

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

EASC, 2

ON THE HARDY-LANDAU THEOREM

вч

L. JEŚMANOWICZ (TORUŃ)

A. Zygmund [3] gave a simple proof of the following Hardy-Landau Theorem:

If $na_n \leqslant M$ (or $na_n \geqslant M$) and $\sum a_n$ is (C, 1)-summable to s, then $\sum a_n$ converges to s.

In this note I will show that the ideas of A. Zygmund are applicable to the proof of the generalised Hardy-Landau Theorem:

If $na_n \leq M$ (or $na_n \geq M$) and $\sum a_n$ is (C, a)-summable to s for any $a \geq 1$, then $\sum a_n$ converges to s.

The proof of this theorem given in Hardy's paper [1] (p. 122-123) is not a simple one.

1. We shall consider, instead of the summability of the series, the limitability of the sequence $f = \{f_n\}$, which of course may always be treated as the sequence of the partial sums of the series $\sum \Delta_n f$, where $\Delta_0 f = f_0$ and $\Delta_n f = f_n - f_{n-1}$ for $n \ge 1$.

The sequence $\{na_n\}$ is called the Kronecker sequence of the series $\sum a_n$. In the following the sequence $\{n \Delta_n f\}$ is called the Kronecker sequence of the sequence $f = \{f_n\}$ and denoted by $\mathcal{K}f = \{\mathcal{K}_n f\}$.

By \mathcal{H} we denote the Hölder operator, which transforms any sequence $f = \{f_n\}$ into the sequence of its arithmetical means,

$$\mathscr{H}f = \left\{\frac{1}{n+1}\sum_{r=0}^{n}f_{r}\right\} = \left\{\mathscr{H}_{n}f\right\},\,$$

and by \mathcal{C}^a the Cesàro operator, which transforms any sequence $f = \{f_n\}$ into the sequence

$$\mathcal{C}^a f = \left\{ \frac{1}{A_n^a} \sum_{r=0}^n A_{n-r}^{a-1} f_r \right\} = \left\{ \mathcal{C}_n^a f \right\},$$

where A_n^a are the Cesàro numbers:

$$A_0^lpha=1\,, \quad A_n^lpha=rac{(lpha+1)\ldots(lpha+n)}{n!} \quad ext{for} \quad n\geqslant 1\,.$$

Of course $\mathcal{H} = \mathcal{C}^1$.

Operators \mathcal{C}^a are regular for $a \geq 0$: if $\lim f = s$, then $\lim \mathcal{C}^a f = s$ ([1], p. 101). Operators \mathcal{C}^{a+1} and $\mathcal{H}\mathcal{C}^a$ for $a \geq 0$ are equivalent: if $\lim \mathcal{C}^{a+1} f = s$, then $\lim \mathcal{H}\mathcal{C}^a f = s$ and vice versa ([1], p. 102). If $f \leq M$ (or $f \geq M$) for some real M, then, for $a \geq 0$, $\mathcal{C}^a f \leq M$ (or $\mathcal{C}^a f \geq M$) (here $f \leq M$ denotes that $f_n \leq M$ holds for any $n = 0, 1, 2, \ldots$).

2. Let us denote by δ^{α} the operator of summation of order α :

$$^{a}f = \left\{ \sum_{r=0}^{n} A_{n-r}^{a-1} f_{r} \right\} = \left\{ \circlearrowleft_{n}^{a} f \right\}.$$

In particular $oeta^{-1} = \Delta$. It is well known that for any α and β $oeta^{\alpha+\beta} = oeta^{\alpha} \cdot oeta^{\beta}.$

Now we shall prove a formula interesting in itself.

LEMMA 1. For any a and any sequences $f = \{f_n\}$ and $g = \{g_n\}$ there holds the formula ${}_n$

 $\phi_n^a f g = \sum_{r=1}^n (-1)^r A_r^{a-1} \phi_n^{-r} f \phi_{n-r}^{a+r} g.$

Proof. Starting from the second part of the formula we obtain

$$\begin{split} \sum_{\nu=0}^{n} (-1)^{\nu} A_{\nu}^{a-1} \circlearrowleft_{n-\nu}^{-\nu} f \circlearrowleft_{n-\nu}^{a+\nu} g \\ &= \sum_{\nu=0}^{n} (-1)^{\nu} A_{\nu}^{a-1} \sum_{\mu=n-\nu}^{n} A_{n-\mu}^{-\nu-1} f_{\mu} \sum_{\lambda=0}^{n-\nu} A_{n-\nu-\lambda}^{a+\nu-1} g_{\lambda} \\ &= \sum_{\mu=0}^{n} f_{\mu} \sum_{\nu=n-\mu}^{n} (-1)^{\nu} A_{\nu}^{a-1} A_{n-\mu}^{-\nu-1} \sum_{\lambda=0}^{n-\nu} A_{n-\nu-\lambda}^{a+\nu-1} g_{\lambda} \\ &= \sum_{\mu=0}^{n} f_{\mu} \sum_{\lambda=0}^{n} g_{\lambda} \sum_{\nu=n-\mu}^{n-\lambda} (-1)^{\nu} A_{\nu}^{a-1} A_{n-\mu}^{-\nu-1} A_{n-\nu-\lambda}^{a+\nu-1} \\ &= \sum_{\mu=0}^{n} f_{\mu} \sum_{\lambda=0}^{\mu} g_{\lambda} A_{n-\lambda}^{a-1} \binom{n-\lambda}{n-\mu} \sum_{\nu=n-\mu}^{n-\lambda} (-1)^{\nu-n+\mu} \binom{\mu-\lambda}{\nu-n+\mu} \\ &= \sum_{\mu=0}^{n} f_{\mu} \sum_{\lambda=0}^{n} g_{\lambda} A_{n-\lambda}^{a-1} \binom{n-\lambda}{n-\mu} \sum_{\nu=0}^{\mu-\lambda} (-1)^{\nu} \binom{\mu-\lambda}{\nu} \\ &= \sum_{\mu=0}^{n} A_{n-\mu}^{a-1} f_{\mu} g_{\mu} = \circlearrowleft_{n}^{a} f g, \end{split}$$

since

$$\sum_{\nu=0}^{\mu-\lambda} (-1)^{\nu} {\mu-\lambda \choose \nu} = \begin{cases} 0 & \text{for } \mu > \lambda \\ 1 & \text{for } \mu = \lambda. \end{cases}$$

If a = -k, where k is a positive integer, we obtain the well-known formula for $\Delta^k fq$.

It is well known (see Kogbetliantz [2], p. 23) that the operators \mathcal{C}^a and \mathcal{K} (where \mathcal{K} denotes the Kronecker operator) are commutative. For the sake of completeness I give a proof of this fact.

Lemma 2. For any $\alpha \neq -1, -2, ...$ and for any sequence $f = \{f_n\}$

$$\mathcal{C}^{\alpha} \mathcal{X} f = \mathcal{K} \mathcal{C}^{\alpha} f.$$

Proof. We have $\Im f = \Delta A^1 f - f$, whence

$$\mathcal{S}_n^a \mathcal{N} f = \mathcal{S}_n^{a-1} A^1 f - \mathcal{S}_n^a f.$$

By lemma 1

$$\delta_n^{a-1} A^1 f = A_n^1 \delta_n^{a-1} f - (a-1) \delta_{n-1}^a f,$$

whence

$$\begin{split} \circlearrowleft_n^a & \Im f = A_n^1 \circlearrowleft_n^{a-1} f - (a-1) \circlearrowleft_{n-1}^a f - \circlearrowleft_n^a f \\ &= A_n^1 (\circlearrowleft_n^a f - \circlearrowleft_{n-1}^a f) - (a-1) \circlearrowleft_{n-1}^a - \circlearrowleft_n^a f \\ &= n \circlearrowleft_n^a f - (n+a) \circlearrowleft_{n-1}^a f, \end{split}$$

and therefore

$$C_n^a \mathcal{K} f = nC_n^a f - \frac{(n+a)A_{n-1}^a}{A_n^a} C_{n-1}^a f$$
$$= nC_n^a f - nC_{n-1}^a f = nA_n C^a f = \mathcal{K}_n C^a f.$$

5. THEOREM 1. If $\mathcal{K}f \leq M$ for some real M, and $\lim C^{a+1}f = s$ for $a \geq 0$, then $\lim C^a f = s$.

Proof. Let us write, following the idea of A. Zygmund,

$$\sigma_{n,k} = rac{1}{k} \sum_{v=n}^{n+k-1} C_v^{\alpha} f.$$

A simple computation gives

$$\sigma_{n,k} = \mathcal{H}_{n+k-1}\mathcal{C}^a f + \frac{n}{k} (\mathcal{H}_{n+k-1}\mathcal{C}^a f - \mathcal{H}_{n-1}\mathcal{C}^a f).$$

If $\lim \mathcal{C}^{a+1}f=s$, then $\lim \mathcal{H}\mathcal{C}^af=s$, and, supposing $n/k\leqslant A$, we obtain $\lim \sigma_{n,k}=s$.

264

L. JEŚMANOWICZ

On the other hand.

$$\sigma_{n,k} = \mathcal{C}_n^a f + \sum_{\nu=n+1}^{n+k-1} \left(1 - rac{
u - n}{k}
ight) rac{1}{
u} \mathcal{N}_{
u} \mathcal{C}^a f,$$

or

$$\sigma_{n,k} = \mathcal{C}_{n+k-1}^a f - \sum_{v=n+1}^{n+k-1} \frac{v-n}{kv} \mathcal{K}_v \mathcal{C}^a f.$$

By lemma 2 and the hypothesis $\mathcal{K}f \leqslant M$

$$\mathcal{K}\mathcal{C}^{a}f=\mathcal{C}^{a}\mathcal{K}f\leqslant M$$

and therefore

$$\sigma_{n,k} - C_n^a f \leqslant M \sum_{\nu=n+1}^{n+k-1} \frac{1}{\nu} \leqslant M \frac{k-1}{n}$$

and

$$C_{n+k-1}^af-\sigma_{n,k}\leqslant M\sum_{n=1}^{n+k-1}rac{1}{r}\leqslant Mrac{k-1}{n}.$$

Now, if $k = \lfloor n\varepsilon \rfloor + 1$, where ε is an arbitrary positive real number, then

$$\frac{n}{k} = \frac{n}{\lceil n\varepsilon \rceil + 1} < \frac{n}{n\varepsilon} = \frac{1}{\varepsilon}, \quad \frac{k-1}{n} = \frac{\lceil n\varepsilon \rceil}{n} < \frac{n\varepsilon + 1}{n} = \varepsilon + \frac{1}{n},$$

whence

$$\lim_{n\to\infty}\sigma_{n,k}=s,\quad s-\varliminf\mathcal{C}^af\leqslant M\varepsilon,\quad \overline{\lim}\,\mathcal{C}^af-s\leqslant M\varepsilon.$$

Thus

$$s-M\varepsilon\leqslant \lim \mathcal{C}^af\leqslant \overline{\lim}\;\mathcal{C}^af\leqslant s+M\varepsilon$$

and the theorem is established.

COROLLARY. If $\Re f \leqslant M$ for some real M and $\lim C^{a+1}f = s$ for $a \geqslant 0$, then $\lim f = s$.

Proof. From $\lim \mathcal{C}^{a+1}f = s$ follows $\lim \mathcal{C}^{k+1}f = s$ for any integer $k \ge a$. Applying the theorem k+1 times, we obtain $\lim \mathcal{C}^0f = \lim f = s$.

REFERENCES

- [1] G. H. Hardy, Divergent Series, Oxford 1949.
- [2] M. E. Kogbetliantz, Sommation des séries et intégrales divergentes par les moyennes arithmétiques et typiques, Mémorial des Sciences Mathématiques, fasc. 51, Paris 1931.
- [3] A. Zygmund, Two notes on the summability of infinite series, Colloquium Mathematicum 1 (1948), p. 225-229.

Reçu par la Rédaction le 15. 5. 1959

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

FASC, 2

ON MULTIPLICATIVE SEQUENCES

BY ·

Z. CIESIELSKI (POZNAŃ)

1. Let $\{x(n)\}$, $n=1,2,\ldots$, denote a sequence satisfying the followong conditions:

$$1^{n} x(n) = 1 \text{ or } -1 \text{ for } n = 1, 2, ...,$$

$$2^{\circ} x(nm) = x(n)x(m)$$
 for $n, m = 1, 2, ...$

P. Erdős has asked (see [1], problem 9): if the limit

$$\lim_{n \to \infty} \frac{x(1) + \ldots + x(n)}{n}$$

exists for every sequence $\{x(n)\}$ satisfying conditions 1° and 2°.

The theorem proved in this section (*) concerns this problem but gives no final answer.

Now let $\{p_n\}$, $n=0,1,\ldots$, denote the sequence of all consecutive prime numbers. Let us write

$$n = p_0^{a_0^{(n)}} \dots p_{k_n}^{a_{k_n}^{(n)}},$$

where $a_i^{(n)}$, $i=0,\ldots,k_n$, are non-negative integers and $a_n^{(n)}>0$. We denote by $\{r_n(t)\}$, $n=0,1,\ldots$, the set of all Rademacher functions (see e. g. [2], p. 42). Let us put

$$x(n, t) = [r_0(t)]^{a_0^{(n)}} \dots [r_{k_n}(t)]^{a_{k_n}^{(n)}}.$$

Obviously, for almost all $t \in (0,1)$ conditions 1° and 2° for the sequences $\{x(n,t)\}, n=1,2,\ldots$, are satisfied.

THEOREM 1. For almost all $t \in (0, 1)$

$$\lim_{n\to\infty}\frac{x(1,t)+\ldots+x(n,t)}{n}=0.$$

^{(*) (}Added in proof.) After having written this note I learned that theorem 1 had been proved in another way by Wintner (see [4], p. 270, corollary).