

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

FASC. 2

REMARKS ON COMPACTLY GENERATED ABELIAN TOPOLOGICAL GROUPS

BY

K. URBANIK (WROCŁAW)

Let G be a locally compact Abelian topological group and let \widehat{G} be its character group. By $\mathscr{L}^2(G)$ we shall denote the space of all measurable and square integrable with respect to the Haar measure of G complex-valued functions. We set for every integrable function f belonging to $\mathscr{L}^2(G)$

$$\tilde{f}(\chi) = \int_{\tilde{G}} f(x) \overline{\chi(x)} m(dx) \quad (\chi \in \hat{G}),$$

where m denotes the Haar measure of G. For a suitably normalized Haar measure m the mapping $f \to \tilde{f}$ has a unique extension to a unitary mapping of the whole of $\mathcal{L}^2(G)$ onto the whole of $\mathcal{L}^2(G)$, which will be called the Fourier-Plancherel transformation (see [2], p. 145). In the sequel \tilde{f} will denote the Fourier-Plancherel transform of a function f belonging to $\mathcal{L}^2(G)$.

Let C be a compact subset of \widehat{G} . By $\mathcal{F}(C)$ we denote the space of all functions belonging to $\mathcal{L}^2(G)$ whose Fourier-Plancherel transform vanishes off C almost everywhere with respect to the Haar measure of \widehat{G} . It is evident that $\mathcal{F}(C)$ is a closed subspace of $\mathcal{L}^2(G)$. Moreover, every function $f \in \mathcal{F}(C)$ is equivalent to a continuous function. This follows from the continuity of the inverse transform $\int\limits_{G} \widetilde{f}(\chi)\chi(x)\mu(dx)$ where μ is the suitably normalized Haar measure of \widehat{G} . Therefore $\mathcal{F}(C)$ will be regarded as a space of continuous functions.

Let us introduce the following property:

(H) For every compact $C \subset \hat{G}$ there exists a finitely generated algebraic subgroup D of G such that every function belonging to $\mathcal{F}(C)$ is uniquely determined by its values on D.

The additive group R of all real numbers with its natural topology has property (H). In fact, every function f whose Fourier-Plancherel

transform vanishes off an interval $-a \leqslant x \leqslant a$ can be represented by an orthogonal expansion

$$f(x) = \sum_{n = -\infty}^{\infty} f\left(\frac{n\pi}{a}\right) \cdot \frac{\sin(ax - n\pi)}{ax - n\pi},$$

whence it follows that f is determined by its values on the cyclic group $n\pi/a$ $(n=0,\pm 1,\pm 2,\ldots)$.

In the present note we shall prove the following theorem, which is an answer to a problem raised by S. Hartman:

THEOREM. A locally compact Abelian group is compactly generated if and only if it has property (H).

Before proving the theorem we shall prove a lemma.

LEMMA. Let G_1 and G_2 be two locally compact Abelian groups. If the direct sum $G_1 \times G_2$ has property (H), then the summands G_1 and G_2 have the same one.

Proof. Obviously, to prove our lemma is sufficient to show that G_1 has property (H). Let us assume that G_1 and G_2 are compact subsets of \hat{G}_1 and \hat{G}_2 respectively and, moreover, Int $C_2 \neq 0$. From the compactness of $C_1 \times C_2$ and property (H) of $G_1 \times G_2$ follows the existence of a finitely generated algebraic subgroup D of $G_1 \times G_2$ such that every function belonging to $\mathcal{F}(C_1 \times C_2)$ is uniquely determined by its values on D. Further, from the relation $\mathrm{Int}\,C_2 \neq 0$ it follows that there is a function g belonging to $\mathcal{F}(C_2)$ and being not identically zero. Let p be the projection of $G_1 \times G_2$ onto G_1 and let f_1, f_2 be functions belonging to $\mathcal{F}(C_1)$, satisfying the equality $f_1(x) = f_2(x)$ for any $x \in p(D)$. Setting $h_1(\langle x_1, x_2 \rangle) = f_1(x_1)g(x_2)$, $h_2(\langle x_1, x_2 \rangle) = f_2(x_1) g(x_2) (\langle x_1, x_2 \rangle \epsilon G_1 \times G_2)$, we obtain functions belonging to $\mathcal{F}(C_1 \times C_2)$ which are identical on D. Thus, by property (H), h_1 and h_2 are identical on $G_1 \times G_2$. Since g is not identically zero, we have the equality $f_1(x) = f_2(x)$ for any $x \in G_1$. Consequently, every function belonging to $\mathcal{F}(C_1)$ is uniquely determined by its values on p(D). Property (H) for the group G_1 is thus proved.

Proof of the theorem. The sufficiency. Let G be a locally compact Abelian group having property (H). According to a well-known theorem the group G decomposes into the direct sum $G = \mathbb{R}^n \times G_0$ of an n-dimensional vector group \mathbb{R}^n and a group G_0 having a compact subgroup G_1 such that the quotient group G_0/G_1 is discrete (see [3], § 29). Obviously, to prove that the group G is compactly generated, it suffices to show that the group G_0 is of the same kind.

By the lemma, the group G_0 also has property (H). Since G_0 has no direct summands of the form R^m $(m \ge 1)$, the character group G_0 does

not contain direct summands of this form. There is then a compact subgroup C_0 of \hat{G}_0 such that the quotient group \hat{G}_0/C_0 is discrete. Let A be the annihilator for the group C_0 in the group G_0 , i. e. the set of all elements $x \in G_0$ satisfying the equality $\chi(x) = 1$ for every $\chi \in C_0$. It is well known that C_0 and \hat{G}_0/C_0 are character groups of the groups G_0/A and A respectively. Since C_0 is compact, the quotient group G_0/A is discrete. Thus A is an open subgroup of G_0 . Furthermore, since \hat{G}_0/C_0 is discrete, the group A is compact.

Let \circlearrowleft be the class of all complex-valued functions defined on G_0 which are constant on cosets of the subgroup A and vanish off a finite number of cosets. It is evident that $\circlearrowleft \subset \mathcal{L}^2(G_0)$. Moreover, if a function f belonging to \circlearrowleft assumes values z_1, z_2, \ldots, z_k on disjoint cosets $x_1 A, x_2 A, \ldots, x_k A$ respectively and vanishes off $\bigcup_{j=1}^k x_j A$, then its Fourier-Plancherel

transform is given by the formula

(1)
$$\widetilde{f}(\chi) = \sum_{i=1}^k \int_{x_i A} f(x) \overline{\chi(x)} m(dx) = \sum_{j=1}^k z_j \overline{\chi(x_j)} \int_A \overline{\chi(x)} m(dx),$$

where m is the suitably normalized Haar measure of G_0 .

If $\chi \in C_0$, then it is not identically 1 on A and, consequently, $\int_{1}^{\infty} \chi(x) m(dx)$

= 0 (see [3], § 20). Hence and from (1) it follows that the Fourier-Plancherel transforms of all functions belonging to \circlearrowleft vanish off C_0 . Since A is an open subgroup of G_0 , all functions belonging to \circlearrowleft are continuous. Thus $\circlearrowleft \subset \mathcal{F}(C_0)$. By the compactness of C_0 and property (H) of G_0 there is a finitely generated algebraic subgroup D of G_0 such that every function belonging to \circlearrowleft is uniquely determined by its values on D. But this is possible if and only if the discrete group G_0/A is finitely generated. Hence, taking into account the compactness of A, we infer that the group G_0 is compactly generated. The sufficiency of our condition is thus proved.

The necessity. Every compactly generated Abelian group G decomposes into the direct sum

$$G = B \times \mathbb{R}^n \times \Delta^m$$

where B is a compact group, R^n is an n-dimensional vector group and Δ^m is the direct sum of m discrete additive groups of all integers (see [3], § 29). Hence we get the following decomposition of the character group:

$$\hat{G} = \hat{B} \times R^n \times T^m,$$

where T^m is an m-dimensional toroidal group.

K. URBANIK

To prove property (H) for all compacts $C \subset \hat{G}$ it suffices to prove (H) for all compacts C of the form

$$C = E \times I \times T^m$$

where E is a finite subset of \hat{B} and I is an interval in \mathbb{R}^n of the form

$$I = \bigcap_{i=1}^n \left\{ \langle t_1, t_2, \dots, t_n \rangle : |t_j| \leqslant a \right\}.$$

It is clear that the characters

$$\exp (i \frac{\pi}{a} t_j k) \quad (j = 1, 2, ..., n; k = 0, \pm 1, \pm 2, ...)$$

of E^n separate points of I. Further, there is a finite system of characters of \hat{E} , i. e. elements of B which separates points of E. Finally, the character group of T^m , i. e. A^m , is finitely generated. Hence it follows that there is a finitely generated algebraic subgroup D, of G which separates points of the set G. From the Stone-Weierstrass Theorem ([2], p. 9) it follows that every continuous function on G can be uniformly approximated on G by finite linear combinations of elements belonging to G, considered as functions on G. Let G0 be the image of G0 under the Fourier-Plancherel transformation. Every function belonging to G0 can be approximated in G1, \$55). Consequently, every function G2 belonging to G3, is uniquely determined by inner products

(2)
$$\int_{G} g(\chi)\chi(y)\mu(d\chi) \qquad (y \in D).$$

By the continuity of $f \in \mathcal{F}(C)$ we have the equality

$$f(y) = \int_{\Omega} \tilde{f}(\chi) \chi(y) \mu(d\chi).$$

Therefore by (2) it follows that the Fourier-Plancherel transform of f and, consequently, the function f itself is uniquely determined by the values f(y) ($y \in D$). The theorem is thus proved.

REFERENCES

- [1] P. R. Halmos, Measure Theory, New York 1950.
- [2] L. H. Loomis, An Introduction to Abstract Harmonic Analysis, Toronto, New York, London 1953.
- [3] A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris 1940.

Reçu par la Rédaction le 1. 4. 1959

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

FASC. 2

A LIMIT THEOREM FOR RANDOM VARIABLES IN COMPACT TOPOLOGICAL GROUPS

BY

M. ULLRICH (PRAGUE) AND K. URBANIK (WROCŁAW)

I. Let G be a compact (not necessarily Abelian) topological group. A regular completely additive measure μ defined on the class of all Borel subsets of G, with $\mu(G)=1$, will be called a probability distribution. A sequence of probability distributions μ_1, μ_2, \ldots is said to be weakly convergent to a probability distribution μ if

$$\lim_{n\to\infty} \int_G f(g)\,\mu_n(dg) = \int_G f(g)\,\mu(dg)$$

for any complex-valued continuous function f defined on G.

A G-valued random variable is called symmetric if its probability distribution μ is invariant under the transformation $g \to g^{-1}$, i. e. if $\mu(E) = \mu(E^{-1})$ for each Borel subset $E \subset G$, where $E^{-1} = \{g^{-1} \colon g \in E\}$.

Let X_1, X_2, \ldots be a sequence of independent G-valued random variables with probability distributions μ_1, μ_2, \ldots Put

$$Y_n = X_1 \cdot X_2 \cdot \ldots \cdot X_n \quad (n = 1, 2, \ldots),$$

where the product is taken in the sense of group multiplication in G. It is well known that the probability distribution ν_n of the random variable Y_n is given by the formula

$$\nu_n = \mu_1 * \mu_2 * \dots * \mu_n \quad (n = 1, 2, \dots),$$

where the convolution * is defined by

$$v*\lambda(E) = \int\limits_{G} v(Eg^{-1})\lambda(dg) \, (^{1}).$$

The limiting distribution of the sequence $Y_1, Y_2, ...$ is the weak limit of the probability distributions $\nu_1, \nu_2, ...$.

(1)
$$Eg^{-1} = \{hg^{-1} : h \in E\}.$$