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ON CONTINUOUS ACTIONS COMMUTING
WITH ACTIONS OF POSITIVE ENTROPY

BY

MARK A. SHERESHEVSKY (COLUMBUS, OHIO)

Let F and G be finitely generated groups of polynomial growth with the
degrees of polynomial growth d(F ) and d(G) respectively. Let S = {Sf}f∈F

be a continuous action of F on a compact metric space X with a positive
topological entropy h(S). Then (i) there are no expansive continuous actions
of G on X commuting with S if d(G) < d(F ); (ii) every expansive continuous
action of G on X commuting with S has positive topological entropy if
d(G) = d(F ).

1. Introduction and results. In this note we will be concerned with
actions of discrete groups by homeomorphisms of a compact metric space
(X, %). Such an action T = {T g}g∈G, where g → T g is a homomorphism
of a discrete group G into the group Homeo(X) of homeomorphisms of X,
is said to be expansive if there exists a constant c > 0 (called an expansive
constant) such that for every pair of distinct points x, y ∈ X there exists
g ∈ G such that %(T gx, T gy) > c.

The dynamics of expansive Z actions (= expansive homeomorphisms) has
been studied in numerous papers and seems fairly well understood by now.
In particular, there have been discovered certain topological obstructions to
the expansiveness. For instance, R. Mañé [M] proved that expansive home-
omorphisms exist only on spaces with finite topological dimension. A. Fathi
[F] showed that expansive homeomorphisms with zero topological entropy
exist only on zero-dimensional spaces. It is also known that there are no
expansive homeomorphisms on certain manifolds: the circle S1 (see [W]),
the sphere S2 etc. [L]. Much less is known about expansive actions of larger
groups, in particular Zn with n > 1. The above mentioned obstructions ob-
viously fail to extend to continuous actions of Zn, n > 1. Indeed, for example
the Z2 action generated by two commuting hyperbolic toral automorphisms
is expansive, has zero entropy, but lives on a space of positive topological
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dimension. Also, consider the following Z2-subshift of finite type with the
circle S = R/Z as an alphabet: X = {x ∈ SZ2

: 3xij + xi+1,j + xi,j+1 = 0
for all (i, j) ∈ Z2}. It can be shown [S] that the natural action of Z2 on
X by shifts is expansive, but X clearly has infinite topological dimension.
It is apparently an unexplored question whether there exist expansive Zn

actions with n > 1 on S1, S2 and other manifolds.
Here we give some obstructions to the expansiveness of an action of a

finitely generated group with an additional condition that the action com-
mutes with another action which has positive entropy. An important role in
our results is played by the rate of polynomial growth of a finitely generated
group. Let us recall the definition (see e.g. [B], [G]). Let G be a discrete
group generated by a finite set Γ = {γ1, . . . , γs} ⊂ G. For every g ∈ G define
‖g‖Γ = min{l : g = γσ1

j1
γσ2

j2
. . . γσl

jl
}, where σk ∈ {−1, 1}, 1 ≤ k ≤ l, i.e. ‖g‖Γ

is the minimal length of a word expressing g as a product of the generators
and their inverses. Then we define the (finite) ball of radius m ≥ 0 to be
BG,Γ (m) = {g ∈ G : ‖g‖Γ ≤ m}. The group G is said to have polynomial
growth ([B], [G]) if the value

d(G) = lim sup
m→∞

log |BG,Γ (m)|
log m

is finite. The number d(G) is called the degree of polynomial growth of the
group G and does not depend on the choice of generators. For example, it
is easy to see that d(Zs) = s. It can be proved (see [B], [G]) that d(G) is
always an integer and that there exist constants C1, C2 > 0 such that

(1) C1m
d ≤ |BG,Γ (m)| ≤ C2m

d, m ≥ 1.

The set of generators being fixed, we will drop the subscript Γ and write
simply BG(m) for the ball in G. It is easy to see that a group G of polynomial
growth is amenable, since the sequence of balls {BG(m)}m≥1 is a Følner
sequence (see e.g. [MO]). So, if T = {T g}g∈G is a continuous action of G
on a metric compactum (X, %), then the topological entropy of T can be
computed as follows [MO]. Given a finite set E ⊂ G and ε > 0 we say that
a set A ⊂ X is (T,E, ε)-separated if for any x, y ∈ A with x 6= y there exists
g ∈ E such that %(T gx, T gy) > ε. We denote by Z(T,E, ε) the maximum
cardinality of a (T,E, ε)-separated set and define

H(T, ε) = lim sup
m→∞

|BG(m)|−1 log Z(T,BG(m), ε).

The topological entropy is then defined by

h(T ) = lim
ε→0

H(T, ε).

The following theorem is a strengthening of the results of [Sh].

Theorem 1.1. Let S = {Sf}f∈F and T = {T g}g∈G be commuting (i.e.
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Sf ◦ T g = T g ◦ Sf for all f ∈ F and g ∈ G) continuous actions of finitely
generated groups F and G with polynomial growth on a compact metric space
(X, %). Suppose, in addition, that h(S) > 0 and let d(F ), d(G) stand for
the degrees of polynomial growth of F and G. Then

(i) if d(G) < d(F ), then the action T cannot be expansive;
(ii) if d(G) = d(F ) and T is expansive, then h(T ) > 0.

Here are some immediate consequences of the theorem.

Corollary 1.2. Let the action S = {Sf}f∈F be as above with h(S) > 0
and d(F ) > 1. Then the centralizer C(S) = {T ∈ Homeo(X) : T ◦ Sf =
Sf ◦ T for all f ∈ F} contains no expansive homeomorphisms.

P r o o f. Follows directly from Theorem 1.1(i).

Corollary 1.3. Let S = {Sf}f∈Zs be a continuous action of Zs on
a metric compactum (X, %) and let h(S) > 0. Then for any subgroup H
of infinite index in Zs the corresponding subaction SH = {Sf}f∈H is non-
expansive.

P r o o f. Notice that since H has infinite index in Zs, we have d(H) <
d(Zs) = s (cf. [G]), and apply Theorem 1.1(i) to the pair of actions S and
T = SH .

The last result can be formulated in terms of expansive directions intro-
duced by M. Boyle and D. Lind in [BL]. Let S = {Sf}f∈Zs be a continuous
action of Zs on a compact metric space (X, %). A q-plane P ⊂ Rs is expan-
sive (for the action S) if there exist constants C > 0 and λ > 0 such that for
any x, y ∈ X with x 6= y there exists v ∈ Zs with dist(v, P ) ≤ λ such that
%(Svx, Svy) > C (here the group Zs is meant to be imbedded in Rs as its
integer lattice and dist stands for the Euclidean distance in Rs). It is easy
to see that if P ∩ Zs = H, where H is a subgroup of rank q < s in Zs, then
P is expansive if and only if the subaction SH = {Sf}f∈H is expansive in
the usual sense. In [BL] the authors introduce the set of expansive q-planes
ES(q, s) = {P ∈ G(q, s) : P is expansive for the action S}, where G(q, s) is
the Grassmannian manifold of q-planes in Rs, and ask what are possible sets
ES(q, s) for continuous Zs actions. They show, in particular, that ES(q, s)
is always open in G(q, s).

Corollary 1.4. If h(S) > 0, then ES(q, s) = ∅ for all q < s.

P r o o f. Let Grat(q, s) ⊂ G(q, s) (q < s) be the subset of “rational”
q-planes P ⊂ Rs, i.e. ones spanned by some integer vectors h1, . . . , hq ∈
Zs ⊂ Rs. From Corollary 1.3 it follows that Grat(q, s)∩ES(q, s) = ∅ (q < s)
for every continuous Zs action S with h(S) > 0. But since Grat(q, s) is dense
in G(q, s) and ES(q, s) is open [BL], it follows that ES(q, s) = ∅.
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2. Proof of Theorem 1.1. Let the assumption of the theorem hold
and suppose, in addition, that the action T is expansive with an expansive
constant c > 0. By a straightforward compactness argument one shows
(cf. Lemma 1 of [Sh]) that for any δ > 0 there exists N ≥ 1 such that
%(x, y) ≥ δ implies %

(T )
BG(N)(x, y) > c, where %

(T )
E (x, y) stands for the Bowen

metric %
(T )
E (x, y) = max{%(T gx, T gy) : g ∈ E} corresponding to a finite set

E ⊂ G. This also means that there exists M ≥ 1 such that %
(S)
BF (1)(x, y) ≥ c

implies %
(T )
BG(M)(x, y) > c. Denote the open Bowen ball by O

(T )
E (x, ε) = {y ∈

X : %
(T )
E (x, y) < ε} for a finite E ⊂ G and ε > 0.

Lemma 2.1. There exists an integer M ≥ 1 such that the inclusion
O

(T )
BG(M)(x, c) ⊂ O

(S)
BF (1)(x, c) holds for all x ∈ X.

Using the fact that S and T commute we can “stretch” the previous
result to get the following.

Lemma 2.2. The inclusion O
(T )
BG(Mm)(x, c) ⊂ O

(S)
BF (m)(x, c) holds for all

x ∈ X, m ≥ 1.

P r o o f. Let us prove the lemma by induction on m. The case m = 1 is
established by Lemma 2.1. Suppose the inclusion holds for m = k, i.e. for
all x ∈ X we have

(2) O
(T )
BG(Mk)(x, c) ⊂ O

(S)
BF (k)(x, c).

Let y ∈ O
(T )
BG(M(k+1))(x, c). Since for any positive integers r1, r2,

(3) BG(r1)BG(r2) = BG(r1 + r2),

for every g ∈ BG(Mk) we have T gy ∈ O
(T )
BG(M)(T

gx, c) and, by Lemma 2.1,

T gy ∈ O
(S)
BF (1)(T

gx, c). This means %(SfT gx, SfT gy) < c for all f ∈ BF (1),

g ∈ BG(Mk) and, since S and T commute, implies Sfy ∈ O
(T )
BG(Mk)(S

fx, c)

for all f ∈ BF (1). In view of (2) we now have Sfy ∈ O
(S)
BF (k)(S

fx, c),

f ∈ BF (1). This, because of (3), means y ∈ O
(S)
BF (k+1)(x, c). Thus,

O
(T )
BG(M(k+1))(x, c) ⊂ O

(S)
BF (k+1)(x, c), which completes the proof.

This lemma clearly implies that Z(T,BG(Mm), c) ≥ Z(S, BF (m), c),
m ≥ 1 (for the notations see Section 1). Now we have

(4) H(T, c) ≥ H(S, c) lim inf
m→∞

|BF (m)|
|BG(Mm)|

.
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Since h(S) > 0, we can assume the expansive constant c > 0 to be so
small that H(S, c) > 0. In view of (1) we can see that

lim inf
m→∞

|BF (m)|
|BG(Mm)|

= ∞ if d(G) < d(F ),

and (4) gives H(T, c) = ∞, which is well known to be impossible (see
e.g. [W]). This contradiction proves part (i) of the theorem.

If d(G) = d(F ), then lim infm→∞ |BF (m)|/|BG(Mm)| equals a positive
finite constant K and we conclude from (4) that h(S) > 0 implies h(T ) > 0,
proving (ii).
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