18 A, GORBTZ

On account of (11) the xabio wpey(Zpe) Vo) (Zpe) =: % = const,
whence (%) = I%fx(c)dl(c) = kM%), q. e d.
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In this paper we are concerned with the preserving of different sorts
of compactness under the Cartesian multiplication. We shall use the
following terminology:

countably compact = each countable open covering contains a finite
subcovering;

compact = each open covering contains a finite subcovering;

Lindelsf space = each open covering contains a countable subco-
vering;

pseudo-compact = each real-valued continuous function is bounded
(see [2]).

I. M. Katétov has proved the following theorem (see [37]):

The Cartesian product of two countably compact spaces, one of which
is compact, 18 also countably compact.

In [6] C. Ryll-Nardzewski has proved a similar theorem.:

The Cartesian product of two countably compact spaces, one of which
satisfies the first awiom of countability, is also countably compact.

Using the theory of Moore-Smits nets (for the definition, properties,
notation and terminology see [4], p. 65) we may obtain, by a uniform
method, the following theorem:

(i) The Cartesian product of two countably compact spaces, X and ¥,
one of which is either compact or sequentially compact, i8 also couniably
compact.

We recall that & space is said to be sequentially compact if each se-
quence of elements of the space containsg a convergent subsequence. Of
course, each countably compact space satisfying the first axiom of coun-
tability is sequentially compact, but not conversely.
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Proof of (i). In order to prove that XX ¥ is countably compact
it suffices to show that each sequence {p,}, p, = (&,, ¥»> has a cluster
point. Assume that ¥ is compact. Since X is countably compact, the
sequence {xz,} contains a subnet (s, :seS} which converges to some point
@y Since ¥ i3 compact, the net {y, :seS} has a cluster point y,. Of
cowrse, the point p, = (@, y,) is a cluster point of the sequence
{pn}. Now assume X is sequentially compact. Then the sequence
{®,} contains a subsequence {#n,} which converges to some point z,.
Since Y is countably compact, the sequence {s,} has a cluster point
Yo and it is plain that the point p, = (@, yop is & cluster point of the
sequence {p,}. Thus (i) is proved.

In connection with (i) it seems to be of interest to find a necessary
and sufficient condition for a space X under which the product X x Y
would be countably compact for any countably compact space ¥.

IL. In (3] J. Novék has shown that the Cartesian product of two
countably eompact spaces is not necessarily eountably compact. Namely,
Novak has shown that there exist two countably compact subsets M and
P of BN (I denotes here the space of non-negative integers and BN the
maximal Stone-Uech compactification of N ) such that M ~P =N,
It follows that the diagonal D of the product M xP (i. e. the set of all
{@,y> <M X P for which & = y) consists of all points p = <@, ¥ for which
#eN. Thus D is an infinite closed subset of M x P having no accumulation
' point.

A similar situation may be observed in connection with other sorts
of compactness. Using the above example of Novék, we can show that
the product of two pseudo-compact spaces i§ not necessarily pseudo-
compact. Indeed, each point of ¥ is isolated in SN and it follows that
each point of the diagonal D is isolated in M xP. Hence, setting f(p,)
= n, where p, is the n-th point of D and f(p) = 0 for peM XP\D, we
obtain a continuous unbounded function on M X P.

On the other hand, it iy known that the product of two Lindelst
spaces is not necessarily a Lindeldf space (see e. g. [4], p. 59, example L).

Nevertheless, we can show:

(ii) If X 4s a pseudo-compact space and Y is compact, then the product
XXX is pseudo-compact.

(iii) If X is a Lindelof space aond ¥ is compact, then the product X X Y
8 a Lindelsf space.

We start with the following lemma:

Levwa, If Y is @ compact space, then the projection of any closed sub-
set of XX Y upon the X-awis is closed in X.

icm
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Proof. Suppose that S is & closed subset of X x Y and let S, be the
projection of § upon the X-axis. Let x, be any point of S;. Then there
exists a net {z,;r<R} of points eof §; which converges to @,. Now, for
each reR we can find y,¢Y such that (2., y,><S. Since ¥ is compact,
the net {y,;r<R} contains a convergent subnet {y, ;geQ}. Then the net
{(w,q, y,q) 5 ¢eQ} is also convergent; let p, denote its limit. Of course,
poel and =, is the projection of p,. Thus wyed,;.

Remark. This lemma may also be formulated in the following
way:
If Y 4s a compact space, then for each space X the projection of the
product X x Y upon the X-axis is o closed mapping (i. e. it carries closed
subsets of XX ¥ into closed subsets of X).

In this form the lemma admits a converse. Indeed, assume that Y is
not compact. Then there exists a subset Z of ¥ of regular potency which
does not possess a point of full accumulation (see [1], Théoréme 3").
Tet £ be the initial ordinal of the power Z and let {yq, ..., ¥z, .- tecuw,
be a transfinite sequence (without repetitions) of points of Z. Let X be
the space of all ordinals £ < w; with the order topology and let S be the
set of all points of the product X X ¥ of the form (&, y:> (£ < ;). We
assert that § does not contain any point of the form <{w,;,y). Indeed,
sinee ¥ is not a point of full accumulation of Z, there exists 4 neighbour-
hood U of y such that U ~Z < Z, whence, w, being a regular ordinal,
an ordinal & < w; may be found so that y.¢ U for each &> &, Hence
{&: &y < & < w;} X U is a neighbourhood of (w,,y)> which is free from
points of §. Thus {w;, > does not belong to 8. Consequently, the pro-
jection of S upon the X-axis is nothing else then the set of all ordinals
£ < w;, whence it is not elosed in X.

Now we pass to the proof of (ii). Let f(«, y) be any continuous real-
valued function on X x¥. We can assume, without loss of generality,
that f(z, ) is & non-negative funetion. Since XY is compact, the number

sup f(z, ¥) is finite for each z in X, whence we can define the function
ve¥

g(z) = sup f(z, y).
ve Y

We shall show that g(z) is continuous on X. To prove that it suffices
to show that for each real number a the sets L® = {weX: g(») > a} and
L, = {reX: g(2) < a} are closed. But

Ly = () {weX: f(,9) <},
ve¥
whence L, is closed as the intersection of closed sets. On the other hand,

I* = N {zeX:{(x,y) = a—e for some y in Y}.
&>10
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But the set {zeX: f(z,y) = a-c for some y in Y} is the projection upon
the X-axis of the closed set [(&,y>eX X Y:f(®,y) = a—s}, whence,
according to the lemma, it is closed. Consequently, L is also closed.
Finally, g(x) is continnous on X, and thus it is bounded. It implies that
f(®, y) is also bounded and (ii) is proved.

Theorem (iii) may easily be proved using the following result of
Smirnov [5]:

A subset P of a topological space R is said to be normally disposed
in R if for each closed set F lying in R\ P there exists a Gy-set containing
I' and disjoint from P. Then:

if X is a Lindelof space, then X is normally disposed in amy of its
compactifications ;

if X is normally disposed in some of dts compactifications, then X is
a Lindelof space.

By a compactification we understand here any compact space which
containg the given gpace as a dense subset. :

Now (iii) can be proved in a few words. Assume that X*is o compacti-
fication of X. Then X™\ Y is & compactification of X X ¥. Let I be any
closed set lying in X*xX Y\ X XY and F, — the projection of F upon
the X-axis. Of course, F; is disjoint from X, and, by the lemma, it is
closed. Thus there exists a Gy-set @ which containg #; and does not meet
X. Of course, the counter-image of G under the projection is a Gysot
which contains F and is disjoint from X X Y. Thus XX Y is normally
disposed in X*x ¥ and it follows that X X ¥ iy a Lindelof space.
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Let N be the space of positive integers and BN — the maximal
Stone-Cech compaectification of N. In [5] B. Pospisil has gshown the fol-
lowing: .

(i) The potency of BN is equal to 2°. N

In [4] J. Novak has given another proof of (i) and deduced from (i)
the following:

(ii) Bach closed infinite subset of BN is of the power 2

Now we shall give a very simple proof of (i). Let us consider the
Cartesian product I° of continuously many unit intervals I=1[0,1].
Of course, I° is a compact space of the power 2°. On the other hand,
I° may be considered as the set of all functions from I to I and it is clear
that the set M C I° consisting of all polynomials with rational coetfi-
cients is dense in I°. Let ¢ be any mapping from N onto M. Then @ is
a continuous mapping (because N has the discrete topology), whence ¢
can be continuously extended over the whole SN; let ¢* denote this
extension. Of course, the image ¢*(AN) is a closed subset of I° and since
it contains M, it coincides with I°. Thus 317 > 9. On the other hand,
it is plain that AN, having an enumerable dense subset, is of the power
< 2°% Thus (i) is proved.

Now, following Novak, we can easily show (ii).

Let F be any infinite closed subset of SN. Note that F containg an
enumerable subset B which is homeomorphic to N. Indeed, this results
for instance from the following lemma (see [3], Lemma 1):

If X is a compact space and F is o closed infinite subset of X, then there
ewists a sequence Gy, G, ... of mulually disjoint open subsets of X such
that B ~ @, £ 0 (n=1,2,...). )

Of course, if p,eF ~ Gy (n=1,2,...), then the set B = {P1; Pas---}
is homeomorphic to XN,
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