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Using () and (8) we get for & large enough
B =3ke—1 1 1
(B*+1) gn

and, similarly, using (8) for k large enough

I€'a—B > (br—r—1)lde| >

r k b ——
1= 81 > (@ be) ol > s > s >

i.e. for t, = ¢+ 2k qu, k = 2v-+1, » > v, the inequality
lwa— Bl < 1ft

hag no solution with 0 < » < ¢f.

In an analogous way it is possible to show that for ¢ = ¢;,_, -+ 2k gy,
k = 2v, v > %, inequality (1) has no solution with —¢f < # < 0, which
completes the proof.
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EMARKS ON 4 CONCJECTURE OF HANANI IN ADDITIVE
NUMBER THEORY
BY
W. NARKIEWICZ (WROCLAW)

In his paper [1] P. Erdds mentions the following conjecture due
to H. Hanani:
(Hy) If A{w) = X1 and B(w) = 3 1, where {ay} and {b,} are both
ap<z bp<x
infinite sequences of increasing integers, amd if every sufficiently great
integer can be represented in the form a;+b;, then
=— A (2)B(a)

im ———— > 1.
T—>00 @x

This conjecture can be stated in the following equivalent form:
(Hy) If by f(n) we dénote the number of representations of the imteger
n in the form a;+b;, f(n) =1 for n =n,, and

— A(®)B
i A@B@ _
00 &
then one of the sequences {ax}, {by) must be finite.
It seems very probable that the following stronger conjecture holds:
(Hy) If f(n) =k for n = n,, and
— A(2)B
mA@BE _
Zr00 Z

then one of the sequences {ax}, {by} must be finite.

The purpose of this paper is to prove the following theorem associa-
ted with the conjecture (H,):
THEOREM. If f(n) >k for almost all integers, and
) — A(z)B
i A@B@ _

2300 @
then:
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i)  f(n) =k for almost all integers,
o . Al2) . B(2x)
i 1 =1, or lim——
W w0 L B@
From (ii) and a result of G. Pélya [2] it follows that A (x) = o(x"),
or B(z) = o(2") for every positive &.
Proof. (i) Let n, be such a sequence that f(n) = 1-+k. It

= D1,

ngex

= 1.

then from the remark that there are A (x)B(z) sums a;+b; with a;, by <<«
it follows that
A (x) B(x) = kx+N ()4 o(2).
— A(x)B
Now if Hm ——(ﬂ—(ﬁ <k, then N(z) = o().
@&

&—»00

(ii) It is evident from the preceding that
(1) A(@)B(z) = kx+o(x).

Let us denote by fy(l) the number of representations of the integer !
as ;- b:] with [ bj- < x. Let

A
Then e
, A@B@) = 3foll) = Fla)+ D fall);
therefore Isaw =
0 < F(a) = A@)B(@)= D fal)
But s
and thus we have teo
(2) 0 < F(2) < ke—ka-to(w) = o(x).
Now let us show that the functions
_ 4G _ Blin)
alo) = S B =

cannot have other points of accumulation than 1 and 4§, when «
tends to infinity.
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From (2) we have
o(x) = F(2) = {A(z)— 4 (§2)} - {B(2)~B(3e)} =0
tor if #/2 < a; <@, ©/2 < b; < «, then a;+b; > x. But from (1) we have
{4 (2)—A4 ({2)} -{B(2) —B(42)}
= tko—A(32) B(x)—A(2) B(32)+ o ()
and it follows that

1o A@BU)+ B A _3
T—500 x 2

From this and (1) we deduce that

. A(3x) A () 3
1i ==
z——ilclo{ A (z) + ZA(%m)} 2"

It ima(a;) = g (#;~ co), then g+1/2¢ = ; and thus g =1, or g = }.

From (1) it is evident that if a(x;) — § then B(x;) — L, and if f(x;) — %
then a(x;) — 1.

It exists therefore a sequence ;, tending to infinity, for which a(z;) - 1
or f(x;) > 1.

Let us assume that
(3) a(x;) 1.

We shall now prove the following
. Leyma. If for an increasing sequence 1, tending to infinity, a(t,) — 1,
then

A(dt)

koo A (%)

From (1) and (2) we have

0(®) = F(z) > {4 (w)— 4 (32)} {B(2)—B (3x)}
= ke —B(2) 4 (}2)—B(}0) 4 (0)+B (§x) A(}o)+ o(a) > 0.
Hence
lim B(2) A (jo)+ 4 (2)B(§x)— A (}0)B(fa) —,

2—>00 T

and after applying (1) we see that

h.m{A(im) L34 34(j)
eoos | A(@) | 44 (3w) '4A(%m)}_


GUEST


164 W. NARKIEWICY ) N
‘We have
A (t)

lim =1

koo A (%tk) !
for

1< A () < A 1 -1,
A(3y)  A(d) alt)

Hence

11 {A(Hk) + 3A(t)  3A({h) A(l))
o A(tk) 4A(%tlr) A(tlr)'A(itlu) ]

Jro0

o [AQw L3 34(i
= n{A(tk) T 4A(tk)}’

k—o0

and it follows that
m A (i)
koo A (8)

The lemma is thus proved.
Now let y, be a sequence monotonically tending to infinity. Let

X ={m:!;?—{—11< i}

It is evident that if w<X, then also [#]eX for [2/2] = [[#]/2] and
A(w) = A([])
It follows that X is left-sidedly closed.
From (3) it follows also that X is unbounded.
Let &, = infs. Then £,¢X and so
wn
I A(&) _1.<}.
A(}6) 4
From this inequality it follows that «(&,) — 1, since a subgequence
&y, for which a(&,,) — § cannot exist. From the lemma we immediately
find

Al
. ey
therefore
(5) lim A(‘f}fn) _hmA(%fn)'A(fﬂ) =1. "

now A(3E)  noee A (E)A(E)
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For sufficiently great » we have &, <Cy,, because if for an infinite
sequence {n;} we had 3y, > Yngy WE should have ¥é,,¢X, and thus
A} 1

(36w <1| 1
A (1)

47
which contradicts (5).

For sufficiently great n we thus have

'&511 < %yﬂ \<\ %En < y?l‘ g fﬂ,‘
From (4) we get
lim AW 1.
nsoo A (3Yn)

From the arbitrariness of the sequence y, it follows that

lima(z) =1,

L0
which completes the proof.
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