singing an irreducible generating system and having a non-normal subgroup G with a finite generating system (e.g., the symmetric group S_n of degree $n \geq 3$). It is evident that the subgroup $H_0 = H \times C$ is not normal in the group $G = H \times \Delta \times B$ and according to Theorem 2 has no irreducible generating system; the group G_0 has, of course, property P.

REFERENCES

Reçu par la Rédaction le 2. 3. 1969

EMBEDDINGS IN GROUPS OF COUNTABLE PERMUTATIONS

BY

M. KNESEs (MÜNCHEN) AND S. ŚWIERCZKOWSKI (WROCLAW)

The aim of this note is to answer a question put forward by J. Mycielski. The question is whether, given an arbitrary group G,

$(*)$ if G is isomorphic to a group of permutations of a set X such that every permutation displaces not more than countably many elements of X.

We shall prove

THEOREM 1 $(*)$ is true for every abelian group G.

THEOREM 2. If F is a non-abelian free group with more than 2^n free generators, F' is the commutator subgroup of F and F'' is the commutator subgroup of F', then the group $G = F/F''$ does not satisfy $(*)$.

If G is an abelian group of order 2^n, then Theorem 1 follows from a result of N. G. De Bruijn [1]: Every abelian group of order 2^n, where n is an arbitrary infinite cardinal, is isomorphic to a group of permutations of a set of n elements.

Our proof of Theorem 2 can easily be generalized to a proof of the following result: If n is an arbitrary infinite cardinal and F is a non-abelian free group with more than 2^n free generators, then $G = F/F''$ is not isomorphic to a group of permutations of a set X such that every permutation displaces at most n elements of X.

PROOF OF THEOREM 1. We start with three lemmas:

(i) If G is countable, then $(*)$ is true.

To see this it is enough to regard each $g \in G$ as the permutation $x \rightarrow gx$ on the set $X = G$.

(ii) If $\{ G_r \mid r \in F \}$ is a collection of groups and each G_r satisfies $(*)$, then the direct sum $G = \Sigma G_r$ also satisfies $(*)$.

To prove this let us denote by X_r disjoint sets such that $(*)$ holds with G_r, X_r instead of G, X. Each $g \in G$, then acts as a permutation on

(i) We have been informed that A. Hulanicki found independently a proof of this theorem.

Colloquium Mathematicum VII.
the set $X = \bigcup_{a \in A} X_a$, such that only elements in X_a are displaced. Hence G acts as a group of permutations on X and (2) is easily verified.

(iii) If a group G satisfies (i), then so does every subgroup.

Let us assume now that G is an abelian group. Consequently G is a subgroup of an abelian divisible group H (see [2], p. 167). Since H is a direct sum of countable groups (see ibid., p. 165), we infer (2) by (i), (ii) and (iii).

Proof of Theorem 2. Let F be a non-abelian free group with more than 2^n free generators f_i, and let g_i be the image of f_i under the canonical homomorphism of F onto $G = F/F'$. Then g_i and $g_j g^{-1}_j$ are not commutative if i, j, k are different. For, let h be the endomorphism of F, defined by $h(f_i) = f_i$, $h(f_j) = f_i$ for $i \neq k$, and h the induced endomorphism of G. Then $h(g_i) = g_i$ and $h(g_j g^{-1}_j) = g_i$ are not commutative, and thus g_i and $g_j g^{-1}_j$ cannot commute.

Now, suppose that G operates as a permutation group on a set X. Let us denote the image of $x \in X$ under g by $g \cdot x$. Suppose further that every $g \cdot x$ displaces at most countably many elements $x \in X$. We shall then obtain three different indices i, j, k such that the permutations induced on X by g_i and $g_j g^{-1}_j$ commute, thus proving that the representation of G as a permutation group is certainly not an isomorphism.

As a first step, we prove that for each $x \in X$ the domain of transitivity $Gx = \{g \cdot x : g \in G\}$ is at most countable. This will be a consequence of the following lemma, applied first to the case $H = G' = F/F'$, and then to $H = G/G' = F/F'$.

(i) If H is an abelian group which acts as a group of permutations on a set S so that each permutation does not displace more than countably many elements of S, then each domain of transitivity Hs is at most countable.

Proof. Let $s \in S$. Suppose first that $hs = s$ for some $h \in H$. Then, for each $g \in H$, we have $gsh = gs$ and this implies $hgs = gs$. Hence every element in Hs is displaced by h and thus Hs is at most countable. If $hs = s$ holds for every $h \in H$, then $Hs = \{s\}$.

Returning to our group G, we know by (2) and (i), that each domain of transitivity $G'x$ under the commutator subgroup G' of G is at most countable. Now, denote by S the set of all domains of transitivity $G'x$ of G' in X, and let an element $G'x$ of the factor group $H = G/G'$ operate on S as a permutation defined by $G'x' x = G'x$. Since g displaces at most countably many elements $x \in X$, $G'x$ displaces at most countably many elements $G'x \in S$. By lemma (i) it follows that any domain of transitivity Gx of G contains at most countably many sets $G'y$, and since each of these is at most countable, Gx must be at most countable.