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ON THE HARDY-LANDAU THEOREM

BY
L. JESMANOWICZ (TORUN)

A. Zygmund [3] gave a simple proof of the following Hardy-Landau
Theorem:

If na, < M (or nay, = M) and 3 a, is (O, 1)-summable to s, then
D a, converges to s.

In this note I will show that the ideas of A. Zygmund are applicable
to the proof of the generalised Hardy-Landau Theorem: ]

If na, < M (or na, = M) and D a, is (O, a)-summable to s for any
a =1, then > a, converges to s.

The proof of this theorem given in Hardy’s paper [1] (p. 122-123)
is not a simple one.

1. We shall consider, instead-of the summability of the series, the
limitability of the sequence f = {f,}, which of course may always be
treated as the sequence of the partial sums of the series ) A4,f, where
dof =fo and A,f = fr—fn_; for n > 1.

The sequence {#na,} is called the Kronecker sequence of the series Y a,.
In the following the sequence {n4,f} is called the Kronecker sequence of
the sequence f = {f,} and denoted by Kf = {N.f}-

By % we denote the Holder operator, which transforms any
sequence f = {f,} into the sequence of its arithmetical means,

of = {;;f?i Zf} — (31},

and by € the Cesaro operator, which transforms any sequence f= {f,}
into the sequence
n
a 1 a—1 a
e f = {E Z-An-—v v} = {enf},

v
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where A; are the Cesaro nmumbers:

(a+1)...(a+mn)

for n>1.
n!

Aj =1, A=
Of course 9 = €
Operators ©* are regular for a > 0: if Hmf = s, then lim C°f =
([1], p. 101). Operators €*™' and AC* for « >0 are equivalent: if
G"“f =, then imYC*f = s and vice versa ([1], p. 102). If f <M
(or f > M) for some real M, then, for a >0, C°f < M (or C°f = M) (here
<M denotes that f, << M holds for any » = 0,1,2,...).

2. Let us denote by <* the operator of summation of order a:

°f ={ ZA;':f} (S}

=0
In particular $™' = A. It is well known that for any a and g
et — 5. S8,

Now we shall prove a formula interesting in itself.
Lemma 1. For any o and any sequences [ = {fn} and g = {g,} there
holds the formula "
Safg = D (—1y 4TS fd5tg.
»=0

Proof. Starting from the second part of the formula we obtain

n

PNERE g Erad’

v=0

n -y
= D (—1y4 ZA;:;‘f,, Z A,
Cov=0 p=n—y
n n . n—y
= Df, D(—1rArtAz N ATl
u=0 v=n—p A=0
n—i

vAa—lA-v 1Aa{v—
-y

N=—p

|
N
=

Eﬁ;
M

Il‘——-ﬂ A=0 .»=n-—p
n u B _ "’"1’1 »
= uzofug‘:w i (Z:_f&)m;—“(—1)"~n-f-u(vﬁn+#)
n n P .
= nyg; ngiTa( Z )%‘(_1)v(u;i)

=
.1

I

A;:#fngu = ;fga

®,
B
o
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since
S:l(_l)”(“:l) _ { g for u>12
7= for pu=2.
If @ = —k, where k is a positive integer, we obtain the well-known

formula for A%fg.

It is well known (see Kogbetliantz [2], p. 23) that the operators C*
and X (where X denotes the Kronecker operator) are commutative.
For the sake of completeness I give a proof of this fact.

LeMMA 2. For any a # —1, —2,... and for any sequence f =.{f,}
CHKf = Kef. R
Proof. We have “Nf = AAYf—f, whence
SENSf = S5 AL —nf.
By lemma 1
I A = Ay f— (= 1),
whence
NS = ApSi Sn—rf — I,
= An(Snf—Sn (a-—l)dﬁ‘l—@fﬁf‘
= NSy f— (-+ a)Sp_1f,
and therefore
Az
CLNF = neif— (n+ E)av,v} e,
A
- = nCif—nCs_f = ndCf = UAnC’S.
3. TaEorEM 1. If Kf < M for some real M, and lim C*™'f =5 for
a =0, then limCf = s. ' »
Proof. Let us write, following the idea of A. Zygmund,
nepFomm 1
Op ;o = —k_ 2 (Jgf

V=M

A simple computation gives

Un k= CM'M Jo— le f+ 9€n+k 1e f %I—leaf)-

It lim@*'f —=s, then lim AC°f =s, and, supposing n/k < A we
obtain lima, ) = s.
Nn—00
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On the other hand, kot
y—n\1l
o = €2f+ ) (1— - );%e“f,

y=N+1
T
o n+k—1
=N
a
U'ILJ-T = e;+k~1f'_ § —701' qcve f
r=n41

By lemma 2 and the hypothesis Xf < M
Ke*f = Kf < M,

and therefore
n4k—1

1 k—1
Gui—Cof < M E S
r=n-+1
and
. mE k—1
en+k——1f" Ok < JI\Z — < M .
v=n41 v n

Now, if k¥ = [ne]+ 1, where ¢ is an arbitrary positive real number,
then

n n " 1 k—1 [me] ne-t1 1

- < —— = —, = — —_-g—|———~-,

ko [me]l+1 ne £ n n n n
whence

limo,, = s, s—lmef< Me, lLmCf—s< Me.
N—>00 0

Thus —
s—Me < limCf < lim C*f < 8- Me

and the theorem is established.

COROLLARY. If Kf < M for some real M and HmC**'f = s for a =0,
then imf = s.

Proof. From lim@*'f=g¢ follows LmC*'f=s for any integer
k >a. Applying the theorem k-1 times, we obtain lim Cof = lim f = s,
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ON MULTIPLICATIVE SEQUENCES
BY -
Z. CIESIELSKI (POZNAN)
1. Let {z(n)}, n =1, 2, ..., denote a sequence satisfying the follow-
ong conditions:
1°g(n)=1o0r —1 forn=1,2,..,
2° g(nm) = x(n)x(m) for n,m =1,2, ...
P. BErdés has asked (see [1], problem 9): if the limit

exists for every sequence {w(n)} satisfying conditions 1° and 2°
The theorem proved in this section (*) concerns this problem but gives
no final answer.
Now let {p,}, » = 0,1, ..., denote the sequence of all consecutive
prime numbers. Let us write
a, ) a; n)
w=pd
where of”, i=0,...,%,, are non-negative integers and af) > 0.’
We denote by {r,(1)}, » = 0, 1,..., the set of all Rademacher functions
(see e. g. [2], p. 42). Let us put

w(ny 1) = [ ... [y, (0T,

Obviously, for almost all £e{0, 1> conditions 1° and 2° for the sequences
{m(n, 1)}, n=1,2,..., are satisfied.
THEOREM 1. For almost all t<{0,1)

lim z(1,t)+...+z(n, ) _

n—>00 n

0.

(*) (Added in proof.) After having written this note I learned that theorem 1
had been proved in another way by Wintner (see [4], p. 270, corollary).
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