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To prove property (H) for all compacts ¢ C @ it suffices to prove
(H) for all compacts ¢ of the form

0 =ExIxT",

where F is a finite subset of B and I is an interval in R" of the form
k)
I'= () {<ty tyy -y bl < [L}
=1

It is clear that the characters

»

exp (i.;ft,k) G=1,2,...,m; k=0, 1, +£2,...)

of R" separate points of I. Further, there is a finite system of characters

of B, i. e. elements of B which separates points of ¥. Finally, the character
group of T™, i.e. A™, is finitely generated. Hence it follows that there
is a finitely generated algebraic subgroup D, of ¢ which separates points
of the set €. From the Stone-Weierstrass Theorem ([2], p-9) it follows
that every continuous function on ¢ can be uniformly approximated on ¢
by {finite linear combinations of elements belonging to D, considered ag
funetions on €. Let &(€) be the image of 7 (C) under the Fourier-Plan-
cherel transformation. Every function belonging to % (0) can be appro-
ximated in £2(@)-norm by continuous functions vanishing off C (see
[1], §55). Consequently, every function g belonging to % (C) is uniquely
determined by inner products

(2) Jowawp@y (veD).
¢
By the continuity of fe F(C) we have the equality
1@) = [f)aw)may).
C

Therefore by (2) it follows that the Fourier-Plancherel transform. of f
and, consequently, the function f itself is uniquely determined by the
values f(y) (yeD). The theorem is thug proved.
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A LIMIT THEOREM FOR RANDOM VARIABLES
IN COMPACT TOPOLOGICAL GROUPS

BY
M. ULLRICH (PRAGUE) 4xp K. URBANIK (WROCLAW)

1. Let @ be a compact (not necessarily Abelian) topological group.
A regular completely additive measure u defined on the class of.a,ll Borel
subsets of @, with x(@) = 1, will be called a probability distribution. A se-
quenice of probability distributions uy, ps, ... i8 shid to be weakly conver-
gent to a probability distribution p if

im [ f(g)un(dg) = [ f(9)u(dg)
N—00 ¢ Q
fbr any complex-valued continuous function f defined on G. .
A G-valued random variable is called symmetric it its probability
distribution wx is invariant under the transformation g— g7 ie if u(B)
= u{E"Y) for each Borel subset B C G, where B™' = {g': g B}.
Let X,, X,,... be a sequence of independent G-valued random va-

riables with probability distributions u,, pg, ... Put
Y, =X, X,...0. X, (n=1,2,..),

~where the product is taken in the sense of group multiplication ip G.
It is well known that the probability distribution », of the random variable
Y, is given by the formula

Yy = gk kg, (o= 1,2,..),
where the convolution = is defined by
v A(E) = [ v(By™)A(dg) (*).
&

The limiting distribution of the sequence ¥,, ¥,, ... is the weak limit
of the probability distributions »,, v,,....

() Bg~' = {hg™': heB}.
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A probability distribution 7 is called positive if A(V) > 0 for every
open non-empty subset V C & For example the uniform distribution
on @, i.e. the normed Haar measure on @&, is positive.

In the present paper we shall prove the following theorem, which is
& solution of a problem raised when constructing generators of stochastic
processes: :

THEOREM. Let A be a positive probability distribution on @ and let
X,, X,,... be a sequence of symmeiric independent G-valued random va-
riables with probability distributions py, pa, ... If for every Borel subset
E C G we have the inequality

(1) w(B)Z aA(B) (0<a,<1;n=1,2,..),
where
2) ‘ Dty = oo,

A=1

then the limiting distribution of products X -X,-...- X, is uniform on @
Moreover, condition (2) is essential, i. e. for every sequence a,, a,, ....
(0 € a, < 1) for which
Ll
Zan < o0,
n=1

there is a sequence X,, X,, ... of symmetric independent G-valued random
variables with probability distributions satisfying (1) such that the limiting
distribution of X, - X,-...-X, (n=1,2,...) is not uniform.

II. Before proving the Theorem we shall give some elementary pro-
perties of characteristic functions.

(@) will denote the class of all continuous finitely dimensional

irreducible unitary representations of the group & (%). The matrix-valued
funetion

= [Ug)udg) (UeU(@)
G

ig called the- characteristic function of the propability distribution u. It
is well known that the probability distribution is uniquely determined
by its characteristic function. Moreover, the weak convergence of pro-
bability distributions is equivalent to the convergence of their characte-
ristic functions. Further, it is easy to prove that

(pn‘v(cu) = @y (Cl()‘pv (CZQ .

(*) See A. Weil, L'intégration dans les groupes topologiques ef ses applications,
Paris 1940, Chapitre IV.
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Z" will denote the n-dimensional complex Euclidean space with
inner product

y%y/

(,9)

and norm
lefl = V(z, @),
where & = {@y, By, ..., Zp)y ¥ = Y1y Y2y -+ Yuny. Lot us consider a linear

transformation of Z" determined by a matrix 4: x — Az (zeZ"). The norm
of A is defined as follows:

44 =”§%£1HA90H-

If 4 is any matrix, then there exist two uniquely determined Hermi-
tian matrices ¥4 and IA4 such that

A =RA+i94.
Moreover, the inequalities

IRAl <4l  94] < [14]]
hold.

Lemwma 1. If A is a matriz with a norm not greater than 1, (h| =1 and
(3) (A%gy @) = h(@y, @)  (Ty #~ 0),
then x, is a proper vector of A for the proper value h.

Proof. Setting
(4) Az, = pzot-y,
where 4 is orthogonal to =z, and p is a complex constant, we have the
equality

(Aawy, 2) = P (Do Tp)-

Hence, in view of (3), we get the equality p(xy, %) = h(w,, @,) and, con-
sequently,

(5) p =h.

Further, taking into account equality (4), we obtain, by the Pytha-
gorean theorem,

Azl = {12l +[lyl2 = llowoll® +y]I.
< 1, the last equality implies

llzall* -+ 1w 112 < ol

Colloquium Mathematicum VII 13
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GUEST


194 M. ULLRICH AND XK. URBANIK

Thus 4 = 0. Consequently, according to (4) and (B), we have the equality
Az, = ha,, which was to be proved.

LeMya 2. If Uis a unitary matriz and if @, is o proper vector of “RU
for the proper value h, where [h| =1, then x, is also a proper vector of U
for the same proper value.

Proof. It is well known that for every unitary matrix U the matrix
RU commutes with the matrix 9U. Consequently,

(RUZ+(9U)RE =TU" = ¢,

where U* denotes the adjoint of U and ¢ denotes the unit matrix. Hence
we get the equality

ol = (TTU* 2y, 29) = ((RU)2a, 20} + (9 T)2a, ,)
= (RUzy, RU)+(9Us,y, TU,)
= (hmy, hwg) + 19Ul = o+ 119 Usnoll?,

which implies |9 Ua)|* = 0 and, consequently, 9Ux,= 0. From. the last
equality it follows that Uz, = RU®m,+ 19 Us, = hay. The lemma is thus
proved.

Tt is well known that for every Hermitian matrix 4 the inner pro-
duct (4, 2) is real for every vector #. In particular, (‘RAw, x) is real for
every matrix 4 and for every vector .

Lemma 3. Let A be a positive probability distribution on G. For every
representation U e $(@) and for h = 1 or —1 there exists o positive ¢ such
that
inf Mg: 1—h(RU(g)w, x) > ¢} > 0.
lzli=1 :

_ Proof. Contrary to the statement of our lemma let us suppose that
for every integer r there exists a sequence of vectors x{",«{?,..., with
2P =1 (j=1,2,...), for which

(6) lim Mg: 1—R(RU(g, 27) > 7} = 0.
: f—s00
Since the sphere |z|| = 1 is compact, we suppose, without loss of

generality of our consideration, that the sequence a{", x{’, ... converges
to a vector 2", Obviously, the following inclusion holds:

{g: 1— 1 (RU ()", 2®) > r7}
C liminf {g: 1—k{RU(g)2f?, ") > +7*}.

jrc0

Hence, aceording to (6),
Ag: 1—h(RU@D, ) > ™} = 0.

icm
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Further, without loss of generality, we may suppose that the sequence
a® 2@ .. converges to a vector m,, with |lz,]| = 1. It is easy to prove
that for every a the inclusion

{9: 1— 1 (RU(g) @y, @) > @} C limint {g: 1—h(RU(g)2", 2) > a}

is true. Consequently, in virtue of (7), we get the equality
(8) Mg: 1—h(RU(g) @y, ) > 0} = 0.

From the inequality |(RU(g), @) < IRUWN < U@I=1 it
follows that 1—h{RU (g)x,, x,) > 0 for each geG. Consequently, formula
(8) implies the equality

(9) 1—h(RU(g) 0, @) = 0

for A-almost all ge@. By the continuity of the representation U and the
posititivity of 1, equality (9) holds for every ge@. Sinee |jr,l| = 1, we infer,
in view of (9), that

(Lp%(!])%y mo) = h(my, )
for all ge@. Thus, in virtue of lemma 1, @, is a proper vector of ‘R (g)
(ge@) for the proper value A and, moreover, in virtue of Lemma 2, x, is

a proper vector of U (g) (ge@) for the proper value k, which contradicts
the irreducibility of the representation . The Lemma is thus proved.

Lemma 4. If u is a symmeiric probability distribution, then, for every
WUe (@), 9, (W) is a Hermitian matriz and

Pu(U) = [ RU(g) p(dg).

[e4

Proof. By the symmetry of 4 we obtain the equality
Pu(U) = [U(g) u(dg) = [ U(g™") u(dg) = [ U (9)u(dg)
G 23 G

= [U*(g)p(dg) = gh(UW).
G

Consequently, ¢,(%) is a Hermitian matrix. Since RU(g) (ge@) are
Hermitian matrices, [RU(g)u(dg) is also a Hermitian matrix. Thus
aq

the matrix
i [9U(g) u(@g) = p(U)— [ RU(g) u(dy)
(24 G
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is Hermitian. Consequently,

%Hn—f%%wmwm=%&f9%mmmm+ﬁf9%wmmmﬁ
G & [

The lemma is thus proved.

LEMMA 5. Let 2 be a positive probability disiribution. For every Ue (@)
there ewists a positive constant b such that for every symmetric probability
distribution p satisfying the condition

(10) w(®) > 0i(B) (BCE)
the following inequality holds:
llp (N < 1—ab.

Proof. Let Uel(G). By Lemma 3 there exists a positive number ¢
such that the greatest lower bounds of the i-measures of sets

B, = {g: 1—h(RU(g9)z, ) > ¢},
where |jz|l =1 and b =1 or —1, are positive:
(11) d = inf A(H,) > 0.
Il =1
h=11
Since 1—h(RU(g)w, 4} >0 for |lw] =1, h =1 or —1, we have,
applying lemma 4, the inequality
1—h{g, (W2, 2) = [ (1—1(RU(g), v)) u(dg)
[

zEf(l—h(%%(g)w,w)),,t(dg) > ou(By)

T

for every vector « with ||| = 1. If u satisfies condition (10), then the last
inequality and (11) imply

1_h(¢ﬂ(%)m; m) > cal(By) = cad

for every vector # with |#| = 1 and for h =1 or —1. Hence, putting
b =cd > 0, we get the inequality
(12) lsup o, (U, )| <1—ab.

z)l=1

It is meii»;ﬂmown that

(13) 4]l = sup |(4z, )
lizl|=1
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for every Hermitian matrix 4. Since, by Lemma 4, ¢,(‘U) is a Hermitian
matrix for symmetric probability distributions, we have, in view of (12)
and (13), the assertion of our Lemma.

Proof of the theorem. To prove the first part of the theorem it
suffices to show that for symmetric probability distributions gy, ga, ...
satistying conditions (1) and (2) the weak limit of uj*us*...ku, (n=1,2,...)
is the Haar measure on .

Let Uei(@). By Lemma 5 and condition (1) there exists a positive
constant b such that

I (W S1—ad  (n=1,2,..).
Hence we get the inequality

g (VN = 10y (U 1y (U -+ - s, (U

n

< [y 00 < [ [ (1 —and).
j=1

j=1

Therefore, in view of (2),

T g o oy ()N} = 0

for every Ueil(G). In other words,
(14) I, e (U) = O
N—>00

for every el (F).
Since the characteristic funetion of the Haar measure m on G is equal
10 0: @, (W) = 0 (U < (@) (see op. cit. (%), Chapitre V), we have, accor-
ding to (14),
B, vuys.. o, (W)= P ()
N—>00

for every U eil(G), which implies the weak convergence of u;%uy%...%un
to m. The first part of the theorem is thus proved.

Now let us suppose that a sequence @, &,, ... (0 < a, K1) satisfies
the condition

(15) D < 00,
N=1
For given Uye(G) we set

(16) Vo= {g: U(g)—Cl <2} (n=1,2,..).
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Obviously, V, = V;! and A(V,) >0 (n=1,2,...). Further, we
define the sequence of symmetric probability distributions u, us,... by
the following formula:

— Oty A (V)

1
U (B) = (V) Z(E’\Vn)‘{"anl(E\Vn) (n=1,2,..).

It is easy to verify that the inequality

pin(B) 2 anA(B)

is true for every Borel subset B C G. Moreover, in virtue of (16),

1 (Uo) — €Il < [ 1Ua(9) —Cllten ()
G

(m=1,2,..)

1— n+ nl Vn 3 ]
I T [t — €+ o[ 1900 = CIAG) <07 20,
” Va ANVn
(n=1,2,..).

Hence, according to (15), we get the inequality

D19, (Up)—€ll < o0,
M=l
which implies the convergence
lim ‘pul‘ﬂz*.,.‘;&n(%o) = lim %l (Cuﬂ)qjyz(%l)) AR W;zn(%()) 7+— 0.
N—>00 N—>00

Consequently, the Haar measure is not the weak limit of the probability
distributions u,*py*..xu, (n =1,2,...). The Theorem is thus proved.
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ON THE POWER OF COMPACOT SPACES

BY
A. HULANICKI (WROCLAW)

Let X be a compact (= bicompact) infinite space. The character
O(p) of a point p X is the least cardinal of a family of open sets contai-
ning the point p and having that point as its intersection.

Recently S. Mréwka [4] has shown the following

TemorEM. If m < O(p) for all peX, then X >2™

In this note we present a somewhat simpler proof of this theorem.
The main idea of the proof is similar to that of my papers [1] and [2]
and has some connections with the idea used by F. B. Jones in [3]

Proof. Denote by I° the set of all 0-1 sequences of the ordinal
type a. Let £¢I* and g < «. Denote by &, the segment of the type f of
the sequence &. For each a we are going to define a family {V(&): £}
of open sets of the space X. We use the transfinite induction: for a =1
we have two one-element sequences 0 and 1. Let ¥ (0) and V(1) be two
arbitrary disjoint open subsets of X. Suppose we have defined V(&) for
all £¢I? and B < a. In order to define V'(£) for EeI® consider two possi-
bilities: (a) « has a precedent and (b) a is a limit-number.

(a) Put a = a’+1. Then either for some £eI” the set () V(&) con-
B
tains at most one point or for every £ ¢I% it consists of two points at least.

In the first case, the sets V(&) for £<I* will not be defined. In the second
case, given a £eI”, let m, and ®; be two points of N V(&)
B<a

There are exactly two different sequences 7° and\hl belonging to I®
such that 7% = nb = £. Let V(y*) and V(n*) be two disjoint open sets

such that z,eV (1°), &,V (nt) and V(n®) C V(£), V(n) C V(.

(b) If ais a limit-number, then for é<I® put V¢ = X.
Note that:

(i) For every a the set () V(&) is non-void.
2



GUEST




