (dr/E,B) =1, where B = bOE.

Proof (cf. the proof of Theorem 2.6 in [L1]). Recall that £ = k(«),
where of = a for some a € k* and a is not a pth power of an element of k.
Choose an odd integer ¢ > 3 such that X* = X, and choose positive integers
b;, 1 < i <t, such that (b;,p) = 1 for each i and Z;.t:l b; =pt (e.g. b =p—1
for 1 <i<(t+1)/2,bi=p+1for (t+3)/2<i<t—1,and by =p+2).
Let m be the modulus (1 — ¢)” ©of k. By Lemma 4, X contains infinitely
many prime ideals which split completely in E. Since Cg(m) is finite, there
exists a class ¢, € Cg(m) containing infinitely many prime ideals P which
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split completely in E/k, and such that 8Nk is a prime in X. Choose prime
ideals PB1, ..., Bt € ¢y such that
(i) each B; splits completely in E/k;

(ii) for each i, p; =P, Nk € X;

(iii) ¢ # j implies that PB; is not conjugate to P;;

(iv) for each i, (BN, B) = 1;

(v) for each i, (BV, (a)) = 1.

Choose a prime ideal Q € ¢! such that 9 and all of its conjugates are
relatively prime to (a). We have

t

(e) = (TT )2,

i=1

where e € F and e = 1 (mod m). Since m is a modulus of &, it follows
that ¢ = 1 (mod m) and e™™ = 1 (mod m) as well. Let b = e~V and
c = e, Tt is straightforward to verify that the elements b and ¢ satisfy the
conditions described in the introduction. Furthermore, by Theorem 119 of
[H], it follows that the corresponding extensions M/FE and K/E are tamely
ramified. Hence, L/k is a G-extension with respect to E/k and X.

We now show that C(L, k) = (cX)pg‘S and (dp,/g,B) = 1. By the proof
of Lemma 1 we may replace the element e with ¢/ = eP~!. We have

(¢') = (ﬁmfi>gp(p—l)t7
i=1
where ¢; = b;(p — 1). Therefore, by Proposition 3(i),
dr/p = (ﬁmfv)p(p_l).
i=1
Hence, as in the proof of (6), we obtain

t 2
2 5 2 2 2 2 2
O(L,k) = ¢ 5(Hcl(pi))p — PO — PO XP (xS,
=1

Finally, by (iv), it follows that (dr,g,B) = 1.

THEOREM 6. Let L/k be a G-extension with respect to E/k and X. Fur-
thermore, assume C(E,k) = ¢ for some ¢ € C(k). Then

R(E/k,X) = (¢Wpg,)"°.

Proof. (6) and Proposition 5.
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COROLLARY 7. If L/k is a G-extension with respect to E/k and X and
C(E,k) =1, then
2
R(E/k, X) = (Wgp)"°.
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