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CHARACTERIZATION OF THE BOUNDEDNESS
FOR A FAMILY OF COMMUTATORS ON Lp

BY

SONG-YING L I (ST. LOUIS, MISSOURI)

1. Introduction. Let (X, d, µ) be a space of homogeneous type.
Let TK be a singular integral operator which is bounded on L2(X) (see
[2] for definitions and characterization: T (1)-theorem). Let f ∈ L2(X).
We use Mf to denote the multiplication operator on function spaces on
X. Then the commutator of Mf and TK is defined as Cf = [Mf , TK ] =
MfTK − TKMf .

The characterization of f such that Cf is bounded or compact on Lp(X)
or belongs to the trace ideal space for some singular integral operators
has received considerable attention. When X is Rn, and TK = Rj =
(−∆)−1/2∂/∂xj (j = 1, . . . , n) are the Riesz transforms, it was proved by
Coifman, Rochberg and Weiss [5] that [Mf , Rj ] is bounded on Lp(Rn) for
all 1 ≤ j ≤ n for some 1 < p < ∞ if and only if f ∈ BMO(Rn); and
by Uchiyama [18] that Cf is compact on Lp(Rn) for all 1 ≤ j ≤ n and
some 1 < p < ∞ if and only if f ∈ VMO(Rn). The characterization
of f such that Cf belongs to the trace ideal space Sp was given by Jan-
son and Wolff [9] and more general results were proved by Rochberg and
Semmes [15] and Janson and Peetre [8] (see also the references therein).
When X is a space of homogeneous type, it was proved by Krantz and
the author [11] that if f ∈ BMO(X), then Cf is bounded on Lp(X) for
all 1 < p < ∞. If f ∈ VMO(X), then Cf is bounded on Lp(X) for all
1 < p < ∞. In [4], Coifman, Lions, Meyer and Semmes proved that the
above theorem of Coifman, Rochberg and Weiss is equivalent to the state-
ment that {fjRjgj + gjRjfj : fj ∈ Lp(Rn), gj ∈ Lp′(Rn)} is a subspace
of H1(Rn) and is dense in weak topology, which was called compensated
compactness for H1. Moreover, this fact gives a decomposition theorem for
H1(Rn). Furthermore, many interesting examples were given in [4] which
connect the compensated compactness of H1 and quantities in PDEs, such
as Dir-Curl lemma, etc. In [20], Z. Wu studied a Clifford algebra of func-
tions on Rn and produced a class of singular integral operators Tj (some
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combinations of Riesz transforms) which can be used to characterize f such
that [Mf , Tj ] are bounded on Lp(Rn).

The main purpose of the present paper is to characterize the bounded-
ness of [Mf ,Kj ] on Lp(Rn) for the family of operators Kj (j = 1, . . . ,m)
introduced by Uchiyama [19]. As a consequence, we generalize the men-
tioned results of [5] and [20].

Let θ1(ξ), . . . , θm(ξ) ∈ C∞(Sn−1), where Sn−1 is the unit sphere in Rn.
Let

(1.1) Kjf(x) = (θj(ξ/|ξ|)f̂(ξ))∨ (x), j = 1, . . . ,m,

where f̂ denotes the Fourier transform of f while f̌ denotes the inverse
Fourier transform of f .

If θj(ξ/|ξ|) = iξj/|ξ|, then Kj = Rj . According to [19], there exist a
number aj = a(θj) ∈ C and function Ωj ∈ C∞(Sn−1) such that∫

Sn−1

Ωj(x) dσ(x) = 0

and

Kjf(x) = ajf(x) + P.V.
∫

Rn

Ωj((x− y)/|x− y|)|x− y|−nf(y) dy.

So Kj is a family of singular integrals which are bounded on Lp(Rn).
In [19], Uchiyama proved that K1, . . . ,Km characterize H1(Rn) if and

only if

(1.2) rank
(

θ1(ξ) . . . θm(ξ)
θ1(−ξ) . . . θm(−ξ)

)
= 2.

If one considers θ0 = 1 and θj(ξ) = iξj/|ξ|, then Kj = Rj . The result of
Fefferman and Stein [7] and Stein and Weiss [17] uses {I,Rj : j = 1, . . . , n}
to characterize H1(Rn), which is a special family of operators given by (1.1)
and satisfying (1.2).

From the results of [5] and [11], we know that if b ∈ BMO(Rn) then
[Mb,Kj ] are bounded on Lp(Rn) for all 1 < p <∞. We shall show that the
converse is also true. It is easy to see that if (1.2) holds, then the function

Θ(ξ) =
m∑

j=1

|θj(ξ)− θj(−ξ)|2

nowhere vanishes on Sn−1. By compactness of Sn−1, and the smoothness
of Θ(ξ) on Sn−1, we know that Θ(ξ) has a positive lower bound. More
generally, we shall consider functions θ1, . . . , θm ∈ C∞(Sn−1) such that
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there is a continuous map ψ : Sn−1 → Sn−1 and δ0 > 0 such that

(1.3)
m∑

j=1

|θj(x)− θj(ψ(x))|2 ≥ δ0, x ∈ Sn−1.

We prove the following theorems, where p′ is the conjugate exponent
of p, i.e 1/p+ 1/p′ = 1 for 1 < p <∞.

Theorem 1.1. Suppose that (1.3) holds. Let 1 < p < ∞ and f ∈
L2(Rn). Then the following statements are equivalent.

(i) f ∈ BMO(Rn);
(ii) [Mf ,Kj ] is bounded on Lp(Rn) for all j = 1, . . . ,m;
(iii) [Mf ,Kj ] is bounded on Lq(Rn) for all 1 ≤ j ≤ m and all q with

1 < q <∞;
(iv)

∑m
j=1 K̃j [Mf ,Kj ]− [Mf ,Kj ]K̃j is bounded on Lp(Rn),

where K̃j(f)(x) = (θj(ξ/|ξ|)f̂(ξ))̌ (x), j = 1, . . . ,m.

Theorem 1.2. If (1.3) holds, then f ∈ H1(Rn) if and only if there are
a sequence {λj} of numbers, and sequences {fk} of functions in Lp(Rn)
and {gk} of functions in Lp′(Rn) such that ‖gk‖p′‖fk‖p = Cp > 0 for all k,∑∞

k=1 |λk| ≈ ‖f‖H1 , and

f =
∞∑

k=1

λk

m∑
j=1

[Kj(fk)K̃∗
j (gk) + K̃j(fk)K∗

j (gk)

− fk(K∗
j K̃

∗
j )(gk)− (KjK̃jfk)gk].

Theorem 1.3. If (1.3) holds, then f ∈ H1(Rn) if and only if there are
a sequence {λk} of numbers, and sequences {fj,k} of functions in Lp(Rn)
and {gj,k} of functions in Lp′(Rn) such that ‖gj,k‖p′‖fj,k‖p = Cp and

f =
∞∑

k=1

λk

m∑
j=1

(fj,kKj(gj,k)− gj,kK
∗
j (fj,k)),

∞∑
k=1

|λk| ≈ ‖f‖H1 .

The paper is organized as follows. In Section 2, we prove Theorem 1.1.
The proofs of Theorems 1.2 and 1.3 are given in Section 3. In Section 4, we
give some application of the above theorems. As a special case of Theorem
1.2, we obtain the main theorem of [20].

The author would like to thank Steven Krantz and Richard Rochberg for
some useful conversations he has had during the preparation of this work.

2. Proof of Theorem 1.1. To prove Theorem 1.1, we first collect
some results from Janson and Peetre [8] and C. Li [13] (a similar idea of the
proof was used by Wu [20]). Let θj ∈ C∞(Sn−1) and let Kj be given by
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(1.1) for j = 1, . . . ,m. Then we have the following identity due to Janson
and Peetre [8]:

(2.1) ([Mb,Kj ]f)∧(ξ) =
∫

Rn

b̂(ξ − y)(θj(ξ/|ξ|)− θj(y/|y|))f̂(y) dy.

Let

(2.2) L1(ξ, η) =
m∑

j=1

θj(η/|η|)(θj(ξ/|ξ|)− θj(η/|η|)).

Then it is easy to verify that∫
Rn

b̂(ξ − y)L1(ξ, y)f̂(y) dy =
m∑

j=1

([Mb,Kj ]K̃j(f))∧(ξ).

It is obvious that L1 is homogeneous of degree 0. In other words, L1

satisfies Assumption A0 in [8].
For convenience, we recall Theorem 10.1 of [8] or Theorem C of [20]

proved by C. Li in [13], which we shall use later. First we need to introduce
the following function space of Schur multipliers. Let U and V be two
subsets of Rn. Let M(U × V ) denote the set of Schur multipliers on U × V
consisting of all functions φ ∈ L∞(U × V ) that admit a representation

(2.3) φ(ξ, η) =
∫
Y

α(ξ, x)β(η, x) dµ(x)

for some σ-finite measure space (Y, µ) and measurable functions α on U ×Y
and β on V × Y , with the norm

‖φ‖M(U×V ) = inf
{ ∫

Y

‖α(·, x)‖L∞(U)‖β(·, x)‖L∞(V ) dµ(x)
}
,

where the infimum is taken over all α and β such that (2.3) holds. We know
(see [8]) that M(U × V ) is a Banach algebra.

Let b be a complex-valued function in Rn. The paracommutator with
symbol b and kernel A(ξ, η) is the operator Tb(A) defined by the following
bilinear form on C∞0 (Rn)× C∞0 (Rn):

〈Tb(A)f, g〉 =
∫

Rn

∫
Rn

f̂(η)b̂(ξ − η)A(ξ, η)ĝ(−ξ) dη dξ.

Then we have the following theorem.

Theorem 2.1. If the kernel function A satisfies the following conditions:

A0: A(rξ, rη) = A(ξ, η) for all r 6= 0 and ξ, η ∈ Rn;
A1: A ∈M(Rn × Rn);
A3: A(ξ, ξ) = 0, and there are γ, δ > 0 such that ‖A‖M(B×B) ≤

C(r/|ξ0|)γ for B = B(ξ0, r) = {ξ : |ξ − ξ0| < r} and 0 < r < δ|ξ0|;
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A5: For any ξ0 6= 0 there exist δ > 0 and η0 ∈ Rn such that ‖1/A‖M(U×V )

≤ C, where U = {ξ : | ξ/|ξ| − ξ0/|ξ0| | < δ, |ξ| > |ξ0|} and V = B(η0, δ|ξ0|).

Then

‖b‖BMO ≤ C‖Tb(A)‖(Lp(Rn),Lp(Rn)).

Theorem 2.1 is due to Janson and Peetre [8] for the case p = 2; for the
general case 1 < p <∞ it was given by C. Li [13]. It is also stated in [20].

We shall prove the following proposition.

Proposition 2.2. L1(ξ, η) defined by (2.2) belongs to M(Rn×Rn), i.e.,
L1 satisfies A1.

P r o o f. Since

L1(ξ, η) =
m∑

j=1

θj(ξ/|ξ|)θj(η/|η|)−
m∑

j=1

θj(η/|η|)θj(η/|η|),

it is obvious that L1(ξ, η) admits a representation (2.3) with dµ being the
Dirac mass concentrated at x = 0 and Y = [−1, 1]. Moreover, we have

‖L1‖M(Rn×Rn) ≤
∥∥∥ m∑

j=1

θj(ξ/|ξ|)θj(η/|η|)
∥∥∥

M(Rn×Rn)
+

∥∥∥ m∑
j=1

|θj |2
∥∥∥

M(Rn×Rn)

≤ 2
m∑

j=1

‖θj‖2
∞.

This completes the proof of the proposition.

Proposition 2.3. There exists δ > 0 such that if B0 = B(ξ0, r) and
r/|ξ0| < δ, then L1 satisfies A3 and

‖L1‖M(B0×B0) ≤ Cr/|ξ0|.

P r o o f. Since θj ∈ C1(Sn−1), we have
m∑

j=1

|θj(ξ)− θj(ξ0)| ≤ Cn

m∑
j=1

‖θj‖C1(Sn−1)|ξ − ξ0|

for all ξ, ξ0 ∈ Sn−1.
Now we choose 0 < δ < 1/2. For any r > 0, we consider ξ0 ∈ Rn so that

|ξ0|δ > r. We claim that ∣∣∣∣ ξ|ξ| − ξ0
|ξ0|

∣∣∣∣ ≤ 4
r

|ξ0|
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for all ξ ∈ B0. In fact,∣∣∣∣ ξ|ξ| − ξ0
|ξ0|

∣∣∣∣ =
| ξ|ξ0| − ξ0|ξ| |

|ξ| · |ξ0|
=
|(ξ − ξ0)|ξ0|+ ξ0(|ξ| − |ξ0|)|

|ξ| · |ξ0|

≤ |ξ − ξ0| · |ξ0|+ |ξ0| · |ξ − ξ0|
|ξ| · |ξ0|

≤ 2r|ξ0|
(|ξ0| − r)|ξ0|

≤ 4r
|ξ0|

,

so the claim is proved. Now we have

‖L1‖M(B0×B0) ≤
∥∥∥ m∑

j=1

(θj(ξ/|ξ|)− θj(ξ0/|ξ0|))θj(η/|η|)
∥∥∥

M(B0×B0)

+
∥∥∥ m∑

j=1

(θj(η/|η|)− θj(ξ0/|ξ0|))θj(η/|η|)
∥∥∥

M(B0×B0)

≤ 2Cn

m∑
j=1

‖θj‖C1(Sn−1)(4r/|ξ0|) = Cr/|ξ0|.

This completes the proof of the proposition.

Now if we let

L2(ξ, η) =
m∑

j=1

[θj(ξ/|ξ|)(θj(ξ/|ξ|)− θj(η/|η|))]

then ∫
Rn

b̂(ξ − y)L2(ξ, y)f̂(y) dy =
m∑

j=1

(K̃j [Mb,Kj ](f))∧(ξ).

It is clear that L2 is homogeneous of degree zero. With the same arguments
as above, we find that the conclusions of Propositions 2.2 and 2.3 hold for
L2(ξ, η). Now we let

L(ξ, η) = L2(ξ, η)− L1(ξ, η).

Then

(2.4) L(ξ, η) =
m∑

j=1

|θj(ξ/|ξ|)− θj(η/|η|)|2.

Thus L is a homogeneous kernel of degree 0 and Propositions 2.2 and 2.3
hold for L.

The main lemma of this section is:

Lemma 2.4. If θj (j = 1, . . . ,m) satisfy (1.3), then L(ξ, η) defined above
satisfies A5.



BOUNDEDNESS OF COMMUTATORS 65

P r o o f. For each ξ0 ∈ Rn \ {0}, since θj satisfy (1.3), there is δ =
δ(ξ0) � 1 such that

m∑
j=1

|θj(ξ/|ξ|)− θj(ψ(ξ0/|ξ0|))|2 ≥ δ0/2.

Since the map ψ involved in (1.3) is continuous, we may choose η0 with
norm large enough such that η0/|η0| = ψ(ξ0/|ξ0|), and

(2.5)
m∑

j=1

|θj(ξ/|ξ|)− θj(η/|η|)|2 ≥ δ0/4

for all ξ ∈ U and η ∈ V = B(η0, δ|ξ0|). Thus 1/L is bounded by 4/δ0 on
U × V .

Next we show that

(2.6) ‖1/L‖M(U×V ) ≤ Cδ0.

Since
1

L(ξ, η)
=

1
L(ξ, η0) + L(ξ, η)− L(ξ, η0)

=
1

L(ξ, η0)
· 1
1 + L(ξ, η0)−1(L(ξ, η)− L(ξ, η0))

=
1

L(ξ, η0)

∞∑
k=0

(
L(ξ, η)− L(ξ, η0)

L(ξ, η0)

)k

=
∞∑

k=0

(L(ξ, η)− L(ξ, η0))k

L(ξ, η0)k+1
,

to prove (2.6), it suffices to show that there is a sequence {dk} of positive
numbers such that

(2.7)
∞∑

k=0

dk ≤ Cδ0

and

(2.8)
∥∥∥∥ (L(ξ, η)− L(ξ, η0))k

L(ξ, η0)k+1

∥∥∥∥
M(U×V )

≤ dk

for all k = 0, 1, . . .
In order to prove (2.8), we introduce the following notation. For each

1 ≤ j ≤ m, we let

(2.9) bj(ξ, η) = θj(ξ/|ξ|)− θj(η/|η|).

Then



66 S.-Y. LI

L(ξ, η)− L(ξ, η0)

=
m∑

j=1

|bj(ξ, η)|2 −
m∑

j=1

|bj(ξ, η0)|2

=
m∑

j=1

[|θj(ξ/|ξ|)|2 + |θj(η/|η|)|2 − 2 Re(θj(ξ/|ξ|)θj(η/|η|))

− |θj(ξ/|ξ|)|2 − |θj(η0/|η0|)|2 + 2 Re(θj(ξ/|ξ|)θj(η0/|η0|))]

=
m∑

j=1

[θj(η/|η|)(θj(η/|η|)− θj(η0/|η0|)) + (θj(η/|η|)

− θj(η0/|η0|))θj(η0/|η0|)− 2 Re(θj(ξ/|ξ|)(θj(η/|η|)− θj(η0/|η0|))]

=
m∑

j=1

[|bj(η, η0)|2 − 2 Re(θj(η0/|η0|)bj(η, η0))− 2 Re(θj(ξ/|ξ|)bj(η, η0))]

=
m∑

j=1

[|bj(η, η0)|2 − 2 Re(bj(ξ, η0)bj(η, η0))].

We may choose our η0 with |η0| large enough so that

(2.10)
m∑

j=1

|bj(η, η0)| ≤ δ20/(32mM2),

where

(2.11) M =
m∑

j=1

‖bj(·, ·)‖L∞(Sn−1×Sn−1).

Thus we only need to show

(2.12)
∥∥∥∥ (

∑m
j=1[|bj(η, η0)|2 − 2 Re(bj(ξ, η0)bj(η, η0))])k

L(ξ, η0)k+1

∥∥∥∥
M(U×V )

≤ dk.

To prove (2.12), we use the notation

b(ξ, η) = (b1(ξ, η), . . . , bm(ξ, η)),

and let α = (α1, . . . , αm) be a multiindex with non-negative integers. Thus

(
∑m

j=1[|bj(η, η0)|2 − 2 Re(bj(ξ, η0)bj(η, η0))])k

L(ξ, η0)k+1

can be written as at most (4m)k terms of the form

|b(η, η0)γ |2b(ξ, η0)αb(ξ, η0)
β
b(η, η0)αb(η, η0)

β
L(ξ, η0)−k−1,
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where |α|+ |β|+ |γ| = k and |γ|+ |β| ≥ k/2. It is obvious that

‖|b(η, η0)γ |2b(ξ, η0)αb(ξ, η0)
β
b(η, η0)αb(η, η0)

β
L(ξ, η0)−k−1‖M(U×V )

≤ ‖|b(ξ, η0)|2(|α|+|β|)L(ξ, η0)−k−1‖L∞(U)‖|b(η, η0)|2|γ|+|α|+|β|‖L∞(V )

≤ 4
δ0

(
1

8m

)k

for all k ≥ 0. Therefore, if we choose dk = 4δ−1
0 2−k then (2.12) holds, and∑∞

k=0 dk ≤ 8/δ0. Therefore, the proof of Lemma 2.4 is complete.

By Propositions 2.2, 2.3 and Lemma 2.4, we see that the kernel L satisfies
A0, A1, A3 and A5 of Theorem 2.1. Therefore, by Theorem 2.1, we have
the following theorem.

Theorem 2.5. Suppose that (1.3) holds and f ∈ L2(Rn). If the operator∑m
j=1[K̃j [Mf ,Kj ]−[Mf ,Kj ]K̃j ] is bounded on Lp(Rn) for some 1 < p <∞,

then f ∈ BMO(Rn).

Now we are ready to prove Theorem 1.1.

P r o o f o f T h e o r e m 1.1. By a theorem of [5] or [11], we know that
(i) implies (iii). It is obvious that (iii) implies (ii). Since Kj is bounded on
Lq(Rn) (see [16]) for all 1 < q <∞, (ii) implies (iv). Now, by Theorem 2.5,
(iv) implies (i). Therefore, (i)–(iv) are equivalent, and the proof of Theorem
1.1 is complete.

3. Proof of Theorems 1.2 and 1.3. We need the following theorem
of C. Fefferman and Stein [7], and Coifman and Weiss [6].

Theorem 3.1. Let X be a space of homogeneous type. Then

(i) [H1(X)]∗ = BMO(X);
(ii) [VMO(X)]∗ = H1(X).

We first prove the following proposition.

Proposition 3.2. Suppose (1.3) holds. Let 1 < p < ∞ and p′ be the
conjugate exponent of p. For any f ∈ Lp(Rn) and g ∈ Lp′(Rn), we have
Kj(f)g − fK∗

j (g) ∈ H1(Rn) and

(3.1) ‖Kj(f)g − fK∗
j (g)‖H1 ≤ C‖f‖p‖g‖p′ .

P r o o f. Since VMO(Rn)∗ = H1(Rn), it suffices to prove

(3.2)
∣∣∣ ∫

Rn

b(x)(Kj(f)(x)g(x)− f(x)K∗
j (g)(x)) dx

∣∣∣ ≤ Cp‖b‖BMO‖f‖p‖g‖p′ .
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This is a direct consequence of Theorems 1.1, 3.1 and the identity

(3.3)
∫

Rn

b(x)(Kj(f)(x)g(x)− f(x)K∗
j (g)(x)) dx

=
∫

Rn

[Mb,Kj ](f)(x)g(x) dx.

Therefore, the proof of the proposition is complete.

Proposition 3.3. Suppose (1.3) holds. Let 1 < p < ∞ and p′ be the
conjugate exponent. For any f ∈ Lp(Rn) and g ∈ Lp′(Rn), the set{ m∑

j=1

(Kj(f)K̃∗
j (g) + K̃j(f)K∗

j (g)− f(K∗
j K̃

∗
j )(g)− (KjK̃jf)g :

f ∈ Lp, g ∈ Lp′
}

is dense in H1(Rn).

P r o o f. Since∫
Rn

(K̃j [Mb,Kj ])(f)(x)g(x) dx

=
∫

Rn

([Mb,Kj ])(f)(x)K̃∗
j (g)(x) dx

=
∫

Rn

b(x)(Kj(f)K̃∗
j (g)(x)− f(x)(K∗

j K̃
∗
j )(g)(x)) dx

and ∫
Rn

([Mb,Kj ]K̃j)(f)(x)g(x) dx

=
∫

Rn

K̃j(f)(x)([Mb,Kj ])∗g(x) dx

=
∫

Rn

K̃j(f)(x)K∗
j (bg)− bK∗

j (g)(x) dx

=
∫

Rn

b(x)(KjK̃j(f)g − K̃j(f)K∗
j (g))(x) dx.

Therefore∫
Rn

m∑
j=1

(K̃jMbKj − K̃jKjMb −MbKjK̃j +KjMbK̃j)(f)(x)g(x) dx
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=
∫

Rn

b(x)
m∑

j=1

[Kj(f)K̃∗
j (g) + K̃j(f)K∗

j (g)− f(K∗
j K̃

∗
j )(g)− (KjK̃jf)g] dx.

Therefore, the proposition follows from Theorem 1.1.

Now we are ready to prove Theorems 1.2 and 1.3.

1) Theorem 1.2 is a direct consequence of Lemmas III.1 and III.2 of [4]
and of Proposition 3.3.

2) Theorem 1.3 is a direct consequence of Lemmas III.1 and III.2 of [4]
and of Proposition 3.2.

4. Application of Theorems 1.2 and 1.3. We apply Theorems 1.2
and 1.3 to prove several theorems concerning the compensated compactness
on Hardy spaces.

The following theorem is due to Wu [20].

Theorem 4.1. Let l be a positive integer , and let 1 < p, p′ < ∞ and
1/p+ 1/p′ = 1. Then the bilinear form

(4.1)
〈
fg −

n∑
j1,...,jl=1

Rj1 . . . Rjl
(f)Rj1 . . . Rjl

(g), b
〉

is bounded on Lp(Rn)× Lp′(Rn) if and only if b ∈ BMO(Rn).

P r o o f. We claim Theorem 4.1 is a special case of Theorem 1.2. In fact,
since

∑n
j=1RjRj = −I and R∗j = −Rj , if we let

Kj1...jl
= Rj1 . . . Rjl

and θj1...jl
(ξ) = ilξj1 . . . ξjl

/|ξ|l,
then

K̃j1...jl
= (−1)lRj1 . . . Rjl

,
n∑

j1,...,jl=1

Kj1...jl
K̃j1...jl

= (−1)l(−I)l = I,

and
n∑

j1,...,jl=1

K∗
j1...jl

K̃∗
j1...jl

= I.

Thus

(4.2)
n∑

j1,...,jl=1

|θj1...jl
(ξ/|ξ|)− θj1...jl

(ψ(ξ/|ξ|))|2 = cl,n > 0,

where ψ : Sn−1 → Sn−1 is defined as follows: If l is odd, we let ψ(x) = −x
for x ∈ Sn−1. If l is even, we may choose an orthonormal matrix O such
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that if we let ψ(x) = Ox for all x ∈ Sn−1, then (4.2) holds for some constant
cl,n > 0. Therefore, by Theorem 1.2,∑

j1,...,jl

Rj1 . . . Rjl
(f)Rj1 . . . Rjl

(g)− fg

is in H1 for all f ∈ Lp and g ∈ Lp′ (here we consider real-valued Lp and H1

functions). Moreover, the set of such forms is dense in H1 and the proof of
Theorem 4.1 is complete.

Finally, we make the following remarks.

R e m a r k 1. In [4], Coifman, Lions, Meyer and Semmes gave many
examples in PDE related to the theorems of Coifman, Rochberg and Weiss
[5]. We believe that the family of integral operators in Theorems 1.1–1.3
will give some more information on some useful quantities in PDE, harmonic
analysis and operator theory (for examples, see [1], [4], [10], [12] and [20]).

R e m a r k 2. By using a theorem in Section 13 of [8], one can prove a
similar result to Theorem 1.1 for compactness of commutators; we leave it
to the reader.

R e m a r k 3. Theorem 1.1 partially answers the following question: Let
X be a space of homogeneous type. Suppose that K1, . . . ,Km is a family of
singular integral operators which characterize H1(X). Can one prove that
[Mb,Kj ] is bounded on Lp(X) (1 < p <∞) for all 1 ≤ j ≤ m if and only if
b ∈ BMO(X)?

Theorem 1.1 gives an affirmative answer for X = Rn. More detailed
information on families of singular integral operators which characterize
H1(X) can be found in [3].
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