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ON 2-DISTRIBUTIONS
IN 8-DIMENSIONAL VECTOR BUNDLES

OVER 8-COMPLEXES

BY

MARTIN ČADEK AND JIŘÍ VAN ŽURA (BRNO)

It is shown that the Z2-index of a 2-distribution in an 8-dimensional
spin vector bundle over an 8-complex is independent of the 2-distribution.
Necessary and sufficient conditions for the existence of 2-distributions in
such vector bundles are given in terms of characteristic classes and a certain
secondary cohomology operation. In some cases this operation is computed.

1. Introduction. In [T1] E. Thomas dealt with the question of ex-
istence of a 2-distribution with prescribed Euler class in oriented vector
bundles of even dimension m over a closed orientable manifold M of the
same dimension. If such a 2-distribution exists over the m − 1 skeleton of
M , the obstruction to extending the distribution to all of M lies in

Hm(M ;πm−1(Gm,2)) ∼= πm−1(Gm,2) ∼= Z⊕ Z2.

E. Thomas computed the Z-index for all even m and the Z2-index for
m ≡ 2 mod 4. He built the Postnikov tower for the fibration BSO(m−2)×
BSO(2) → BSO(m), found Postnikov invariants and computed the Z2-
obstruction using a generating class and a secondary cohomology operation.
For the dimensions m ≡ 0 mod 4 there is no generating class (see [T3]) in
general. Nevertheless, in this case the Z2-index of 2-distributions of tangent
bundles was computed by M. Atiyah and J. Dupont [AD] using K-theory and
the Atiyah–Singer index theorem. This index equals 1

2 (χ(M)− σ(M)) mod
2, where χ(M) is the Euler characteristic and σ(M) is the signature of M .
Then M. Crabb and B. Steer [CS] extended these K-theoretical methods
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to oriented vector bundles over closed oriented smooth manifolds with only
some mild additional assumptions. For similar questions involving non-
orientable vector bundles considerable work has been done by U. Koschorke
[K], M. H. de Paula Leite Mello [M] and D. Randall [R].

Our contribution consists in the observation that for arbitrary spin vector
bundles in dimension 8 there exist a generating class and a special secondary
cohomology operation which make the computation of the Z2-index possible.
This index is independent of the 2-distribution and in the case of oriented
vector bundles ξ with w2(ξ) = 0 and w4(ξ) = w4(M) it turns out to be
equal to the index computed in [CS].

In Section 2 we introduce notation, spin characteristic classes and a
secondary cohomology operation Ω. The main result, Theorem 3.1, its con-
sequences and an example are contained in Section 3. They generalize our
previous results on the existence of two linearly independent sections in
8-dimensional spin vector bundles contained in [CV1]. Moreover, compar-
ison of Theorem 3.1 and Remark 4.12 of [CS] enables the computation of
Ω on closed smooth spin manifolds. The proof of Theorem 3.1 is given in
Section 4.

2. Notation and preliminaries. All vector bundles will be considered
over a connected CW-complex X and will be oriented. The mapping δ :
H∗(X; Z2) → H∗(X; Z) is the Bockstein homomorphism associated with
the exact sequence 0 → Z → Z → Z2 → 0. The mapping %2 : H∗(X; Z) →
H∗(X; Z2) is induced by reduction mod 2.

We will use wi(ξ) for the ith Stiefel–Whitney class of the vector bundle
ξ, pi(ξ) for the ith Pontryagin class, and e(ξ) for the Euler class. For a
complex vector bundle ξ the symbol ci(ξ) denotes the ith Chern class. The
classifying spaces for the special orthogonal groups SO(n), spinor groups
Spin(n) and unitary groups U(n) will be denoted by BSO(n), BSpin(n)
and BU(n), respectively. The letters wi, pi, e(n) and ci will stand for the
characteristic classes of the universal bundles over the classifying spaces
BSO(n), BSpin(n) and BU(n), respectively.

We say that x ∈ H∗(X; Z) is an element of order i (i = 2, 3, . . .) if
and only if x 6= 0 and i is the least positive integer such that ix = 0 (if it
exists).

The Eilenberg–MacLane space with nth homotopy group G will be
denoted by K(G,n), and ιn will stand for the fundamental class in
Hn(K(G,n);G). When writing fundamental classes, it will always be clear
which group G we have in mind.

Now we summarize the results on cohomologies of BSpin(6) and
BSpin(8). For details see [Q] and [CV1].
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Lemma 2.1. The cohomology rings of BSpin(6) are

H∗(BSpin(6); Z2) ∼= Z2[w4, w6, ε],
H∗(BSpin(6); Z) ∼= Z[q1, q2, e(6)],

where q1, q2 and ε are uniquely determined by the relations

p1 = 2q1, p2 = q21 + 4q2, ε = %2q2.

Moreover ,
%2q1 = w4, %2e(6) = w6.

Lemma 2.2. The mod 2 cohomology ring of BSpin(8) is

H∗(BSpin(8); Z2) ∼= Z2[w4, w6, w7, w8, ε].

The only non-zero integer cohomology groups through dimension 8 are

H0(BSpin(8); Z) ∼= Z,
H4(BSpin(8); Z) ∼= Z with generator q1,

H7(BSpin(8); Z) ∼= Z2 with generator δw6,

H8(BSpin(8); Z) ∼= Z⊕ Z⊕ Z with generators q21 , q2, e(8),

where q1, q2 and ε are defined by the relations

p1 = 2q1, p2 = q21 + 2e(8) + 4q2, %2q2 = ε.

Moreover ,
%2q1 = w4, %2e(8) = w8.

Denote by ν the standard fibration BSpin(n) → BSO(n). Let ξ be an
8-dimensional oriented vector bundle over a CW-complex X with w2(ξ) = 0.
Then there is a mapping ξ : X → BSpin(8) such that the following diagram
is commutative:

K(Z2, 1)

BSpin(8)

X BSO(8)

��

ν

��

ξ
::

v
v

v
v

ξ //

We define
q1(ξ) = ξ∗q1.

The definition is correct since for two liftings ξ1, ξ2 of ξ we have ξ∗1q1 = ξ∗2q1
(see [CV1, Section 3]).

Further, we define

Q2(ξ) = {ξ∗q2 : ν ◦ ξ = ξ}.
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The indeterminacy of this class is equal to

Indet(Q2, ξ,X) = {δ(w6(ξ)x) + q1(ξ)δx3 + δx7 : x ∈ H1(X; Z2)}
(see [CV1]). As an easy consequence we get

Lemma 2.3. Let one of the following conditions be satisfied :

(i) H8(X; Z) has no element of order 2,
(ii) X is simply connected.

Then Indet(Q2, ξ,X) = 0.

If the indeterminacy of Q2(ξ) is zero, we shall write q2(ξ) instead of
Q2(ξ) to emphasize this fact.

Lemma 2.4 (Computation of q1(ξ)). If H4(X; Z) has no element of order
4, then the class q1(ξ) is uniquely determined by the relations

2q1(ξ) = p1(ξ), %2q1(ξ) = w4(ξ).

P r o o f. See [CV1, Lemma 3.2].

Lemma 2.5 (Computation of q2(ξ)). If H8(X; Z) has no element of order
2, then the class q2(ξ) is uniquely determined by the relation

16q2(ξ) = 4p2(ξ)− p2
1(ξ)− 8e(ξ).

P r o o f. See [CV1, Lemma 3.3].

On integral classes u of dimension 4 we have

Sq2%2(δSq2%2u) = Sq2Sq1Sq2%2u = Sq2Sq3%2u

= Sq1Sq4%2u+ Sq4Sq1%2u = Sq1%2u
2 = 0.

Let Ω denote a secondary operation associated with the relation

(2.6) (Sq2%2) ◦ (δSq2%2) = 0.

Its indeterminacy on the CW-complex X is

Indet(Ω,X) = Sq2%2H
6(X; Z).

The operation is not uniquely specified by the above relation, for Ω′ =
Ω + Sq4 is another operation also associated with (2.6). We normalize the
operation in the same way as in [T2]. Let HP 2 denote the quaternionic pro-
jective plane. We can regard HP 2 as 8-skeleton of the classifying space for
the special unitary group SU(2). Let x ∈ H4(HP 2; Z) denote the restriction
of the universal Chern class c2 to HP 2. Then H∗(HP 2; Z) ∼= Z[x]/x3. We
will let Ω denote the unique operation associated with (2.6) such that

(2.7) %2x
2 ∈ Ω(x).

According to [T2] this operation satisfies the following
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Lemma 2.8. (i) Let u, v ∈ H4(X; Z) be in the domain of Ω. Then

Ω(u+ v) = Ω(u) +Ω(v) + {u · v},
where {u · v} denotes the image of %2(u · v) in H8(X; Z2)/Sq2%2H

6(X; Z).
(ii) Let w be any element in H4(X; Z). Then 2w is in the domain of Ω,

and Ω(2w) = {w2}.
In some special cases the secondary operation can be computed directly.

Lemma 2.9. Let α be a complex vector bundle over a CW-complex. Then

%2(c4(α) + c22(α) + c2(α)c21(α)) ∈ Ω(c2(α)).

P r o o f. See [T2, (2.7)].

Lemma 2.10. In H8(BSpin(6); Z2),

Ω(q1) = %2q2.

P r o o f. See [CV1, Section 6].

Let β3 be the canonical 3-dimensional complex vector bundle over BU(3)
and let β1 be the 1-dimensional complex vector bundle uniquely determined
by its first Chern class c1(β3). Consider β = β3 ⊕ β1 over BU(3). This
is a 4-dimensional complex vector bundle with the following Chern and
Pontryagin classes:

c1(β) = 2c1,
c2(β) = c2(β3) + c1(β3)c1(β1) = c2 + c21,

c3(β) = c3(β3) + c2(β3)c1(β1) = c3 + c2c1,

c4(β) = c3(β3)c1(β1) = c3c1,

p1(β) = 2c21 − 2c2,
p2(β) = 2c3c1 − 4c1(c3 + c2c1) + (c2 + c21)

2.

As a real vector bundle, β has dimension 8 and w2(β) = 0. Its spin charac-
teristic classes are

(2.11) q1(β) = c21 − c2, q2(β) = −c3c1.
Since δSq2%2q1(β) = δ%2(c3 + c2c1) = 0, we can apply the secondary opera-
tion Ω to q1(β). According to Lemmas 2.8 and 2.9, we get

Ω(q1(β)) = Ω(c21 − c2) = Ω(c21 + c2 + (−2c2))
= Ω(c2(β)) +Ω(−2c2) = Ω(c2(β)) + {c22}
= %2(c4(β) + c22(β) + c2(β)c21(β)) + {c22}
= %2(c3c1 + c22 + c41) + {c22} = {c3c1 + c41}
= {Sq2%2c3 + Sq2%2c

3
1} = Indet(Ω,BU(3)).

Thus we have proved
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Lemma 2.12. For the 8-dimensional vector bundle β defined above,

Ω(q1(β)) = Sq2%2H
6(BU(3); Z).

Let M be a smooth 8-dimensional spin manifold, i.e. w1(M) = w2(M)
= 0. We denote by q1(M) and q2(M) the spin characteristic classes of the
tangent bundle. In [CV1] the following lemma was derived.

Lemma 2.13. Let M be a closed connected smooth spin manifold of dimen-
sion 8 and let H4(M ; Z) have no element of order 4. Then Ω(q1(M)) = 0.

3. Existence of 2-distributions. Let ξ and η be 8- and 2-dimensional
vector bundles. We will say that there is a 2-distribution η in ξ if there is a
6-dimensional vector bundle ζ such that

ξ ∼= η ⊕ ζ.

By an oriented Poincaré duality complex of formal dimension 8 we under-
stand a CW-complex X satisfying Poincaré duality with respect to some
fundamental class µ ∈ H8(X; Z). Our main result is the following

Theorem 3.1. Let ξ be an 8-dimensional oriented vector bundle over a
connected oriented Poincaré duality complex X of formal dimension 8 with
w2(ξ) = 0. Then in ξ there exists a 2-distribution whose Euler class is u if
and only if there is v ∈ H6(M ; Z) such that

(i) %2v = w6(ξ) + w4(ξ)%2u+ %2u
3 and uv = e(ξ),

(ii) %2q2(ξ) ∈ Ω(q1(ξ)),

where q1(ξ) and q2(ξ) are the spin characteristic classes and Ω is the sec-
ondary cohomology operation defined in Section 2.

R e m a r k. The assumptions on the CW-complex X ensure only that the
indeterminacy of the second spin characteristic class of ξ is zero. In fact,
we will prove the statement of Theorem 3.1 for connected CW-complexes if
the condition (ii) is replaced by

(ii′) %2Q2(ξ) ∩Ω(q1(ξ)) 6= ∅.
Further, notice that (i) implies δw6(ξ) = 0 because w4(ξ) = %2q1(ξ) and

δ%2 = 0.
Taking u = 0 we get necessary and sufficient conditions for the existence

of two linearly independent sections in the vector bundle ξ. (See [CV1],
Theorem 5.1.)

Corollary 3.2. Let ξ be an 8-dimensional oriented vector bundle over
a connected oriented Poincaré duality complex X of formal dimension 8 with
w2(ξ) = 0 and w8(ξ) 6= 0. Then in ξ there exists a 2-distribution whose Euler
class is u if and only if there is v ∈ H6(M ; Z) such that

%2v = w6(ξ) + w4(ξ)%2u+ %2u
3 and uv = e(ξ).
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P r o o f. In the proof of Theorem 3.1 it will be shown that under the
condition (i) of Theorem 3.1, w8(ξ) ∈ Indet(Ω,X). Hence, if w8(ξ) 6= 0,
then Indet(Ω,X) = H8(X; Z2) and (ii) of Theorem 3.1 is satisfied.

Corollary 3.3. Let M be a closed connected smooth spin manifold of
dimension 8 and let ξ be an 8-dimensional oriented vector bundle over M
with w2(ξ) = 0 and w4(ξ) = w4(M). Suppose H4(M ; Z) has no element of
order 4. Then in ξ there exists a 2-distribution whose Euler class is u if and
only if there is v ∈ H6(M ; Z) such that

(I) %2v = w6(M) + w4(M)%2u+ %2u
3 and uv = e(ξ),

(II) {4p2(ξ)− 8e(ξ)− 2p1(ξ)p1(M) + p2
1(M)}[M ] ≡ 0 mod 32.

P r o o f. First, w4(ξ) = w4(M) implies w6(ξ) = w6(M). So it is sufficient
to show that under the conditions of Corollary 3.3, formula (II) is equivalent
to (ii) of Theorem 3.1.

Since %2q1(ξ) = w4(ξ) = w4(M) = %2q1(M) there is y ∈ H4(M ; Z) such
that 2y = q1(ξ)− q1(M), and consequently

4y = p1(ξ)− p1(M).

From Lemmas 2.8 and 2.13 we get

Ω(q1(ξ)) = Ω(q1(M) + 2y) = Ω(q1(M)) +Ω(2y) = %2y
2.

Then (ii) of Theorem 3.1 is equivalent to

%2q2(ξ) = %2y
2.

Since H8(M ; Z) ∼= Z, by using reduction mod 32, this is the same as

0 = %32(16q2(ξ) + (p1(ξ)− p1(M))2)

= %32(4p2(ξ)− p2
1(ξ)− 8e(ξ) + p2

1(ξ)− 2p1(ξ)p1(M) + p2
1(M)),

which is formula (II) in Corollary 3.3.

R e m a r k. Corollary 3.3 is also a consequence of the more general Re-
mark 4.12 of [CS] proved using K-theory and the Atiyah–Singer index theo-
rem. They have shown that for an orientable m-dimensional vector bundle ξ
over a closed connected oriented smooth m-manifold M with m ≡ 0 mod 4,
m ≥ 8 and w2(ξ) = w2(M), and for every oriented 2-dimensional vector
bundle η over M the index of an injection λ : η|M \S → ξ|M \S with finite
singularities S is

(3.4) E(λ)⊕ 1
2 (e(ξ)[M ] + σ(ξ)) mod 2 ∈ Z⊕ Z2,

where E(λ) = {e(ξ)−e(λ)·e(η)}[M ], e(λ) being the Euler class of the partial
complement of η, σ(ξ) = {2m/2Â(M) · B̂(ξ)}[M ], Â being the Â-genus given
by

∏m/2
j=1

1
2yj

(
sinh 1

2yj

)−1, B̂ is given by
∏m/2

j=1 cosh 1
2yj and the Pontryagin
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classes are the elementary symmetric polynomials in the squares y2
j . In the

case m = 8 the condition for vanishing of the Z2-index reads

{7p2
1(M)− 4p2(M) + 60p2(ξ) + 15p2

1(ξ)
− 30p1(ξ)p1(M) + 8 · 45e(ξ)}[M ] ≡ 0 mod 32.

Since for M a spin manifold and ξ a trivial vector bundle the Z2-index
vanishes, we get

{7p2
1(M)− 4p2(M)}[M ] ≡ 0 mod 32.

Thus under the conditions of Corollary 3.3, using the notation from its proof
we get

8 · 45{e(ξ)[M ] + σ(ξ)}
≡ {60p2(ξ) + 15p2

1(ξ)− 30p1(ξ)p1(M) + 8 · 45e(ξ)}[M ]

≡ {15p2
1(ξ) + 120e(ξ) + 240q2(ξ) + 15p2

1(ξ)

− 30p1(ξ)p1(M) + 8 · 45e(ξ)}[M ]

≡ {30p2
1(ξ)− 30p1(ξ)p1(M) + 240q2(ξ)}[M ]

≡ {2p1(ξ)p1(M)− 2p2
1(ξ)− 16q2(ξ)}[M ]

≡ {−2(2q1(ξ)) · 4y − 16q2(ξ)}[M ]

≡ {16q1(ξ)y − 16q2(ξ)}[M ] mod 32.

This is equivalent to

%2q2(ξ) = %2(q1(ξ)y) = w4(M)%2y = Sq4%2y = %2y
2,

which is just the condition equivalent to condition (II) of Corollary 3.3. (See
the above proof.)

Moreover, we can compare Remark 4.12 of [CS] with our Theorem 3.1 to
compute the secondary cohomology operation Ω on closed connected smooth
spin manifolds.

Theorem 3.5. Let M be a closed connected smooth spin manifold of
dimension 8. Then

Ω(z) = %2
1
2{zq1(M)− z2)}

for every z ∈ H4(M ; Z) such that δSq2%2z = 0.

P r o o f. According to [CV2], Theorem 2, for every z ∈ H4(M ; Z) there
is an 8-dimensional oriented vector bundle ξ with w2(ξ) = 0, q1(ξ) = z
and e(ξ) = 0 and p2(ξ) = y if and only if %4y = %4z

2 and P 1
3 %32z =

%3(2y− 4z2), where P 1
3 is the Steenrod cohomology operation mod 3. Since
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H8(M ; Z) ∼= Z, it is easy to see that for every z, there is y ∈ H8(M ; Z) such
that both the conditions are satisfied. Moreover, for such a vector bundle
δw6(ξ) = δSq2%2z = 0.

By [CS] the vector bundle ξ has two linearly independent sections (a
trivial subbundle η) if and only if

1
2σ(ξ) ≡ 0 mod 2.

Theorem 3.1 states that ξ has two linearly independent sections if and only if

Ω(q1(ξ))− %2q2(ξ) = 0.

(Here Indet(Ω,M) = Sq2%2H
6(M ; Z) = w2(M)%2H

6(M ; Z) = 0.) There-
fore

1
2σ(ξ) ≡ {Ω(q1(ξ))− %2q2(ξ)}%2[M ] mod 2.

The same computation as in the previous remark yields that the left hand
side is{

1
8 (p1(ξ)p1(M)− p2

1(ξ))− q2(ξ))
}
[M ]

≡
{

1
2 (q1(ξ)q1(M)− q21(ξ))− q2(ξ)

}
[M ] mod 2.

Hence we get

Ω(q1(ξ)) = %2
1
2{q1(ξ)q1(M)− q21(ξ))}.

Since z = q1(ξ), we obtain the formula from the theorem.

Example 3.6. Consider the complex Grassmann manifold G4,2(C). It
is a compact real manifold of dimension 8. Let ξ be a spin vector bundle
over G4,2(C) (i.e. w2(ξ) = 0). In [CV1], Example 5.5, the existence of two
linearly independent sections of the bundle ξ was examined. Here we deal
with the existence of a 2-distribution in ξ.

We have H∗(G4,2(C); Z) ∼= Z[x1, x2]/(x3
1 − 2x1x2, x

2
2 − x2

1x2). The iso-
morphism is given by x1 7→ c1, x2 7→ c2, where c1 and c2 are the Chern
classes of the canonical complex vector bundle γ2 over G4,2(C).

Let us write

p1(ξ) = 2ac21 + 2bc2, p2(ξ) = Cc21c2, e(ξ) = Dc21c2.

We have p1(ξ) = 2q1(ξ) and w4(ξ) = %2(ac21 + bc2). (In [CV1] we used
A = 2a and B = 2b.) Further, we denote here wi = wi(γ2). Let

u = kc1 ∈ H2(G4,2(C); Z),

where k ∈ Z is uniquely determined. We are interested in the existence of
a 2-distribution in ξ with Euler class u. So we are looking for v = lc1c2 ∈
H6(G4,2(C); Z), l ∈ Z, satisfying condition (i) of Theorem 3.1.

We have
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w6(ξ) = w2(ξ)w4(ξ) + Sq2w4(ξ) = Sq2w4(ξ) = Sq2%2(ac21 + bc2)

= Sq2(aw2
2 + bw4) = bSq2w4 = bw2w4 = %2(bc1c2).

Hence

w6(ξ) + w4(ξ)%2u+ %2u
3 = %2((k + 1)bc1c2).

Obviously, condition (i) has the form

l ≡ (k + 1)b mod 2, kl = D.

Now, we must distinguish two cases, namely b ≡ 0 mod 2 and b ≡ 1 mod 2.
For b ≡ 0 mod 2 we find easily that (i) is satisfied if and only if D is even

and D/k is even.
For b ≡ 1 mod 2 we see that (i) is satisfied if and only if D is even and

either D/k is odd or k is odd.
Along the same lines as in Example 5.5 of [CV1] or using Theorem 3.5

(q1(G4,2) = c21) it can be proved that (ii) of Theorem 3.1 is satisfied if and
only if

C ≡ 2a2 + 6ab+ 3b2 − 2b+ 2D mod 8.

4. Proof of Theorem 3.1. Let γn denote the canonical vector bun-
dle over BSO(n). Let π : BSO(6) × BSO(2) → BSO(8) stand for the
map corresponding to the bundle γ6 × γ2 over BSO(6) × BSO(2). We
shall consider the map p : BSO(6)×BSO(2) → BSO(8)×BSO(2), where
p = (π, r), r being the projection on the right factor. Since p need not be
a fibration, we extend immediately the total space BSO(6) × BSO(2) in
the usual way in order to obtain a fibration. We denote the extended total
space by B(SO(6)×SO(2)), and the extension of p by the same letter. The
fibre of this fibration is homotopy equivalent to the Stiefel manifold V8,2

(see [T4]).
Now, let ξ resp. η be an 8-dimensional resp. a 2-dimensional oriented

vector bundle over a connected CW-complex X. We denote by (ξ, η) the
corresponding map (ξ, η) : X → BSO(8)×BSO(2). It can be immediately
seen that in the 8-dimensional vector bundle ξ over X there exists a 2-
distribution isomorphic to the vector bundle η if and only if the map (ξ, η)
can be lifted in the fibration p.

Next, consider the fibration ν : BSpin(8) → BSO(8) whose fibre is
the Eilenberg–MacLane space K(Z2, 1). An oriented 8-dimensional vector
bundle ξ over X is a spin vector bundle if and only if the map ξ : X →
BSO(8) can be lifted in the fibration ν.

Finally, let C together with the maps ν and p be a coamalgam of the
maps p and ν × id. We obtain the following commutative diagram:
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K(Z2, 1) K(Z2, 1)

V8,2 C BSpin(8)×BSO(2)

V8,2 B(SO(6)× SO(2)) BSO(8)×BSO(2)

��

______________________________

��

�
�
�
�
�

�
�
�
�
�

//

ν

��

p //

ν× id

��
// p //

Hence, in an 8-dimensional oriented vector bundle ξ over X with w2(ξ) =
0 there exists a 2-distribution isomorphic to the vector bundle η if and only
if for some lift ξ : X → BSpin(8) the map (ξ, η) : X → BSpin(8)×BSO(2)
can be lifted in the fibration p. We will find the Postnikov resolution for
this fibration using the Postnikov resolution built up by E. Thomas [T1] for
the fibration p.

Let µ : BSpin(8) → BSpin(8)×BSO(2) denote the canonical inclusion.
We construct a coamalgam of the maps p and µ. It is easy to see that this
coamalgam is the classifying space BSpin(6). Thus we obtain the following
commutative diagram:

V8,2 BSpin(6) BSpin(8)

V8,2 C BSpin(8)×BSO(2)

V8,2 B(SO(6)× SO(2)) BSO(8)×BSO(2)

�
�
�
�
�

�
�
�
�
�

//

µ̃

��

p̃ //

µ

��

�
�
�
�
�

�
�
�
�
�

//

µ

��

p //

ν× id

��
// p //

The first Postnikov invariant for p is δθ6 ∈ H7(BSO(8) × BSO(2); Z),
where

θi = wi((γ8 × 1)− (1× γ2));

here (γ) denotes the stable equivalence class of γ (see [T1]). Consequently,
the Postnikov invariant for p is (ν × id)∗(δθ6). Since

θ =
( 8∑

i=0

wi ⊗ 1
)( ∞∑

n=0

1⊗ wn
2

)
,

we get

(ν × id)∗(δθ6) = δ(ν × id)∗θ6
= δ(ν × id)∗(w6 ⊗ 1 + w4 ⊗ w2 + w2 ⊗ w2

2 + 1⊗ w3
2)

= δ(Sq2%2q1 ⊗ 1 + %2q1 ⊗ %2e2 + 1⊗ %2e
3
2) = δSq2%2q1 ⊗ 1.
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Denote by s : E → BSO(8) × BSO(2) the principal fibration with
the classifying map δθ6 : BSO(8) × BSO(2) → K(Z, 7). There exists a
7-equivalence t : BSO(6)×BSO(2) → E such that st = p. We can replace
the space B(SO(6)× SO(2)) and the map t by their homotopy equivalents
in such a way that the new map is a fibration. We will denote the new
space and the new map by the same symbols (which is a common pro-
cedure in building the Postnikov towers). Having performed this change,
we shall reconstruct the previous diagram, but keeping the old notation.
The new C in this diagram together with the new ν and the new p will
be a coamalgam of the new p = st and the old ν × id. Similarly, instead
of the old coamalgam BSpin(6), we create a new coamalgam of the new
p and the old µ. But it can be easily seen that this new coamalgam is
again a classifying space BSpin(6) (homotopy equivalent to the original
one).

Further, let s : E → BSpin(8) × BSO(2) and s̃ : Ẽ → BSpin(8) de-
note the fibrations induced from s : E → BSO(8) × BSO(2) by the maps
ν × id and (ν × id)µ, respectively. These fibrations are stages in the Post-
nikov towers for fibrations p and p̃ given by the invariants δw6 ⊗ 1 and
δw6, respectively. We thus get the following commutative diagram, where
the spaces in the upper left corners of all squares are coamalgams of the
mappings given in these squares.

BSpin(6) Ẽ BSpin(8)

C E BSpin(8)×BSO(2)

B(SO(6)× SO(2)) E BSO(8)×BSO(2)

µ̃

��

t̃ //

��

s̃ //

µ

��

ν

��

t //

��

s //

ν×id

��
t // s //

Since s̃ × id : Ẽ × BSO(2) → BSpin(8) × BSO(2) is the principal fi-
bration determined by the same element of H7(BSpin(8)×BSO(2)) as the
fibration s, there is a fibre homotopy equivalence α : Ẽ × BSO(2) → E

over BSpin(8) × BSO(2). Denote by t′ : C ′ → Ẽ × BSO(2) the fibration
induced from the fibration t by the map α. (C ′ is again a coamalgam of α
and t.) One can easily show that a map from X into BSpin(8) × BSO(2)
can be lifted in the fibration p = st if and only if it can be lifted in the
fibration (s̃ × id)t′ : C ′ → BSpin(8) × BSO(2). Moreover, one can change
the preceding diagram in such a way that the map µE : Ẽ → Ẽ × BSO(2)
is a canonical inclusion:
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BSpin(6) Ẽ BSpin(8)

C ′ Ẽ ×BSO(2) BSpin(8)×BSO(2)

B(SO(6)× SO(2)) E BSO(8)×BSO(2)

µ̃′

��

t̃ //

µE

��

s̃ //

µ

��

ν′

��

t′ //

νE

��

s̃×id //

ν×id

��
t // s //

The Postnikov invariants ϕ and ψ for t′ are the ν∗E-images of the Post-
nikov invariants ϕ ∈ H8(E; Z) and ψ ∈ H8(E; Z2) computed by Thomas in
[T1]. In that paper Thomas showed that the set of cohomology classes {g∗ϕ}
with g : X → E running over all liftings of (ξ, η) : X → BSO(8)×BSO(2)
(with (ξ, η)∗(δθ6) = 0) is the set of classes {e(ξ)− e(η)v}, where v runs over
all classes in H6(X; Z) such that %2v = w6(ξ).

For our purposes it is sufficient to find the set

(4.1) k(ξ, η) = {g∗ψ : (s̃× id)g = (ξ, η)},

where g : X → Ẽ × BSO(2) and (ξ, η) : X → BSpin(8) × BSO(2) are the
liftings of (ξ, η) : X → BSO(8)×BSO(2) with w2(ξ) = 0.

Thomas [T1] proved that

t∗ψ = 0, j∗ψ = Sq2%2ι6,

where j : K(Z, 6) ↪→ E is the inclusion of the fibre of s. Let j : K(Z, 6) ↪→
Ẽ × BSO(2) be the inclusion of the fibre of s̃ × id. Then ψ is uniquely
determined by the relations

t′∗ψ = 0, j∗ψ = Sq2%2ι6.

Further, we proceed in a similar way to the proof of Theorem 5.1 of [CV1].
The class (4.1) is the coset of Sq2%2H

6(X; Z) which is the same as the
indeterminacy of the secondary operation Ω. Theorem 3.1 will be proved
when we show

(4.2) ψ + s̃∗%2q2 ⊗ 1 + aw̃8 ⊗ 1 ∈ Ω(s̃∗q1 ⊗ 1),

where a = 0 or 1. Applying g∗ to (4.2) we get

k(ξ, η) + %2q2(ξ) + aw8(ξ) = Ω(q1(ξ)).

This means that (ξ, η) : X → BSpin(8)×BSO(2) can be lifted to C ′ if and
only if (i) of Theorem 3.1 is satisfied and 0 ∈ k(ξ, η), i.e.

(4.3) %2q2(ξ) + aw8(ξ) ∈ Ω(q1(ξ)).

But if (i) holds, we get
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w8(ξ) = %2(uv) = w6(ξ)%2u+ w4(ξ)%2u
2 + %2u

4

= Sq2%2(q1(ξ)u+ u3) ∈ Indet(Ω,X).

Hence under (i), formula (4.3) is equivalent to (ii).
Let us return to the proof of (4.2). Consider the following diagram:

K(Z, 6) K(Z, 6)

Y Ẽ×BSO(2) C ′

K(Z, 7) K(Z, 4) BSpin(8)×BSO(2) BSpin(8)×BSO(2)

l

��

______________________

j̄

��

��

foo

s̃×id

��

t̄′oo

p̄′

��
δSq2%2ι4oo q1⊗1oo ______

where Y is the universal example for the operation Ω and f : Ẽ×BSO(2) →
Y is a lifting of the map s̃∗(q1) ⊗ 1 : Ẽ × BSO(2) → K(Z, 4). Let ω ∈
H8(Y ; Z2) define the operation Ω. We have

j∗(f∗(ω)) = l∗(ω) = Sq2%2ι6.

Since we know H8(Ẽ; Z2) from the Serre exact sequence of the fibration s̃,
we get

Ω(s̃∗1q1 ⊗ 1) = ψ + as̃∗w8 ⊗ 1 + bs̃∗%2q2 ⊗ 1 + cs̃∗%2q
2
1 ⊗ 1

+ d(s̃∗%2q1 ⊗ %2e
2
2) +ASq2(%2q1 ⊗ %2e2)

+B(1⊗ %2e
4
2) + Indet(Ω, Ẽ ×BSO(2))

= ψ + as̃∗w8 ⊗ 1 + bs̃∗%2q2 ⊗ 1 + cs̃∗w2
4 ⊗ 1

+ ds̃∗%2q1 ⊗ %2e
2
2 + Indet(Ω, Ẽ ×BSO(2)),

where a, b, c, d ∈ {0, 1}. We will show that b = 1 and c = d = 0.
Applying µ̃′∗t′∗ = t̃∗µ∗E to Ω(s̃∗q1 ⊗ 1) yields, in H8(BSpin(6); Z2),

Ω(q1) = (t̃∗µ∗E)Ω(s̃∗(q1)⊗ 1)

= (t̃∗µ∗E)(ψ) + a(t̃∗µ∗E)(w8 ⊗ 1) + b(t̃∗µ∗E)(s̃∗%2q2 ⊗ 1)

+ c(t̃∗µ∗E)(s̃∗%2q
2
1 ⊗ 1) + d(t̃∗µ∗E)(%2q1 ⊗ %2e

2
2) = b%2q2 + c%2q

2
1 .

According to Lemma 2.10, b = 1 and c = 0.
Next consider the vector bundle β over BU(3) defined in Section 2. In

this 8-dimensional spin vector bundle there is the 2-distribution β1 with
Euler class c1. Hence there exists a map (β, β1) : BU(3) → Ẽ × BSO(2)
which is a lifting of (β, β1) : BU(3) → BSpin(8)×BSO(2). The application
of (β, β1)∗ to Ω(s̃∗(q1)⊗ 1), Lemma 2.12 and (2.11) give
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Sq2%2H
6(BU(3); Z)

= Ω(q1(β)) ⊇ (β, β1)∗Ω(s̃∗q1 ⊗ 1)

3 (β, β1)∗(ψ + as̃∗w8 ⊗ 1 + s̃∗%2q2 ⊗ 1 + ds̃∗%2q1 ⊗ %2e
2
2)

= aw8(β) + %2q2(β) + d%2q1(β)%2e
2(β1)

= a%2(c3c1) + %2(c3c1) + d%2(c21 − c2)%2c
2
1

= (a+ 1)Sq2%2c3 + dSq2%2c
2
1 + d%2(c2c21).

Therefore d = 0. This completes the proof of Theorem 3.1.

R e m a r k. q1 is a generating class for the invariant ψ in the sense
of [T3].

Acknowledgements. The authors are grateful to the referee for draw-
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