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CYCLIC APPROXIMATION OF ANALYTIC
COCYCLES OVER IRRATIONAL ROTATIONS

BY

A. I W A N I K (WROC LAW)

Introduction. We identify the space C(T) of real-valued continuous
functions on T = R/Z with the 1-periodic continuous mappings R → R.
It was shown in [I] that if an irrational number α admits a sufficiently
good approximation by rationals then for every r = 1, 2, . . . ,∞ and “most”
functions f ∈ Cr(T), referred to as cocycles (more precisely, smooth cocycles
of topological degree zero), the Anzai [A] skew product

Tf (x, y) = (x + α, y + f(x)) mod 1

defined on the 2-torus T2 admits a good cyclic approximation by periodic
transformations without having purely discrete spectrum. In fact, the co-
cycle is weakly mixing, which means that the only eigenfunctions are of the
form

h(x, y) = Ce2πinx.

A similar result was earlier obtained for C(T) [IS].
In the present note we study other classes of smooth cocycles. Instead of

approximating by piecewise polynomial functions [I], we use trigonometric
polynomials, which seem to be a simpler and more powerful tool. Not only
do we recover the results of [I], but we also generalize them to new spaces
of cocycles—such as real-analytic or entire functions.

We consider rather general subspaces E of C1(T). It is proved that
for a residual subset of functions f ∈ E, the skew product Tf admits a
cyclic approximation with speed o(ε(n)/n) as soon as α admits a rational
approximation with some speed related to ε(n) (see Theorem 1 for details).
The result does not depend on the choice of the space E. The method
is based on [I] with some ideas going back to [R]. Theorem 2 shows that
in some E’s, such as certain subspaces of 1-periodic real-analytic functions
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(or even those extending to entire functions C → C), the weakly mixing
cocycles form a dense Gδ set. As in [I], the proof is based on Katok’s
criterion [K], Theorem 12.7. By intersecting the residual sets of Theorems
1 and 2 we get a “large” set of exponentially approximated weakly mixing
analytic cocycles (Corollary). In particular, the corresponding Anzai skew
products are rank-1, rigid, and have partly continuous spectrum (examples
of analytic rank-1 Anzai skew products with partly continuous spectrum
have also been obtained by a different method in [KLR], Prop. 3). Finally,
we give a simple construction which, for any α with unbounded partial
quotients in its continued fraction expansion, produces a weakly mixing
smooth cocycle with multiplicity greater than one. The cocycle is analytic
for α sufficiently well approximated by rationals.

Throughout, we use notation of [I], where the reader is also referred for
some details of the proofs. For other necessary definitions see [CFS].

The author appreciates the warm hospitality of Université de Rouen,
where this paper was written.

1. Cyclic approximation. We fix an irrational number α and a
sequence of rationals pn/qn → α with qn positive and pn, qn relatively prime.
For a fixed n, if f : R → R and k = 1, 2, . . . , we use the notation

f (k)(x) = f(x) + f(x + pn/qn) + . . . + f(x + (k − 1)pn/qn).

Consider an additive subgroup E of C1(T) endowed with its own topol-
ogy, stronger than the C1-convergence, and such that

(1) E is a complete metric group,
(2) E contains the constants with natural topology,
(3) E has a dense subset of trigonometric polynomials.

The following result extends Theorem 1 in [I].

Theorem 1. Suppose |α−pn/qn| = o(ε(qntn)/q2
n), where ε(n) is a nonin-

creasing sequence of positive numbers and tn →∞. Then the set of cocycles
f ∈ E such that Tf admits cyclic approximation with speed o(ε(n)/n) is
residual in E.

P r o o f. We may choose a sequence of positive integers sn → ∞ such
that

|α− pn/qn| = o(ε(snqn)/(snq2
n)).

The following observation will be useful. If

P (x) =
r∑

k=−r

ak exp(2πikx)



CYCLIC APPROXIMATION 75

is a trigonometric polynomial then for every qn > r we have P (qn) = qna0.
Indeed,

P (qn)(x) =
qn−1∑
j=0

r∑
k=−r

ake2πik(x+jpn/qn)

=
r∑

k=−r

ake2πikx

qn−1∑
j=0

e2πikjpn/qn = qna0,

since the inner sum vanishes for k 6= 0.
Consequently, there is a constant 0 ≤ cn < 1/qn such that (P + cn)(qn)

= 1/sn mod 1. We denote by E(n) the set of all trigonometric polynomials
Q in E satisfying the identity Q(qn) = 1/sn mod 1. By (2) and (3) the union⋃

n≥N E(n) is dense in E for all N ≥ 1. We choose a sequence of positive
numbers %n such that if dist(fn, f) < %n in E then

‖fn − f‖ = o(ε(snqn)/(s2
nqn)),

where ‖ ‖ is the uniform norm. Let E(n)%n denote the %n-neighborhood
of E(n) in E. The union

⋃
n≥N E(n)%n is open and dense, so by (1) the

intersection

Ẽ =
⋂
N

⋃
n≥N

E(n)%n

is a dense Gδ set.
We have to prove that for every f ∈ Ẽ the skew product Tf admits cyclic

approximation with required speed. By passing to a subsequence we may
assume that there is a sequence of trigonometric polynomials fn ∈ En such
that dist(fn, f) < %n.

The rest of the proof is as in [I]. We sketch it briefly. Define Tn(x, y) =
(x + pn/qn, y + fn(x)),

C0 = [0, 1/qn)× [0, 1/sn),

and Cj = T j
nC0 for j = 1, . . . , Qn − 1, where Qn = snqn. Since f

(qn)
n (x) =

1/sn mod 1, we have

Ciqn = [0, 1/qn)× [i/sn, (i + 1)/sn)

for i = 0, 1, . . . , sn−1. Since TnCQn−1 = C0, we obtain a cycle of length Qn.
It is clear that ξn = {C0, . . . , CQn−1} is a partition. To prove ξn → ε
we use the fact that E ⊂ C1(T) and repeat the argument in [I] based on
[CFS], 16.3, Lemma 2. The approximation error ∆ = ∆1 + ∆2 is also
estimated as in [I] with ∆1 ≤ 2qn|α − pn/qn| = o(ε(Qn)/Qn) by the as-
sumption on α and ∆2 = o(ε(snqn)/(s2

nqn))sn = o(ε(Qn)/Qn) by the choice
of %n.
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2. Weakly mixing analytic cocycles. We will show that, at least for
some spaces E satisfying the conditions (1)–(3) and for α sufficiently well
approximated by rationals, most cocycles in E are weakly mixing. As in [I],
the proof is based on the following criterion due to Katok [K], Theorem 12.7
(a proof can also be found in [KLR], Theorem 4):

Suppose
∑
|nan| < ∞ and a−n = an. If |α − pn/qn|qn = o(|aqn |) and

infn(|aqn |/
∑

k≥1 |akqn |) > 0 then the cocycle f(x) =
∑

an exp(2πinx) is
weakly mixing.

Obvious examples of spaces satisfying (1)–(3) are E = Cr(T) studied
in [I]. Now we consider another family of E’s defined in terms of Fourier
coefficients.

Fix a sequence λ(0), λ(1), . . . of nonnegative numbers such that λ(n) > 0
infinitely often, λ(0) > 0, and

∑
nλ(n) < ∞. If a−n = an = o(λ(n)) then

clearly
∑

an exp(2πinx) is in C1(T). We define

Eλ =
{

f ∈ C1(T) : f(x) =
∑

ane2πinx, a−n = an = o(λ(n))
}

,

where the summation is over all n ∈ Z such that λ(|n|) > 0. Endowed with
the norm

‖f‖λ = sup
n≥0

|an/λ(n)|,

it becomes a Banach space isometrically isomorphic with c0(Z). The iden-
tity imbedding E → C1(T) is continuous; the condition (1) is clear, (2) is
trivially satisfied, and (3) is easy to verify.

It should be noted that the functions in Eλ are real-analytic iff

lim sup n
√

λ(n) < ∞
and they extend to entire functions on the complex plane iff n

√
λ(n) → 0.

Theorem 2. Let λ be as above and suppose |α− pn/qn| = o(λ(qn)/qn).
Then the weakly mixing cocycles form a dense Gδ set in Eλ.

P r o o f. The proof is a modification of [I], Theorem 2. It suffices to
produce at least one weakly mixing cocycle in Eλ. By passing to a sub-
sequence we may assume |α − pn/qn| = ε2

nλ(qn)/qn, where εn → 0 and
εn+1λ(qn+1) ≤ εnλ(qn)/2. Now let aqn = εnλ(qn) and

f(x) =
∞∑

n=1

aqn cos 2πqnx.

Clearly f ∈ Eλ and it is easy to check that f satisfies Katok’s criterion.

Let λ be as above and qn →∞. The set A of irrational numbers α which
admit a rational approximation specified in the assumption of Theorem 2
(along a subsequence) is residual in R. We may apply Theorems 1 and 2 to
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Eλ, where λ(n) = 1/nn+1, ε(n) = e−n, tn = [log qn] (n ≥ 1), and α ∈ A. By
intersecting two dense Gδ subsets of Eλ we obtain the following corollary.

Corollary. For any α from a residual set A, there exists a weakly
mixing cocycle f extending to an entire function C → C such that Tf : T2 →
T2 admits a cyclic approximation with exponential speed. In particular , Tf

is rank-1, rigid , and has a partly continuous singular simple spectrum of
Hausdorff dimension 0.

3. Cocycles with multiplicity. Although our generic construction
produces skew products with a good cyclic approximation, hence of simple
spectrum, there also exist ergodic real-analytic cocycles (of topological de-
gree zero) with infinite maximal spectral multiplicity [KLR]. Moreover, there
exist ergodic real-analytic cocycles with mutiplicity 2 over any rotation from
a residual set of irrational numbers. (This follows from a modification of
[BL]: it suffices to choose v(x) = −x as an automorphism of T and proceed
along the lines of the argument in [BL] with n = 1 if n denotes a dimension
and n = 2 whenever n occurs as the order of the automorphism; Corollary 5
remains valid in the 2-torus with maximal spectral multiplicity equal to 2.)
In both [KLR] and [BL], a measurable cocycle is constructed and is subse-
quently shown to be cohomologous to a real-analytic function via an “almost
analytic cocycle construction procedure”. Below, in a more direct way, and
for every α with unbounded partial quotients, we construct a weakly mixing
smooth cocycle f with multiplicity greater than or equal to 2. The cocycle
will be at least C1, with more regularity (including analyticity) for more
special α’s, and with rigid Tf .

Example. Let α, λ(n), εn be as in the proof of Theorem 2 and let δn > 0
with

∑
(δnqn/εn)2 < ∞. The set of numbers β such that ‖qnβ − 1/2‖ < δn

for infinitely many n’s is residual in R (here ‖ ‖ denotes the distance from
the nearest integer). We choose one such β and fix a subsequence qnk

with
‖qnk

β − 1/2‖ < δnk
. As before, we write qnk

= qn and define a weakly
mixing f ∈ Eλ as before. Note that for any α with unbounded partial
quotients a suitable sequence λ(n) can be found according to a subsequence
of pn/qn, so f ∈ C1(T). Now let

bqn = aqn

e2πiqnβ + 1
e2πiqnα − 1

, b−qn
= bqn ,

with bk = 0 if k is not one of the numbers ±qn. We have
∑
|bqn

|2 < ∞
since

∑
(εnλ(qn)‖qnβ − 1/2‖/‖qnα‖)2 <

∑
(δnqn/εn)2 < ∞. Therefore the

real-valued function

g(x) =
1
2

∑
k∈Z

bke2πikx
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belongs to L2(T) and it is easy to verify that g(x+α)−g(x) = f(x+β)+f(x)
a.e. on T. It is now clear that the measure-preserving transformation

S(x, y) = (x + β,−y + g(x)) mod 1

commutes with Tf and conjugates the invariant subspaces HN and H−N ,
where HN = {h(x)e2πiNy : h ∈ L2(T)} for N ∈ Z. This implies that the
multiplicity of Tf on L2(T2) is greater than one. The rigidity of Tf along
qn follows from the uniform convergence of the sum

∑qn−1
j=0 f(x + jα) to 0,

which is a well-known consequence of
∫ 1

0
f(x) dx = 0 for f ∈ C1(T).

We also note that if α admits approximation with odd qn’s then the
argument can be shortened by simply letting β = 1/2 and S(x, y) = (x +
1/2,−y).

It would be interesting to find all the possible spectral multiplicities for
(smooth, analytic, etc.) ergodic Anzai skew products on the 2-torus.
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