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A NEW PROOF OF A THEOREM OF BALCERZYK,
BIA LYNICKI-BIRULA AND  LOŚ

BY

JOHN D. O’N E I L L (DETROIT, MICHIGAN)

Let Zκ be the direct product of κ copies of the integers Z, where κ is
less than the least measurable cardinal number. In [1] the authors cited
in the title showed, among other things, that, if A is a direct summand of
the abelian group Zκ, then A ∼= Zα for some cardinal number α. A key
ingredient in their proof was showing that Zκ as well as Z(κ), the direct sum
of κ copies of Z, were Z-dual. An abelian group G is Z-dual (in modern
terminology Z-reflexive) if G is isomorphic to Hom(Hom(G, Z), Z). About
the same time R. L. Nunke in [3] obtained the same result using similar
arguments. We here present a proof of their result which avoids the use of
duality and Hom and seems to us to be more natural.

Unless otherwise indicated our notation and terminology is the same as
in [2]. We rely heavily on the following version of a famous Theorem of  Loś
(see Theorem 94.4 in [2]): if P and S are the direct product and direct sum
respectively of torsion-free abelian groups Gi, i ∈ κ, where κ is less than the
least measurable cardinal number, and η : P → Z is a homomorphism, then

(a) η(Gi) = 0 for almost all i, and
(b) if η(S) = 0, then η(P ) = 0.

Theorem 1 (see the Corollary to Theorem 1 in [1]; also, Theorem 5 in
[3]). Let Zκ =

∏
i∈κ〈ei〉 = A⊕B, where κ is a set of cardinality less than the

least measurable cardinal number. Then A (similarly B) is a direct product
of copies of Z.

We begin with two lemmas whereby in Proposition 4 we reduce Theo-
rem 1 to the countable case. This case is treated in Proposition 5. A formal
proof of Theorem 1 follows. We conclude with some generalizations of The-
orem 1.
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Lemma 2. The set κ can be ordered as an ordinal such that , if Ps equals∏
i≥s〈ei〉 for each s ∈ κ, then, for s = 0 or a limit ordinal , Ps = As ⊕ Bs

with As ⊆ A and Bs ⊆ B.

P r o o f. Let π : Zκ → A and πi : Zκ → A → 〈ei〉 be the natural
projections. By  Loś’ Theorem for each i ∈ κ, πi(ej) = 0 for almost all
j ∈ κ. We totally order κ as follows. Assume for ordinal j that we have
chosen a subset I = {i : i < j} from κ and that κ−I is nonempty. Choose j
from κ−I such that πi(ej) 6= 0 for the least possible i ∈ I; if no such i exists
let j be arbitrary. Now let s be 0 or a limit ordinal in κ. By our ordering
of κ we have πi(Ps) = 0 for all i < s by  Loś’ Theorem. Let As = π(Ps) and
let Bs be the projection of Ps to B. Since As is contained in Ps, so is Bs.
Therefore Ps = As ⊕Bs.

Let S be the set consisting of 0 and all limit ordinals in κ. For each s
in S define P (s) =

∏
s≤i<s+ω〈ei〉 where ω = {0, 1, 2, . . .}. In what follows,

Ps, As and Bs are as in Lemma 2. However, if s happens to be maximal in
κ, then s+ω is not in S, so we set Ps+ω, As+ω and Bs+ω all equal to 0. We
also note that, if s is maximal in κ, then P (s) could have finite rank.

Lemma 3. For each s in S,

(a) As = A(s)⊕As+ω, where A(s) = As ∩ (P (s)⊕Bs+ω),
(b) Bs = B(s)⊕Bs+ω, where B(s) = Bs ∩ (P (s)⊕As+ω), and
(c) P (s) ∼= A(s)⊕B(s) ∼= Zm for some m ≤ ω.

P r o o f. By Lemma 2, Ps = As⊕Bs and Ps+ω = As+ω⊕Bs+ω. Also, Ps

equals P (s) ⊕ As+ω ⊕ Bs+ω. Thus, since As ⊇ As+ω, (a) is true; similarly,
(b) is true. For (c) note that we now have A(s) ⊕ B(s) ∼= Ps//Ps+ω

∼= Zm

for some m ≤ ω.

Proposition 4. A ∼=
∏

s∈S A(s), where A(s) is as in Lemma 3.

P r o o f. Let as ∈ A(s) for each s ∈ S. Each as equals π(ps) for some
ps ∈ P (s). Since

∏
S P (s) is a product, for each i ∈ κ we have πi(as) = 0

for almost all s by  Loś’ Theorem. Thus, if as = (asi), i ∈ κ, in Zκ for
each s, we can write

∑
s∈S as for the element (

∑
s∈S asi), i ∈ κ, in Zκ.

Let C = {
∑

s∈S as : as ∈ A(s)}. Suppose that
∑

s∈S as = 0 but that
at 6= 0 for minimal t = s. Let φt : A → P (t) in

∏
s∈S P (s) be the natural

projection. Then 0 = φt(
∑

s∈S as) = φt(at) = pt 6= 0 (since π(pt) = at 6= 0),
a contradiction. Hence C ∼=

∏
s∈S A(s), the external direct product. We

now show that A = C. Since As ⊆ A for all s, C ⊆ A by  Loś’ Theorem. Let
a ∈ A. We complete the proof by showing a ∈ C. Suppose for each s < t
in S we have found as ∈ A(s) such that a −

∑
r≤s ar is in As+ω for each

s. Then the element a −
∑

r<t ar is in As+ω for each s < t since it equals
(a−

∑
r≤s ar)−

∑
s<r<t ar for each such s. So it is in At. By Lemma 3(a),
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for some at in A(t), the element a −
∑

r≤t ar is in At+ω. Inductively then
we can find as ∈ A(s) for each s ∈ S such that a −

∑
r≤s ar is in As+ω for

each s. Since the element a−
∑

s∈S as equals (a−
∑

r≤s ar)−
∑

r>s ar for
each s, it is in

⋂
s∈S As+ω, which is 0. Therefore a =

∑
s∈S as, an element

in C.

Our proof of the next result is well known but, since it does not seem to
be in standard references, we include it for completeness.

Proposition 5. If Zω = A⊕B, then A ∼= Zm for some m ≤ ω.

P r o o f. Write Zω = {(xn) : n ∈ ω, xn ∈ Z}. For each s ∈ ω, let As

equal {(xn) ∈ A : xn = 0 for n < s}. Choose as ∈ As for each s such that its
s-component is the least possible positive integer; if no such element exists,
let as = 0. Observe that, if x ∈ As, then x−mas is in As+1 for some integer
m. Write as = (asn), n ∈ ω. Since asn is 0 whenever s > n, we can identify∑

s∈ω msas (ms ∈ Z) with the element (
∑

s∈ω msasn), n ∈ ω, in Zω. Let
C be the set of all such elements. By our choice of each as it follows that
C ∼=

∏
s∈ω〈as〉 ∼= Zm for some m ≤ ω. Also, C ⊆ A. Let a ∈ A. We

complete the proof by showing a ∈ C. By induction we can find ms ∈ Z for
each s such that a−

∑
r≤s mrar is in As+1 for each s. It follows easily then

that a =
∑

s∈S msas, an element in C.

P r o o f o f T h e o r e m 1. By Proposition 4 and Lemma 3, A is isomor-
phic to

∏
s∈S A(s), where each A(s) is isomorphic to a direct summand of

Zω. Proposition 5 completes the proof.

Generalizations. (a) Suppose P =
∏

i∈κGi, where each Gi is isomor-
phic to a proper subgroup of the rational numbers and where κ is less than
the least measurable cardinal number. In [4] we showed that any direct
summand of P is a direct product of rank-one abelian groups. This gener-
alized all the results in [1]. The proof in [4] was much more difficult than
the proof of Theorem 1 above but still avoided the use of duality and Hom.

(b) In [5] by other means we showed that Theorem 1 can be extended
to the case where κ is the least measurable cardinal number.
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